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A B S T R A C T

This paper provides the first review to date which gathers, describes, and assesses, to the best of our knowledge,
all available publications on automating cerebral microbleed (CMB) detection. It provides insights into the
current state of the art and highlights the challenges and opportunities in this topic. By incorporating the best
practices identified in this review, we established guidelines for the development of CMB detection systems.
We are confident that these guidelines can serve as a foundation for further research.

CMB detection is a crucial but challenging task that can be laborious for radiologists. With the increasing
popularity of magnetic resonance imaging (MRI), the ability to detect CMBs has improved, but there is still
a need to automate this process to enhance its efficiency and accuracy. A high prevalence of CMBs is closely
associated with cognitive dysfunction, diabetes, hypertension, an increased risk of stroke, and intracerebral
hemorrhage. It is alarming to note that strokes, Alzheimer’s disease, and Diabetes mellitus have secured
their position as the second, seventh, and ninth most common causes of death worldwide, respectively.
Moreover, CMBs are sometimes found in association with other pathologies and indicate a range of pathological
processes in the cerebral vessels. Thus, it is essential to enhance the quality of diagnostics to facilitate prompt
identification and treatment of these potentially life-threatening conditions.

In this paper, we aimed to systematize the existing knowledge and best practices in automatic CMB
detection, from fundamental information about CMBs and MRI image data, through employed datasets and
CMB detection and verification algorithms, to methods of result evaluation. This can serve as a starting point
for future research and the development of a CMB detection system that is practically applicable in medicine,
leading to enhanced patient treatment outcomes.
1. Introduction

Cerebral microbleeds (CMBs) are small, up to 10 mm in diameter,
areas of bleeding in the brain. They can be defined, in terms of
health and medicine, as small, homogeneous, hypointense foci well
seen on T2*-weighted magnetic resonance imaging (MRI) sequences
with the associated so-called ‘blooming effect’. They are collections
of blood degradation products (mainly hemosiderin) that can remain
in macrophages for years, following a microhemorrhage (Cordonnier
et al., 2007; Martinez-Ramirez et al., 2014; Shoamanesh et al., 2011;
Werring, 2007). The ‘blooming effect’ takes place when the MRI over-
estimates the diameter of the microbleed (Greenberg et al., 2009).

The prevalence of microbleeds in the general population is esti-
mated to be around 5% (Akoudad et al., 2015; Charidimou et al.,
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2018; Cordonnier et al., 2007). While many individuals with CMBs
do not experience any related symptoms, their high occurrence is
closely associated with cognitive dysfunction (Yakushiji et al., 2008),
diabetes, hypertension, an increased risk of stroke, and intracerebral
hemorrhage (Akoudad et al., 2015; Cordonnier et al., 2007, 2009). It is
noteworthy that strokes, Alzheimer’s disease, and Diabetes mellitus are
collectively responsible for a significant number of deaths worldwide,
claiming the lives of approximately 10 million people annually (World
Health Organization, 2020). These diseases have secured their position
as the second, seventh, and ninth most common causes of death world-
wide, respectively. With the aging of the world’s population and the
rise of lifestyle-related health issues, it is expected that the incidence
of these diseases and their associated complications will continue to
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increase in the foreseeable future. Moreover, CMBs are sometimes
found in association with other pathologies (Bian et al., 2014) and
can occur in every region of the brain (Fig. 1), indicating a range of
pathological processes in the cerebral vessels (Martinez-Ramirez et al.,
2014; Mazurek et al., 2018; Shams et al., 2016). Thus, it is crucial to
improve the quality of diagnostics to facilitate prompt identification
and treatment of these potentially life-threatening conditions.

CMB detection is a challenging task due to small size of the lesion
compared to the whole image (Fig. 3). Moreover, there are many
lesions that mimic the CMBs. The main CMB mimics include calcifi-
cations, flow voids in pial blood vessels, iron deposits, and deoxyhe-
moglobin Greenberg et al. (2009), which are described below. Both
calcium and iron deposits may appear as small foci of low signal inten-
sity on a T2*-weighted MRI. Flow voids caught in the cross-sections of
cortical sulci can be distinguished from CMBs by their sulcal location,
equal visibility on T2-weighted SE and GRE sequences, and linear
structure when examined over contiguous slices, particularly evident at
smaller slice thickness. The presence of paramagnetic deoxyhemoglobin
in cerebral venules produces its own blooming effect, which requires
the rater to rely on their tubular structure for differentiating them from
CMBs. Metastatic melanoma in the brain can appear hypointense on
T2*-weighted MRI and may mimic CMB. Other mimics, such as miner-
alization of the basal ganglia or diffuse axonal injury, for instance, can
be excluded based on the appearance or clinical history.

From a medical standpoint, the number of detected cerebral microb-
leeds is significant information (Greenberg et al., 2009; Haller et al.,
2018; Poels et al., 2011; Shams et al., 2015). Another valuable informa-
tion is their location in the brain (Cordonnier et al., 2009; Cordonnier
& van der Flier, 2011; Gregoire et al., 2009; Poels et al., 2012; Werring,
2004). Taking into account the medical information described above,
marking CMBs using a bounding box is sufficient. Therefore, there is no
need to perform a complex computational process, more specifically
segmentation, in order to provide masks that indicate the contour of
CMBs.

MRI technology has advanced to become a powerful tool for detect-
ing cerebral microbleeds. MRI’s high-resolution images allow radiolo-
gists to see even very small areas of bleeding. Unfortunately, assessing
these images is a time-consuming process. Therefore, automated image
processing assistance may offer a viable solution.

Various approaches have been proposed within last years. However,
the issue is characterized by a marked degree of complexity and there
is no consistency in the research. To the best of our knowledge, the
results achieved so far are still not used in medical practice. Thereby,
we acknowledged the necessity of organizing the current knowledge
and most effective methodologies as a key factor in expediting the
development of an applicable CMB detection system, which can be
feasibly employed in the field of medicine.

Comparing the current research findings is a challenge due to the
unavailability of publicly accessible datasets and the absence of stan-
dardized system evaluation metrics. By incorporating the best practices
identified in this review, we established guidelines for the development
of CMB detection systems. We are confident that these guidelines can
serve as a foundation for the creation of new systems.

1.1. Review criteria

The aim of this research was to gather all previous works and
achievements in the field of cerebral microbleed detection and propose
the guidelines for development of a detection system. Regarding the
lack of order in existing research and comparison ability we decided
to collate different approaches and methods, in order to determine
the current state of the art and provide a starting point for future
studies. The detection of CMBs on MRI typically involves following
certain instructions for radiologists (Charidimou et al., 2012, 2013;
Charidimou & Werring, 2011; Cordonnier et al., 2007; Kaaouana et al.,
2017; Tsushima et al., 2002). However, in this case, the emphasis
2

Fig. 1. Brain anatomy in the sagittal plane. In addition to the presented structures, the
temporal lobe, the insula, and the external and internal capsules, which are not visible
in this plane, are also important in the context of scales used to rate CMB. CMBs can
be found in all structures indicated in the figure as well as in those mentioned above.

lies on automatization since we aim to provide a set of guidelines for
developers to design automatic detection CMB systems.

Firstly, a comprehensive literature review regarding automatic cere-
bral microbleed detection was done. We conducted a careful search for
all papers connected with this topic in Google Scholar, IEEE Xplore,
and Elsevier platforms, using key phrases: automatic cerebral microbleed
detection, automatic CMB detection, cerebral microbleed detection. The
next step was the search for related papers in the references of all
gathered works. The literature review dates back to 2011 when, to the
best of our knowledge, the first papers on automatic CMB detection
were published.

Fig. 2 presents a schematic diagram of the structure of this research.
The main information gathered from each paper referred to: database,
pre-processing, methods used, proposed approach with the best or the
most significant results, conclusions, and challenges. For the majority of
modern methods, the key issue is the availability of datasets, therefore
we decided to collate the information about all datasets used in this
type of research in Section 2, which also introduces the issues of MRI
and CMB characteristics and CMB rating. To maintain clarity of the
paper, descriptions of particular algorithms are given in Section 3,
while the exact approach leveraging from those algorithms is presented
in Table 4. The algorithms described in Section 3 are divided into two
main groups, referring to detection and verification of CMB candidates.
Section 3.1 also presents different pre-processing algorithms that were
used to prepare a dataset for training and testing. Then, all methods
and algorithms that were used to solve this task are presented. The lack
of standard metrics made evaluating results in the reported research
challenging. This hindered comparison between existing approaches
and assessing specific methods. To address this, we presented a range
of metrics in Section 3.4, along with their features and dependencies.
Section 4 provides a comprehensive assessment of all the presented
research, followed by conclusions and challenges, both gathered during
literature review and emerging from this analysis.

2. Data sources

In order to understand the task of cerebral microbleed detection, it
is essential to understand the magnetic resonance imaging, acquisition
process, and rating procedure. Therefore, we decided to introduce the
process of MR image formation. Furthermore, the relevant sequences
and rating scales were described. Finally, datasets used for cerebral
microbleed detection were presented.

2.1. Magnetic resonance imaging sequences

Among the types of brain imaging the most common are CT (com-
puted tomography) and MRI (magnetic resonance imaging). This paper
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Fig. 2. Schematic diagram of the structure of the paper.

focuses on MRI since it is the preferred technique to detect CMBs.
The main reason for this preference is that the density of the hem-
orrhage in CMBs, when observed via CT, declines rapidly over a few
days, resulting in CMBs being indistinguishable from brain tissue after
approximately 7 to 10 days. Haller et al. (2018). Consequently, the
sensitivity of CT in CMB imaging is the highest within the first few days
of their appearance. In contrast, on MR images, CMBs remain visible
much longer than on CT.

MRI is the imaging technique that employs a combination of radio-
frequency pulses and gradients in each sequence. There exist more than
a hundred sequence types, with the acronyms being dependent on the
manufacturer of the MRI machine. Regardless of the sequence name,
the goal is to obtain the signal of a particular tissue, as quickly as possi-
ble, while limiting the artifacts and without altering the signal-to-noise
ratio (Imaios, 2009).

Any imaging sequence must consist of three essential components.
The first component is the radio frequency (RF) excitation pulse, which
3

is required to generate the phenomenon of magnetic resonance. The
second component comprises gradients for spatial encoding, whose
arrangement will determine how the k-space is filled. Finally, the third
component is signal reading, which combines different echo types that
determine the type of contrast by varying influence of relaxation times.
Additionally, further sequence parameters, such as repetition time or
flip angle, must be chosen to achieve a trade-off between contrast,
resolution, and speed (Currie et al., 2013).

There are three types of relaxation times, namely T1, T2, and
T2* (Lipton, 2008). The term relaxation means that, once the RF pulse
is turned off, the spins are relaxing back into their lowest energy state
or to the equilibrium state, realigning with the axis of the magnetic
field. T1 is called the longitudinal relaxation time, as it refers to
the time needed for the spins to realign along the longitudinal (z)-
axis. T2 is defined as the predicted time constant for the decay of
transverse magnetization arising from natural interactions at the atomic
or molecular level. However, in a real MR experiment, the transverse
magnetization decays much faster than predicted by natural atomic and
molecular mechanisms. This accelerated decay rate is denoted as T2*.

There are two main sequence families, depending on the type of
echo recorded. The first family comprises Spin Echo (SE) sequences,
which have two essential parameters: TR and TE. SE sequences consist
of a series of events: 90◦ pulse; 180◦ rephasing pulse at half of echo
time (TE) and signal reading at TE, repeated at each time interval
TR (Repetition Time). During each repetition, the line of k-space is
filled due to different phase encoding. The example of such sequence
is FLuid Attenuation Inversion Recovery (FLAIR). The second family
includes Gradient Echo (GE) sequences, during which the flip angle
(FA) is usually below 90◦, which decreases the amount of magneti-
zation tipped into the transverse plane. In GE sequences, there is no
180◦ RF rephasing pulse. The example of this sequence is Susceptibility
Weighted Imaging (SWI). Numerous variations have been developed
within each of these families, mainly to increase the acquisition speed.

A T1-weighted (T1 W) sequence demonstrates differences in the T1
relaxation times of tissues. The T1-weighted image is consistent with
the anatomy: gray matter is dark and white matter bright. Anatomi-
cal gray-white inversion is observed in T2-weighted (T2 W) images,
in which gray matter is bright and white matter dark. It highlights
differences in the T2 relaxation times of tissues. Another sequence is
FLAIR, which removes signal from the cerebrospinal fluid (CSF) in the
resulting image. Brain tissue in the FLAIR image appears similar to that
in the T2 W image with gray matter brighter than white matter, but
in this case, CSF is dark instead of bright. SWI is a 3D high-spatial-
resolution fully velocity-corrected gradient-echo MRI sequence which
takes advantage of the effect of both phase and magnitude. Fig. 4 shows
the described sequences, while the data processing steps to obtain SWI
are shown in Fig. 5.

As mentioned earlier, susceptibility-weighted sequences are named
differently depending on the MRI vendor (Haller et al., 2021). For
instance, Siemens has trademarked the term SWI, while GE Health-
care offers a sequence known as SWAN, and Philips Healthcare has
suggested the name SWIp. Obtaining these sequences varies, due to
licensing and patent issues (Nandigam & Scully, 2013). The dissimi-
larities between susceptibility-weighted sequences lie in the methods
of combining the sequences. For instance, SWI employs phase and
magnitude, whereas SWAN uses a weighted sum of longer TEs, which
preserves T2* dephasing effects but also enhances the signal-to-noise
ratio. Haller et al. (2021) and Hodel et al. (2012). However, regardless
of the vendor, SWI-like sequences are most commonly used in CMB
detection owing to their heightened sensitivity to this lesion compared
to other sequences (Akiyama et al., 2009; Cheng et al., 2013; Nandigam
et al., 2009; Park et al., 2009; Shams et al., 2015; Vernooij et al.,
2008). SWI-like sequences are not only used in terms of automatic
detection but also in everyday clinical practice. Another factor that in-
fluences the detectability of microbleeds is the strength of the magnetic
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Fig. 3. Example of CMB. Upper images present the same microbleed in three planes, while bottom ones present sequence of adjacent slices fragments, in which the microbleed
is visible (marked by red frame). Images acquired using ImFusion software.
Fig. 4. Transverse brain plane. Sequences in first row (Preston, 2016): T1 W (a), T2 W
(b), FLAIR (c); in second row (Liu et al., 2017) Magnitude (d), Phase (e), SWI (f).

field (de Bresser et al., 2013; Conijn et al., 2011; Nandigam et al., 2009;
Scheid et al., 2007).

It is important to note that clinical image data is usually stored
in the DICOM format. In contrast, for scientific analysis purposes, an
alternative format called NIFTY is often preferred.

2.2. CMB rating

Technology that automates clinicians’ work should be developed
in accordance with clinical practice. Understanding the methods used
4

to assess a disease is crucial to ensure that the results provided by
the proposed system comply with established protocols. Clinicians
utilize two scales to assess CMB: Brain Observer Microbleed Scale
(BOMBS) (Cordonnier et al., 2009) and Microbleed Anatomical Rat-
ing Scale (MARS) (Gregoire et al., 2009), both of which were intro-
duced in 2009. Table 1 outlines the evaluation categories for each
scale.

Standardized CMB rating scales provide a consistent assessment
methodology and enable straightforward and reliable quantification
and categorization of CMBs even by individuals with different back-
grounds or experiences. By providing a standardized approach, the
reliability of the measurement is significantly enhanced.

Measurement reliability refers to the consistency or repeatabil-
ity of the measurement. Low reliability indicates large differences in
measurement during retesting. Poor reliability can compromise the
reproducibility and interpretability of results, making it difficult to
distinguish between individuals with and without specific medical
conditions due to significant measurement error. There are two ways
to determine observer reliability—inter- and intra-observer agreement.

Intra-observer agreement measures the level of agreement between
two studies that utilize the same technique and are obtained by a
single observer in the same subject (Filippi et al., 1995). Inter-observer
agreement determines the degree of agreement between two studies
that utilize the same technique and are obtained by two different
observers in the same subject (Filippi et al., 1995).

The presence of CMBs plays a crucial role in accurately diagnosing
various diseases, as the severity of these diseases can be determined
by the number of CMBs present. However, it has been observed that
many research institutions utilize their own distinctive methods to rate
CMBs, and while their reliability based on intra- and inter-observer
agreement is reported, the specific details of these methods are often
not disclosed (Charidimou et al., 2012). To address this issue, it is
essential to establish standardization and transparency in the meth-
ods used to rate CMBs, to ensure accurate and consistent diagnoses

http://mostwiedzy.pl
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Fig. 5. Overview of data processing steps in SWI.
Table 1
CMBs evaluation categories according to rating scales.

BOMBS MARS

1. certainty:
(a) certain,
(b) uncertain,

2. size:
(a) <5 mm,
(b) 5–10 mm,

3. side of the brain:
(a) left,
(b) right,

4. location (Fig. 1):
(a) lobar:

i. cortex/gray-white junction,
ii. subcortical white matter,

(b) deep:
i. basal ganglia,
ii. internal and external capsules,
iii. thalamus,

(c) posterior fossa:
i. brain stem,
ii. cerebellum.

1. appearance of the lesion:
(a) definite,
(b) possible,

2. side of the brain:
(a) left,
(b) right,

3. location (Fig. 1):
(a) lobar:

i. frontal,
ii. parietal,
iii. temporal,
iv. occipital,
v. insula,

(b) deep:
i. basal ganglia,
ii. internal capsule,
iii. external capsule,
iv. thalamus,
v. corpus callosum,
vi. deep and periventricular white matter,

(c) infratentorial:
i. brain stem,
ii. cerebellum.
across different research institutions. A uniform approach to rating
CMBs would enable better comparisons between studies and facilitate
a deeper understanding of the relationship between CMBs and various
diseases, ultimately leading to improved clinical outcomes for patients.

2.3. Datasets

Studies regarding automatic CMB detection can be divided into
two primary categories based on the source of the data used. The
first category includes research that specifies the data source used for
detecting CMBs, which is either an already existing dataset created for
other purposes or a dataset prepared especially for automatic detection
system development. The second category contains studies that do not
specify the source of data used for CMB detection, and it is not clear
how the data was obtained.

In research studies investigating CMBs, it is important to consider
the potential effects of other comorbid conditions that may hamper
proper detection and also have an impact on brain imaging. For in-
stance, some conditions may increase the number of CMBs per patient,
while in the case of TBI, the presence of a skull fracture can lead to
artifacts in imaging studies. Hence, it is crucial to have knowledge of
the other conditions that exist within the group from which the data
was collected, apart from the presence of CMBs. The presence of other
conditions for all patients in the dataset may be also a source of bias
and limits the generalization ability of the system (Ferrer et al., 2023).
5

The medical conditions, in addition to the presence of CMB, of the
patients whose imaging data were used in the studies reviewed are:
Alzheimer’s and elderly diseases (AD), Atherosclerosis (AS), Cerebral
Amyloid Angiopathy (CAA), Cerebral Autosomal Dominant Arteriopa-
thy with Subcortical Infarcts and Leukoencephalopathy (CADASIL),
Cerebrovascular accident (CVA), Glioma Tumors (GT), Hemodialysis
cases (HD), Intracerebral Haemorrhages (ICH), Second Manifestation
of Arterial Disease (SMART), and Traumatic Brain Injury (TBI). How-
ever, not all researchers distinguish the additional condition. Table 2
presents a list of the reviewed studies, indicating whether the data
source was specified and which other conditions were mentioned.

Clinicians rated the CMBs present in the images used in reviewed
studies according to the MARS scale, BOMBS scale, scale based on
these two, or an unspecified standard. Details related to the number
of patients, image acquisition parameters, types of sequences, strength
of magnetic field, and data availability are given in Table 3. Additional
details about datasets are given in Table A.5 in Appendix. The abbrevi-
ations used in the table stand for: RES—resolution, TR—repetition time,
TE—echo time, FA—flip angle, BW—bandwidth, IMS—image matrix
size, ST—slice thickness, FOV—field of view, u - unknown dimension.
Additional abbreviations appearing in the table are related to the
classification by sequence type or dataset type and result from the cited
reference’s categorization.

Research that were not included in the table due to insufficient
information are Bao et al. (2018), Doke et al. (2020), Fan et al. (2022),

http://mostwiedzy.pl
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Table 2
Categorization of papers by the source of the data and the condition on which the data focused.

Reference Data source Condition

Specified dataset Unspecified dataset AD CADASIL SMART TBI ICH CAA CVA GT HD AS CMB-only

Afzal et al. (2022) – ✓ – – – – – – – – – – ✓

Al-masni et al. (2020a) ✓ – – – – – – – – – – – ✓

Al-masni et al. (2020b) ✓ – – – – – – – – – – – ✓

Ateeq et al. (2018) ✓ – – – – – – – – – – – ✓

Bao et al. (2018) – ✓ – ✓ – – – – – – – – –
Barnes et al. (2011) ✓ – ✓ – – – – – – – – – –
Bian et al. (2013) ✓ – – – – – – – – ✓ – – –
Chen et al. (2015) ✓ – – – – – – – – – – – ✓

Chen et al. (2017) ✓ – – – – – – – – – – – ✓

Chen et al. (2019) ✓ – – – – – – – – ✓ – – –
Chesebro et al. (2021) ✓ – ✓ – – – – – – – – – –
Doke et al. (2020) – ✓ – ✓ – – – – – – – – –
Dou et al. (2016) ✓ – – – – – – – – – – – ✓

Dou et al. (2020) ✓ – – – – – – – – – – – ✓

Fan et al. (2022) ✓ – – – – – – – – – – – ✓

Fazlollahi et al. (2013) ✓ – ✓ – – – – – – – – – –
Fazlollahi et al. (2014) ✓ – ✓ – – – – – – – – – –
Fazlollahi et al. (2015) ✓ – ✓ – – – – – – – – – –
Ferlin et al. (2021) ✓ – – – – – – – – – – – ✓

Ferrer et al. (2023) ✓ – ✓ – – – – – ✓ – – – –
Ghafaryasl et al. (2012) ✓ – ✓ – – – – – – – – – –
Gunter et al. (2018) ✓ – ✓ – – – – – – – – – –
Gunter et al. (2022) ✓ – ✓ – – – – – – – – – –
Hong, Cheng, Wang (2019) ✓ – – ✓ – – – – – – – – –
Hong, Cheng, Zhang (2019) ✓ – – ✓ – – – – – – – – –
Hong et al. (2020) ✓ – – ✓ – – – – – – – – –
Kim et al. (2022) ✓ – – – – – – – – – – – ✓

Koschmieder et al. (2022) ✓ – – – – ✓ – – – – – – –
Kuijf et al. (2011) ✓ – – – ✓ – – – – – – – –
Kuijf et al. (2012) ✓ – – – ✓ – – – – – – – –
Kuijf et al. (2013) ✓ – ✓ – – – – – – – – – –
Lee et al. (2022) ✓ – – – – – – – – – – – ✓

Li et al. (2021) ✓ – – – – – – – – – – – ✓

Liu, Surapaneni et al. (2012) ✓ – – – – – – – ✓ – – – –
Liu et al. (2019) ✓ – – – – ✓ – – ✓ – ✓ – –
Liu et al. (2020) ✓ – – – – – – – – – – – ✓

Lu et al. (2017) ✓ – – – – – – – – – – – ✓

Lu et al. (2020) – ✓ – ✓ – – – – – – – – –
Lu, Liu, Wang et al. (2021) ✓ – – ✓ – – – – – – – – –
Lu, Nayak et al. (2021) ✓ – – ✓ – – – – – – – – –
Lu, Yan et al. (2021) – ✓ – ✓ – – – – – – – – –
Momeni et al. (2021) ✓ – ✓ – – – – – – – – – –
Morrison et al. (2018) ✓ – – – – – – – – ✓ – – –
Myung et al. (2021) – ✓ – – – – – – – – – – ✓

Nandigam et al. (2009) ✓ – – – – – ✓ ✓ – – – – –
Nikseresht et al. (2022) ✓ – ✓ – – – – – – – – – –
Roy et al. (2015) – ✓ – – – ✓ – – – – – – –
Dou et al. (2015) ✓ – – – – – – – ✓ – – – –
Rashid et al. (2021) ✓ – – – – – – – – – – ✓ –
Sa-ngiem et al. (2019) – ✓ – – – – – – – – – – ✓

Seghier et al. (2011) ✓ – – – – – – – ✓ – – – –
Standvoss et al. (2018) – ✓ – – – ✓ – – – – – – –
Stanley and Franklin (2022a) ✓ – – – – – – – – – – – ✓

Stanley and Franklin (2022b) ✓ – – – – – – – – – – – ✓

Sundaresan et al. (2022) ✓ – – – – – ✓ – ✓ – – – ✓

Suwalska et al. (2022) ✓ – – – – – – – – – – – ✓

Tajudin et al. (2017) – ✓ – – – – – – – – – – ✓

Tao and Cloutie (2018) – ✓ – ✓ – – – – – – – – –
van den Heuvel et al. (2015) – ✓ – – – ✓ – – – – – – –
van den Heuvel et al. (2016) – ✓ – – – ✓ – – – – – – –
Vieira (2023) ✓ – – – – – – – – – – – ✓

Wang et al. (2017) – ✓ – ✓ – – – – – – – – –
Wang et al. (2019) – ✓ – ✓ – – – – – – – – –
Wang et al. (2020) – ✓ – ✓ – – – – – – – – –
Zhang et al. (2016) ✓ – – ✓ – – – – – – – – –
Zhang, Hou et al. (2018) ✓ – – ✓ – – – – – – – – –
Zhang, Zhang et al. (2018) ✓ – – ✓ – – – – – – – – –
Gunter et al. (2022, 2018), Lu et al. (2017, 2020), Lu, Yan et al. (2021),
Nikseresht et al. (2022), Standvoss et al. (2018), Suwalska et al. (2022),
Tajudin et al. (2017) and Tao and Cloutie (2018). They contained
limited information, for instance, only about the number of patients
or the type of sequence.
6

3. Methodology

A comprehensive analysis of past works regarding cerebral microb-
leeds detection has led to the proposal of a generalized pipeline of
such system. The majority of works can be divided into three stages:
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Table 3
Comparison of dataset acquisition parameters used in the reviewed approaches sorted by dataset size.

Reference # of
subject/#
of CMB

RES [mm2] ST [mm] IMS [voxels] FOV
[mm3\mm2\
mm]

Sequences 𝛽 [T] Public
availability

Kuijf et al.
(2011)

2/4 0.35 × 0.35 0.3 – – T2 ∗ W 7 On request

Barnes et al.
(2011)

6/26 0.5 × 1 2 512 × 320 × 48 – Fully flow-
compensated 3
DGRE

1.5 –

Hong, Cheng,
Wang (2019),
Hong, Cheng,
Zhang
(2019), Hong
et al. (2020)

10/– 0.5 × 0.5 2 364 × 448 × 48 – SWI 3 –

Bian et al.
(2013) and
Morrison
et al. (2018)

15/420 0.5 × 0.5 2 u × u × 40 240 T2 ∗ W 3 10 subjects

Kuijf et al.
(2012)

18/54 0.35 × 0.35
T2 ∗ W, 0.66 × 0.66
T1W

0.3 T2 ∗ W,
0.7 T1W

– – T2 ∗ W, T1W
turbo field echo

7 On request

Lu, Liu,
Wang et al.
(2021), Lu,
Nayak et al.
(2021), Wang
et al. (2017,
2019),
Zhang, Hou
et al. (2018),
Zhang et al.
(2016) and
Zhang, Zhang
et al. (2018)

20/– 0.5 × 0.5 2 364 × 448 × 48 – SWI 3 –

Afzal et al.
(2022)

20/- 0.45 × 0.45 2 – – SWI 3 –

Chen et al.
(2015) and
Liu et al.
(2020)

20/117 0.45 × 0.45 2 512 × 512 × 150 230 × 230 SWI 3 20 subjects

Vieira (2023) 20/170 0.45 × 0.45 2 512 × 512 × 150 230 × 230 SWI 3 20 subjects

Ateeq et al.
(2018)

20/167 0.45 × 0.45 2 512 × 512 × 150 230 × 230 SWI 3 20 subjects

Rashid et al.
(2021)

24/>157 1 × 1 1
T1WMP
& T2W
1.5 SWI

256 × 256 × 176
T1WMP & T2W,
256 × 192 × 96 SWI

– T1WMP,
T2W, SWI

3 On request

Sa-ngiem
et al. (2019)

26/– – 3 u × u × 40–60 – SWI – –

Roy et al.
(2015)

26/404 0.45 × 0.45 SWI,
1 × 1
T1W-MPRAGE
(magnetization
prepared rapid
gradient echo)

2 SWI,
1 T1W-
MPRAGE

– – SWI,
T1W-MPRAGE

3 –

Fazlollahi
et al. (2013)

30/64 0.9 × 0.9 1.75 – – SWI 3 On request

Fazlollahi
et al. (2014)

41/103 0.93 × 0.93 SWI,
1 × 1 T1W

1.75 SWI,
1.2 T1W

– 240 × 256 × 160
T1W

SWI, T1W 3 On request

Dou et al.
(2015)

44/615 0.45 × 0.45 2 512 × 512 × 150 230 × 230 SWI 3 –

van den
Heuvel et al.
(2015, 2016)

51/627 0.98 × 0.98 SWI,
1 × 1 T1 MP-RAGE
(T1MPR)

– – – SWI, T1MPR 3 –

Li et al.
(2021)

58/1301 – 5
T2F &
T2WF,
2 SWAN-W

512 × 512 × u 240 T2F, SWAN-W,
T2WF

3 –

(continued on next page)
7
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Table 3 (continued).
Fazlollahi
et al. (2015)

66/231 0.93 × 0.93 SWI,
1 × 1 T1W

1.75 SWI,
1.2 T1W

– 240 × 256 × 160
T1W

SWI, T1W 3 On request

Chesebro
et al. (2021)

72/64 0.43 × 0.43
T2 ∗ W SWI,
0.43 × 0.43
T2 ∗ W GRE

1 T1W,
2 T2 ∗ W
SWI,
1 T2 ∗ W
GRE

– 256 × 200
T1W,
244 × 197
T2 ∗ W SWI,
220 × 181
T2 ∗ W GRE

T1W,
T2 ∗ W SWI,
T2 ∗ W GRE

3 On request

Kuijf et al.
(2013)

72/148 0.96 × 0.96
T2 ∗ W & FLAIR, 1 × 1
T1W

3 T2 ∗ W &
FLAIR, 1
T1W

– – T2 ∗ W,
FLAIR, T1W
turbo field echo

3 On request

Chen et al.
(2019)

73/2835 0.5 × 0.5 1 SWI,
2 3DSPGR

512 × 512 × u – 4-echo
3D TOF-SWI,
3DSPGR (3D
Spoiled Gradient
Recalled)

7 –

Seghier et al.
(2011)

74/– 0.938 × 0.938 5 256 × 224 × u
T2WFSE

240 × 180 T2WFSE,
T2* GRE

1.5 On request

Koschmieder
et al. (2022)

81/1761 1 × 1
T1 MP-RAGE
0.98 × 0.98 SWI

1 – – T1 MP-RAGE
SWI

3 In future

Kim et al.
(2022)

114/365 0.5 × 0.5 2 512 × 448 × 72 – SWI, Phase – –

Lee et al.
(2022)

116/367
DS1,
58/148
DS2

0.5 × 0.5 2 DS1, 3
DS2

– 256 × 224 × 144
DS1,
192 × 219 × 156
DS2

SWI 3 –

Al-masni
et al. (2020a,
2020b)

72/188
HR,
107/572
LR

0.50 × 0.50
HR, 0.80 × 0.80 LR

2 512 × 448 × 72 HR,
288 × 252 × 72 LR

256 × 224 HR,
201 × 229 LR

SWI,
Phase,
Magnitude

3 No

Myung et al.
(2021)

186/1716 0.63 × 0.63 2 – 220 × 198 3D Fast
Field-Echo

3 –

Ferlin et al.
(2021)

20/78
DS1,
179/760
DS2

0.45 × 0.45 DS1
0.50 × 0.50 DS2,
0.80 × 0.80 DS2

2 512 × 512 × 150 DS1
512 × 448 × 72 DS2,
288 × 252 × 72 DS2

230 × 230 DS1,
256 × 224 DS2,
201 × 229 DS2

SWI 3 20
subjects

Momeni
et al. (2021)

214/235 0.93 × 0.93 SWI,
1 × 1 T1W

1.75 SWI,
1.2 T1W

- 240 × 256 × 160
T1W

SWI, T1W 3 On request

Liu et al.
(2019)

220/1011 0.45-0.53 × 0.57-1.05
1.5T,
0.50–0.54 × 0.50-1.07
3T

2-2.65
1.5T,
2/2.3 3T

512 × 304-448 × 56/60
1.5T, 448-512 × 322-
416 × 6/128
3T

– – 1.5/3 On request

Ferrer et al.
(2023)

148/– DS1,
20/– DS2,
62/– DS3

0.93 × 0.93 DS1,
0.45 × 0.45 DS2,
0.2-1 × 0.2-1 DS3

1.75 DS1,
1 DS2, 1-6
DS3

512 × 512 × 150 DS2 230 × 230 DS2 SWI 3
DS1
&
DS2,
1.5/3
DS3

On request
DS1, 20
subjects
DS2

Ghafaryasl
et al. (2012)

237/631 0.5 × 0.5 1.6 T2 ∗ W,
0.8 GRE
PDW

– – 3D T2 ∗ W,
GRE Proton-
Density weighted

1.5 –

Sundaresan
et al. (2022)

270/>505 0.9 × 0.8
T2*-GRE, 0.8 × 0.8 SWI

5 T2*-GRE,
3 SWI

640 × 640 × 25
T2*-GRE,
256 × 288 × 48 SWI

– T2*-GRE, SWI –/3 On request

Dou et al.
(2016)

320/1149 0.45 × 0.45 2 512 × 512 × 150 230 × 230 SWI 3 20
subjects

Stanley and
Franklin
(2022b)

320/1149 0.45 × 0.45 2 512 × 512 × 150 230 × 230 SWI 3 –

Stanley and
Franklin
(2022a)

320/1149
SWI
179/760
SVS

0.45 × 0.45
SWI

2 512 × 512 × 150
SWI

230 × 230
SWI

SWI 3 –
Pre-processing, CMB Candidates Detection and CMB Candidates Verifi-
cation. Therefore, we decided to describe the methodology with the
8

regard of such division. The overall idea is presented in Fig. 6. All the
methods and algorithms available within each stage are first described
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Fig. 6. Pipeline of a typical CMB detection approach.
as single transform that can be applied. Their further synthesis into a
complete approach along with the paper in which it was used are in
Table 4.

3.1. Pre-processing

Preparing data through pre-processing is a crucial phase in system
synthesis, since it has a significant influence on the overall system’s
performance.

It is important to understand that the phrase raw data does not
necessarily indicate that data were not pre-processed by MRI software.
From the CMB detection system’s perspective, raw data are those
provided by the MRI. Nevertheless, there are numerous MRI device
suppliers that develop their own operating systems and carry out
diverse operations on a specific scan before delivering the final image.
Therefore, it is crucial to know how the data has been processed thus
far and determine what additional enhancements can be made to fulfill
the requirements of the system.

The most popular types of operations performed on raw data are
presented below along with some examples illustrated in Fig. 7. The
first group of operations focuses on removing artifacts and unnecessary
information.

Bias field correction is the operation that reduces negative in-
fluence of the bias field, which is an undesired artifact in most MRI
images, especially old ones. It can also be called intensity inhomo-
geneity correction. The most commonly known techniques include N3
Bias Correction (Sled et al., 1998) and its successor N4ITK/N4 (Tustison
et al., 2010), FSL FAST (Zhang et al., 2001) or reconstruction Syngo MR
B17 provided by the manufacturer. Nevertheless, there are also other
methods for bias field correction (Lupo et al., 2009; Song et al., 2017).
This operation was applied by Fazlollahi et al. (2015, 2014), Ghafaryasl
et al. (2012), Liu et al. (2019), Lu et al. (2020), Momeni et al. (2021),
Rashid et al. (2021), Roy et al. (2015), Sundaresan et al. (2022), van
den Heuvel et al. (2015, 2016) and Zhang et al. (2016).

Skull stripping also known as brain extraction is an operation of
removing the skull and background from the image, leaving only the
brain. There are plenty of algorithms for performing this task: Brain
Extraction Tool (BET) (Smith, 2002), BrainSuite (Shattuck & Leahy,
2002), HD-BET (Lee et al., 2022) and others (Carass et al., 2011,
2007). Brain extraction was applied in Afzal et al. (2022), Al-masni
et al. (2020a, 2020b), Ateeq et al. (2018), Barnes et al. (2011), Bian
et al. (2013), Chen et al. (2019), Chesebro et al. (2021), Fazlollahi
et al. (2014), Ghafaryasl et al. (2012), Kim et al. (2022), Koschmieder
et al. (2022), Kuijf et al. (2011), Lee et al. (2022), Morrison et al.
(2018), Myung et al. (2021), Nikseresht et al. (2022), Roy et al. (2015),
Sundaresan et al. (2022), Suwalska et al. (2022) and van den Heuvel
et al. (2015, 2016).

Normalization is a typical operation of rescaling the pixel values
into range (0, 1) or (−1, 1). This enables bias reduction in the next
stages of system synthesis. It was applied by Barnes et al. (2011), Bian
et al. (2013), Chen et al. (2015), Dou et al. (2015), Fan et al. (2022),
Fazlollahi et al. (2015, 2013, 2014), Ferlin et al. (2021), Kim et al.
(2022), Koschmieder et al. (2022), Kuijf et al. (2013, 2011, 2012), Lee
9

et al. (2022), Liu et al. (2019), Nikseresht et al. (2022), Rashid et al.
(2021), Seghier et al. (2011), Stanley and Franklin (2022a) and van den
Heuvel et al. (2015).

Standardization is an equally common operation as normalization
and involves subtraction of mean value of pixels and division by
the standard deviation of them. It was claimed to be used in Fan
et al. (2022), Ferlin et al. (2021), Kuijf et al. (2013, 2011, 2012) and
Suwalska et al. (2022).

Mask generation is a broad term given the fact different types
of masks might be generated in the process. The most common one
is a binary mask that might be generated using Statistical Parametric
Mapping Toolbox (Ashburner et al., 2021), Fuzzy c-means clustering
algorithm (FCCA), or morphological operations (Seghier et al., 2008;
Soille, 2004). Further, there are typically neurological masks, such as
the cerebrovascular fluid (CSF) mask, gray-white matter (GWM) mask,
and white-matter (WM) mask. Additionally, some medical segmenta-
tion dedicated algorithms were developed, such as MimSeg (Binczyk
et al., 2017). The masks were generated in Bian et al. (2013), Chen et al.
(2019), Chesebro et al. (2021), Fazlollahi et al. (2015, 2013, 2014),
Gunter et al. (2018), Hong et al. (2020), Kuijf et al. (2013, 2011, 2012),
Liu et al. (2020), Sa-ngiem et al. (2019), Seghier et al. (2011), Stanley
and Franklin (2022a), Suwalska et al. (2022) and van den Heuvel et al.
(2015, 2016).

Further image generation involves using images provided by the
MRI device to make a new image consisting of more information. For
instance, an SWI sequence is generated from the Magnitude and Phase
sequences. These days, it is the standard sequence generated by the
scanner. Furthermore, the SWI data might be processed using (Li et al.,
2014) for phase enhancement, like in Roy et al. (2015) Similarly, T2*-
weighted images are nowadays provided by the MRI scanner, but in
the past, they had to be obtained from PD-weighted images using,
for example, Elastix Tool (Klein et al., 2010). It was performed, for
example, in Ghafaryasl et al. (2012), Liu et al. (2019) and Chen et al.
(2019). A QSM image can be generated using Morphology Enabled
Dipol Inversion (MEDI) (Liu, Liu et al., 2012), like in Rashid et al.
(2021).

Slice merging can also be considered as a new image creation,
which involves the concatenation of adjacent slices to provide 3D infor-
mation. MRI images are in grayscale, or, in other words, one-channel.
Detection systems typically use full-color images with 3 channels,
namely Red, Green, and Blue, known as RGB. To create an image
containing spatial, three-dimensional information, these three channels
can be used to generate an image by placing three adjacent single-
channel slices from the MRI image. The concatenation of different
sequences of corresponding slices might be done as well. However, in
this case, it may be necessary to align the slices with each other, if
there were different parameters of acquisition. This kind of operation
was performed in Al-masni et al. (2020a, 2020b), Dou et al. (2016),
Fan et al. (2022) and Ferlin et al. (2021).

Useful software to perform these operations is Neuroimaging Core
(Patterson, 2019) involving Advanced Normalization Tools (ANT), FM-
RIB Software Library (FSL) (Ashburner & Friston, 2005; Jenkinson
et al., 2002, 2012; Jenkinson & Smith, 2001) and Statistical Parametric
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Mapping (SPM). The last software is also implemented in Ashburner
et al. (2021) based on Penny et al. (2006).

Medical image pre-processing involves the application of various
transformations that are commonly used in other fields where image
pre-processing is necessary. These transformations comprise the second
category of techniques employed in medical image pre-processing. It is
noteworthy that medical data are highly sensitive to any transforma-
tion, after which significant information can be accidentally lost.

DICOM to JPG conversion is an excellent example of a lossy data
conversion technique, which might influence further processing stages.
It was done by Li et al. (2021). Although DICOM or NIFTY formats
might be considered not developer-friendly, working on original image
matrices should be a standard.

Resize is a common operation of changing image size. It is usually
performed to obtain equal sizes of all images or to enlarge images to im-
prove the visibility of the objects. It can also be forced by requirements
of a method used in the CMB Candidates Detection stage. The images
were resized in Barnes et al. (2011), Chesebro et al. (2021), Fan et al.
(2022), Ferlin et al. (2021), Lee et al. (2022) and Liu et al. (2019).

Padding is an artificial size change by the addition of a black frame
to obtain a desired image size without applying resize. It was utilized
by Ferlin et al. (2021), Rashid et al. (2021) and Stanley and Franklin
(2022a).

Image cut is a common operation performed to simplify the de-
tection task. It involves image partitioning into smaller components
and feeding them into the classifier. It might be performed using the
sliding neighborhood processing (SNP) technique to produce smaller
fragments of the original image. A lot of works utilized this method: Bao
et al. (2018), Doke et al. (2020), Fan et al. (2022), Hong, Cheng, Wang
(2019), Hong, Cheng, Zhang (2019), Hong et al. (2020), Kim et al.
(2022), Lee et al. (2022), Lu, Liu, Wang et al. (2021), Lu et al. (2017),
Lu, Nayak et al. (2021), Lu et al. (2020), Stanley and Franklin (2022a),
Tao and Cloutie (2018), Wang et al. (2017, 2019), Zhang, Hou et al.
(2018), Zhang et al. (2016) and Zhang, Zhang et al. (2018).

Rotation is a simple operation of changing image orientation. How-
ever, it can be a loss operation, and therefore a rotation with original
intensity should be considered, like in Sundaresan et al. (2022), for
instance by using—fslreorient2std tool (Jenkinson et al., 2012).

Inversion is the operation that consists of swapping intensity values
in relation to the center of the intensity interval and it was performed
by Fazlollahi et al. (2015).

Finally, there is data augmentation, which is not always con-
sidered a pre-processing technique, but rather a regularization one.
However, it is sometimes performed at this stage and consists of image
transformations, therefore it is placed in this section. It enhances a
dataset, especially in case of a small amount of data by creating new,
slightly modified, artificial images. There is a wide range of trans-
formations, including those described above, along with blur, crop,
etc. Buslaev et al. (2020), Mikolajczyk and Grochowski (2018) and
Paszke et al. (2019). Augmentation was used in Afzal et al. (2022),
Doke et al. (2020), Ferlin et al. (2021), Gunter et al. (2018), Li et al.
(2021), Momeni et al. (2021), Myung et al. (2021), Rashid et al. (2021)
and Standvoss et al. (2018).

3.2. Algorithms for CMB candidates detection

Over the years, a wide range of algorithms were used to detect
cerebral microbleeds, starting from the simplest methods based on
traditional image transformations to complex deep learning models.

3.2.1. Classical methods
In early works regarding CMBs detection, the candidates were ex-

tracted using predetermined features such as intensity threshold and
area size (Ateeq et al., 2018; Barnes et al., 2011; Chen et al., 2015; Dou
et al., 2015; Ghafaryasl et al., 2012). In the SWI sequence CMBs occur
as low-intensity spheres, therefore applying a proper intensity threshold
10
Fig. 7. Example of pre-processing operations: (a) sliding neighborhood process-
ing (Hong et al., 2020), (b) Canny edge detection (Chesebro et al., 2021), (c) CSF
mask (Myung et al., 2021) (d) brain extraction using BrainSuite software.

allows for binary mask generation. Occasionally, the authors also ap-
plied morphological operations such as filtering, hole filling, etc. Afzal
et al. (2022), Ateeq et al. (2018) and Seghier et al. (2011). However,
these kinds of operations were used at all the stages described in this
paper, as they were also useful for CMB candidates verification. Over
time, the detecting procedures evolved to include more complicated
voxel features. The procedures contain methods such as eigenvalues
in Sundaresan et al. (2022) – scalars associated with the given linear
transformation, line detection in Fazlollahi et al. (2013) – defining
the line where edge points are located, Gaussian filter in Sundaresan
et al. (2022) and Laplacian of Gaussian operator in Fazlollahi et al.
(2015, 2014) and Sundaresan et al. (2022), which highlight the rapid
change of the image intensity, Hough transform in Chesebro et al.
(2021) that enables shape detection by finding objects - local maxima,
Canny filter in Chesebro et al. (2021) which enables edge detection
watershed transform in Tajudin et al. (2017) - transforming images
to gray-scale topographic like map, and distinguishing objects on the
basis of its intensity value or Frangi filters in Sundaresan et al. (2022)
- a dedicated filter enabling vessel distinction, or 3D gradient co-
occurrence matrix (3D GCM) in Stanley and Franklin (2022a), which
indicates the differences between intensity of two adjacent pixels,
region growing (Revol-Muller et al., 2002) used in Roy et al. (2015)
– inspection of the homogeneity of the considered pixel or voxel.

Simultaneously, the researchers began to use the Radial Symmetry
Transform (RST) and its successor, Fast Radial Symmetry Transform
(FRST) (Loy & Zelinsky, 2003). This algorithm deserves special atten-
tion since it is successfully used to this day (Bian et al., 2013; Chen
et al., 2019; Kuijf et al., 2013, 2011, 2012; Liu et al., 2019; Morrison
et al., 2018; Sundaresan et al., 2022). In this transform, a gradient of
the image is computed, then the orientation and magnitude of each
pixel are established. Next, using the above values, points of interest
can be selected according to a specific formula. FRST was further
developed so that it could be used in 3D space. However, despite
its common use, it has some weaknesses. When applied to candidate
detection, FRST generates a lot of false positives. Thus, there is a need
for a third stage in the detection procedure.

The last distinguished classical algorithm is random forest algo-
rithm (Breiman, 2001) which was used in van den Heuvel et al. (2015,
2016). Random forest is a black-box algorithm that consists of an
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ensemble of classifiers that generate predictions. The algorithm utilizes
a subset of the dataset to generate individual predictions, which are
then combined through averaging to produce a final output value.

3.2.2. Artificial neural network-based methods
The development of artificial neural network (ANN) algorithms and

their proven effectiveness to be a powerful tool for medical image
analysis, has generated heightened interest in their utilization for CMB
detection.

Two approaches to the use of ANN can be distinguished. The first
one is to design a custom neural network. The second one uses a
general-purpose pre-trained neural network.

In the first case, in the domain of CMB detection, various ap-
proaches were used, such as artificial neural networks (Wang, 2003)
which consist of a sum of inputs multiplied by weights assigned in the
training process, applied in Momeni et al. (2021) and Zhang, Zhang
et al. (2018), back-propagation neural networks (BPNNs) (Buscema,
1998) that is ANNs extension with the information about the error,
utilized in Tao and Cloutie (2018), sparse auto-encoder (SAE) (Lee
et al., 2006) which is a neural network consisting of an encoder and
decoder with the additional sparsity penalty algorithm, used in Zhang
et al. (2016) and Zhang, Hou et al. (2018). An evolution of ANNs
also includes convolutional neural networks (CNNs) (O’Shea & Nash,
2015). It is the most popular solution in case of automatic CMB detec-
tion (Doke et al., 2020; Gunter et al., 2018; Hong, Cheng, Wang, 2019;
Hong et al., 2020; Lu, Liu, Wang et al., 2021; Lu et al., 2017; Lu, Nayak
et al., 2021; Stanley & Franklin, 2022a; Wang et al., 2017). Standard
CNN consists of a number of feed-forward convolutional layers, where
the features are extracted by performing a convolution between input
data and convolutional filters. Each convolution layer is followed by
a non-linear activation function. Consecutive convolution layers are
interspersed by pooling layers that extract the most important features.
Then, there is a fully connected layer or alternative classifier that
assigns a predicted class based on the previously extracted features.
An interesting approach is a replacement of a fully-connected layer by
Extreme Learning Machine (Huang et al., 2006), which is much more
efficient (Lu, Liu, Wang et al., 2021).

Due to the fact that deep neural networks usually consist of millions
of parameters and are hard to train due to hardware limitations,
the second approach which uses a general-purpose pre-trained neural
network is often used. It employs deep neural network architecture that
has already been trained on a vast, unrelated dataset, often significantly
different from the targeted one. Next, this architecture is adapted to the
problem under consideration. This approach is known as transfer learn-
ing, which is the application of knowledge gained from completing one
task to help solve a different problem. Additionally, transfer learning is
a good method for dealing with slight dataset problems.

In the context of pre-trained general-purpose neural networks,
various commonly-known architectures have been utilized, including
AlexNet (Krizhevsky et al., 2012) in Sa-ngiem et al. (2019), ResNet50
(He et al., 2016) in Hong, Cheng, Zhang (2019), Faster-RCNN (Ren
et al., 2015) in Ferlin et al. (2021), VGG (Simonyan & Zisserman,
2015) in Lu et al. (2020), U-Net (Ronneberger et al., 2015) in Rashid
et al. (2021), YOLOv2 (Redmon & Farhadi, 2017) in Al-masni et al.
(2020a) and Al-masni et al. (2020b), DenseNet 201 (Huang et al., 2018)
in Wang et al. (2019) or SSD (Liu et al., 2016) in Li et al. (2021) with
the modification of feature enhancement.

Occasionally, the detection task was replaced by classifying small
fragments of an image using either CNN or ResNet50, as in Hong,
Cheng, Wang (2019) and Hong, Cheng, Zhang (2019). Considering the
main aim of this paper, the description of each network is omitted, as
they are explained in detail in the mentioned papers. Nevertheless, the
reader is strongly encouraged to get familiar with these architectures.

Recently, there has been an emergence of relatively new and
promising deep learning architectures known as 3D convolutional
11

neural networks (3D CNNs). These models are still in their early stages
and have not been fully explored, but their potential for applications
in areas such as computer vision and medical imaging has garnered
significant attention from researchers in the field. The fundamental
concept behind 3D CNNs is similar to that of 2D CNNs, which involves
performing convolutional operations. Nonetheless, in contrast to 2D
CNNs, 3D CNNs operate on 3D data patches. Unfortunately, 3D CNNs
require a significant amount of computational resources due to the
increased dimensionality of the data. It is worth mentioning that 3D
CNNs were utilized in Dou et al. (2016) and Standvoss et al. (2018),
however, reported results do not exceed those performed on 2D images.

3.3. Algorithms for CMB candidates verification

CMB detection is a demanding process, and the presence of CMB
mimics along with algorithmic errors can lead to a significant number
of false positives. In order to mitigate this issue, a CMB Candidates
Verification stage is sometimes implemented. Nonetheless, even with
the implementation of this stage, certain approaches still have not
managed to acquire satisfying quality.

In some cases, the process of false positive candidates elimination
was performed manually by a radiologist (Barnes et al., 2011; Chen
et al., 2019; Chesebro et al., 2021; Kuijf et al., 2013, 2011, 2012;
Morrison et al., 2018). Although this kind of approach significantly
reduced the time needed for one scan rating, it is a semi-automated
one.

At the CMB candidates verification stage, most research identified
a batch of predefined CMB features, such as intensity and size, or
complex parameters of a single voxel, calculated in 2D or 3D spaces.
Then, the features of CMBs together with the previously prepared
fragments of images were passed to the classifier. A lot of classifiers
were tested, including Support Vector Machine (SVM) (Chang & Lin,
2011) in Ateeq et al. (2018), Barnes et al. (2011), Chen et al. (2015) and
Dou et al. (2015), linear criterion classifier (LDC) (Barnard & Casasent,
1989), quadratic discriminant classifier (QDC) (Tharwat, 2016), Parzen
classifier (Jain & Ramaswami, 1988) in Ghafaryasl et al. (2012) and
Random Forrest Classifier (RFC) (Breiman, 2001) in Fazlollahi et al.
(2014) and Fazlollahi et al. (2015).

Moreover, there were also other methods to define CMB features to
eliminate false positives, for instance, 2D CNN in Afzal et al. (2022)
and Chen et al. (2015), 3D ISA network (Comon, 1995) in Dou et al.
(2015), 3D Radon Transform (Averbuch & Shkolnisky, 2003) in Fazlol-
lahi et al. (2015, 2014) or feed-forward feature selection (FFFS) (Luo
et al., 2011) in Ghafaryasl et al. (2012). In some cases, thresholds of
geometric features were set, and on this ground, the classification was
performed (Bian et al., 2013, 2018; Chesebro et al., 2021; Roy et al.,
2015; Sundaresan et al., 2022).

Another strategy at this stage was to use a previously generated CSF
mask to distinguish a real CMB from vessels, and a WM mask to include
the information about the location of potential microbleed (Bian et al.,
2013; Chesebro et al., 2021; Myung et al., 2021). Some approaches
utilized the advantage of a 3D CNN. It was typically performed to
include 3D information, resulting in an FP reduction, after applying the
2D algorithm at the Candidates detection stage (Al-masni et al., 2020a,
2020b; Chen et al., 2019; Dou et al., 2016; Liu et al., 2019; Singh
et al., 2020). Certain works also presented the use of the region-growing
algorithm for CMB verification (Bian et al., 2013, 2018; van den Heuvel
et al., 2016). In addition, there was an algorithm used to investigate the
overlap between predictions from adjacent slices (Ferlin et al., 2021).
It enabled not only the removal of false-positive predictions that were
in fact a ground truth, although labeled in the adjacent slice but also
helped find a real CMB that was detected in the adjacent slice in spite

of the previous false-negative prediction.
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3.4. System output and evaluation

To comprehensively validate the quality and robustness of the
system, it is recommended to utilize several widely accepted metrics
that provide complementary insight into various aspects of system
performance.

A common oversight is not to include metrics that are complemen-
tary and provide a view of the system as a whole, not just a part of
it. For instance, the sensitivity metric is insufficient alone, as it can
be artificially inflated. It is necessary to provide the precision, or F1
score value, to properly interpret the sensitivity. In addition, the lack
of a uniform way of result evaluation makes it impossible to compare
approaches and effectively assess their effectiveness.

The evaluation should be performed on a separate dataset, or at
least separate subjects, using, for instance, cross-validation to avoid
randomness.

There are different metrics regarding the type of solved problem.
For classification evaluation, the most widespread metrics are accu-
racy (1), precision (4), sensitivity/recall (2), and F1 score (5) which
combines precision and sensitivity.

In the case of detection and segmentation, more detailed metrics
are required given the fact that not only is a proper class important
but so is the overlapped area of ground truth label and prediction. In
that case, the average precision (7) metric is used, and it is calculated
for different values of IoU (6).

The CMB detection task is known to produce a vast number of false-
positive predictions. Therefore, two additional metrics were provided
particularly for this problem, namely FPavg (8) and FPcmb (9).

The mentioned metrics are calculated as follows:

accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(1)

sensitivity = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

specificity = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(3)

precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

F1 score = 2 ×
sensitivity × precision
sensitivity + precision (5)

oU =
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑎𝑟𝑒𝑎
𝑈𝑛𝑖𝑜𝑛𝑎𝑟𝑒𝑎

(6)

AP = ∫

1

0
𝑝(𝑟) 𝑑𝑟 (7)

FPavg = 𝐹𝑃
𝑛

(8)

FPcmb = 𝐹𝑃
𝑚

(9)

here:

• 𝑇𝑃 — true positive – the number of actual CMBs detected;
• 𝐹𝑃 — false positive – the number of predicted CMBs that were

not marked as CMB in ground truth;
• 𝐹𝑁 — false negative – the number of actual CMBs not detected;
• 𝐼𝑜𝑈 — intersection over union;
• 𝑟 — recall (sensitivity);
• 𝑝(𝑟) — precision as function of recall;
• 𝑛 — the number of subjects (patients) in the test set;
• 𝑚 — the number of CMBs in the test set.

Accuracy (ACC) (1) shows how the system deals with classification
n general. A high score means that almost all labels have been properly
ssigned.

Sensitivity/recall (2), also known as true-positive rate (TPR), shows
12

ow the system deals with ground truth detection or classification. s
high score means that almost all ground-true samples have been
etermined.

Specificity, also known as true-negative rate (TNR) (3), discloses the
ystem’s ability to recognize the negative class.

Precision (4), or positive predictive value (PPV), informs whether
he prediction matches ground truth. A high score means that the
ystem generates a small number of false positives.

F1 score (5) helps to check whether there is a balance between
ensitivity and precision.

IoU (6) stands for Intersection over Union and shows the common
rea between prediction and ground truth. It is actually a special case of
eometrically oriented Jaccard Index (Real & Vargas, 1996). The aver-
ge precision (7) AP@0.5 represents the area under the precision–recall
urve with IoU of 0.5, and it is used in detection and segmentation.
here is also an AUC – area under the curve – metric. In the case of
lassification, it refers to the ROC curve - sensitivity as a function of
− 𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦.

FPavg (8) shows the average number of false-positive predictions
er subject, while FPcmb (9) is the number of false-positive predictions
er one ground truth sample. For example, when we have one subject
ith 5 ground truth CMBs and 1 false positive prediction. The FPavg
ill equal 1 and FPcmb will equal 0.2.

.5. Comparison of existing approaches

Table 4 presents, in chronological order, multiple approaches re-
arding cerebral microbleed detection that took place in recent years.
t can be observed that at first, the prevailing solutions were those
ased on traditional image processing techniques, and it was there-
fter that the proposals based on machine learning algorithms took
he lead. One can observe that these methods achieved considerably
igher performance, both in terms of sensitivity and low false positive
eneration. Therefore, it can be assumed that the approach based on ML
lgorithms is more promising regarding practically applicable solutions.
lternatively, a combination of traditional and ML methods might be
onsidered.

Regarding the pre-processing stage, there are several operations,
uch as bias field correction, skull stripping, and normalization, that
hould be done in the case of MRI analysis before feeding data into the
ystem. Other transforms may also be used in particular cases, but they
re not essential.

A substantial issue is related to selecting the type of solved problem,
hether it should be classification, detection, or segmentation. A large
art of solutions is based on cutting images into smaller fragments and
heir further classification. These approaches are reported to have a
ignificantly better ability to distinguish CMB from its mimic. In the
ase of the detection process, great number of false-positive predictions
re generated, which often forces the introduction of the second stage,
amely false-positive reduction or predictions verification, as high
alse-positive generation is one of the main problems in CMB detection.
nother challenge that can be overcome by using classification instead
f detection is the size of the lesion. CMBs are small objects, which
akes them difficult to detect in the original image. Dividing the image

nto sub-images enhances the visibility of these microbleeds.
Although the use of 3D CNN does not offer any significant improve-

ent over 2D CNN, it is possible that a larger training dataset could
nable the 3D CNN structure to be utilized more effectively, resulting
n better performance. However, presently, opting for this solution
s not encouraging due to the higher computational cost involved.
urthermore, it is evident that the research being reported frequently
acks certain metrics. While it may not be necessary to mention all
ndicators, it is vital to conduct a proper evaluation and present the
esults appropriately.

We wish to highlight that determining the optimal approach based
n the data collected is challenging due to different datasets and

hortcomings in reported metrics. However, there exist some promising
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Table 4
Comparison of existing approachesa. The most promising ones are marked in bold.

Reference Pre-processing First stage Second stage TPR PPV F1 FPavg FP/CMB TNR ACC

Kuijf et al. (2011) SPM8, BET, 3D RST Manual – – – 5* – – –
normalization, inspection
standardization

Seghier et al. (2011) SPM8, CSF, GWM, CMBs, Morphological Authors did not provide any metric, only the table of results for
normalization skull scalp, operations each case.

background img (2 iterations)

Barnes et al. (2011) Brain extraction, Intensity histogram SVM, manual 81.7 – – 107.5* 5.4* 100 –
resize, threshold review
normalization

Ghafaryasl et al. (2012) N3, Elastix, Intensity and FFFS →LDC, 90.9 – – 4.1 1.8* – –
BET area threshold QDC, SVC,

Parzen

Kuijf et al. (2012) SPM8, 3D RST Manual 71.2 – – 17.17 4.68* – –
normalization, inspection
standardization

Kuijf et al. (2013) SPM8, 3D RST Manual 87 – – 45 – – –
normalization, inspection
standardization

Bian et al. (2013) BET, ARC, mIP, FRST Vessel mask 86.5 – – 44.9 1.5* – –
normalization screening,

3D region
growing,
geometric
features

Fazlollahi et al. (2013) CSF, Multi-scale 1D Center 100 – – 158.93* – 99.9 –
invertion, line detection detection →
normalization, Hessian
Gaussian blur matrix

Fazlollahi et al. (2014) N4, CSF, Multi-scale 3D Rodon 92.04 – – 16.84 6.7* – –
skull-stripping, Laplacian Transform →
normalization, of Gaussian Hessian
equalization, matrix,
anisotropic RFC
diffusion

Fazlollahi et al. (2015) N4, CSF, Laplacian 3D Rodon 87 – – 27.1 – – –
inversion, of Gaussian Transform →
normalization, Hessian
equalization, matrix,
anisotropic RFC
diffusion

Roy et al. (2015) N4, 3D region RST, 85.7 – – – – 99.5 –
skull stripping, growing WM mask,
phase geometric
enhancement features

Chen et al. (2015) Normalization Intensity CNN, 89.13 56.16 68.91 6.4 – – –
threshold 3D concatenation,

SVM

Dou et al. (2015) Normalization Intensity ISA 89.44 – – 7.7 0.9 – –
threshold SVM

van den Heuvel et al.
(2015)

FSL FLIRT, Voxel based – 90 – – – 1.3 – –

FSL FAST, features →
N3, SPM12b, RFC
normalization

Dou et al. (2016) Slices Hierarchical 3D CNN 93.16 44.31 60.06 2.74 – –
merging 3D CNN

Zhang et al. (2016) Reconstruction SAE – 93.20 – – – – 93.25 93.22
Syngo MR B17,
SNP

(continued on next page)
solutions. In the case of classification, there are approaches proposed
by Lu, Nayak et al. (2021), Lu, Yan et al. (2021), Stanley and Franklin
(2022a, 2022b) and Wang et al. (2019) with the best ACC = 98.60%.
Regarding detection, there are solutions presented by Ferlin et al.
(2021) and Li et al. (2021) with F1 = 90.84%.

The aforementioned research stand out from for instance (Al-masni
et al., 2020a, 2020b; Chesebro et al., 2021; Kim et al., 2022; Lee
13
et al., 2022; Suwalska et al., 2022) in terms of balanced results. That
means the first one provides similar values of all metrics, while the
second one, although reporting satisfying sensitivity, suffers from a
high false-positive prediction generation, which indicates low preci-
sion. Although Doke et al. (2020) and Hong et al. (2020) report high
accuracy, the datasets used by them were insufficient in terms of
patients number. Results reported in Ferlin et al. (2021), Li et al. (2021)
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Table 4 (continued).
van den Heuvel et al. (2016) FSL FLIRT, Voxel based Object 93 – – 25.9 0.29 – –

FSL FAST, features → classifier,
N3, SPM12b RFC growing-based

algorithm

Lu et al. (2017) Square CNN – 97.29 – – – – 92.23 96.05
window size

Wang et al. (2017) SNP, CNN + RAP – 96.94 – – – – 97.18 97.18
discard
borders,
cost ratio

Tajudin et al. (2017) – Watershed – Authors provided only mean square error MSE = 0.089 and peak
transform, signal to noise ratio PSNR = 34.5221
active contour
(Chan-Vese)

Standvoss et al. (2018) Augmentation, 3D CNN, – 87 – – 16.75 2.5 – –
selective connected
sampling component

analysis

Zhang, Hou et al. (2018) SNP, ANN – 93.05 – – – – 93.06 93.06
discard
borders,
cost ratio

Zhang, Zhang et al. (2018) SNP, SAE-DNN – 95.13 – – – – 93.33 94.23
discard
borders

Ateeq et al. (2018) BrainSuite Intensity SVM, QDA, 93.7 – – 56 5.3 – –
threshold, ensemble
filtering, classifier
hole filling

Morrison et al. (2018) BET FRST Region 86.7 – – 44.9 1.5* – –
growing,
geometric
features,
manual
validation

Bao et al. (2018) SNP Bayesian – 74.53 – – – – 74.51 74.52
classifier

Tao and Cloutie (2018) SNP GA-BPNN – 72.90 – – – – 72.89 72.90

Gunter et al. (2018) Intensity CNN – Authors provided only AUC = 98.5
threshold,
image cut,
data
augmentation

Liu et al. (2019) N4, 3D FRST 3D CNN 95.80 70.90 81.49* 1.6 0.39 – –
SWI generation,
resize,
normalization

Chen et al. (2019) ARC, BET, FRST Manual 94.69 71.98 81.79 11.58 – – –
SWI generation, validation,
negative 3D ResNet
phase mask

Wang et al. (2019) Sliding Dense-Net 201 – 97.78 97.65 – – – 97.64 97.71
window

Hong, Cheng, Zhang (2019) SNP ResNet50 – 95.71 – – – – 99.21 97.46

Hong, Cheng, Wang (2019) SNP CNN – 98.87 – – – – 96.49 97.68

Sa-ngiem et al. (2019) Intensity AlexNet, – – – – – – – 95.45
enhancement, brain area
binarization, extraction
morphological
operations,
geometrical
features

(continued on next page)
and Stanley and Franklin (2022a) were obtained for relatively big but
different datasets, therefore they are hard to compare with each other.
14
From mentioned proposals only some can be compared, as they used
the same dataset—like (Lu, Nayak et al., 2021; Wang et al., 2019) .
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Table 4 (continued).
Hong et al. (2020) SNP, brain area CNN – 99.74 – – – – 96.89 98.32

enhancement

Doke et al. (2020) Sliding CNN – 98.97 99.66 – – – 98.14 98.54
window,
augmentation

Liu et al. (2020) Binarization. Fourier – 85.2 3.2 – 69.5 – – –
noise descriptor
reduction

Lu et al. (2020) Reconstruction VGG-ELM-BAC – 93.08 – – – – 87.12 90.00
Syngo MR B17,
SNP

Al-masni et al.
(2020a, 2020b)

BET, YOLOv2 3D-CNN 94.32 61.94 74.78 1.42 – – –

slices merging

Rashid et al. (2021) N4, U-Net – 84 59 – – – – –
QSM generation,
padding,
normalization,
augmentation

Chesebro et al.
(2021)

BET, Sobel CSF filtering, 95.00 11.00 19.72 9.7 – – –

CSF mask, filter, 3D geometric
resize Hough filtering,

transform manual
validation

Myung et al. (2021) BET YOLO CSF 66.90 79.75 72.76 2.15 – – –
augmentation filtering

Li et al. (2021) ANTs, SSD + FE – 90 79.7 84.54* – 0.23 – –
JPG conversion,
augmentation

Ferlin et al. (2021) Padding, Faster RCNN Overlap 92.62 89.74 90.84 0.24 – – –
resize, between
normalization, slices
standardization,
slices merging,
annotations
modification
augmentation

Lu, Liu, Wang et al.
(2021)

SNP CNN + ELM + BA – 92.93 – – – – 83.35 88.56

Lu, Nayak et al.
(2021)

SNP CNN + EN – 98.27 – – – – 98.93 98.60

Momeni et al.
(2021)

N4, ANN – 18.6 9.2 – 3.6 – 99.4 96.8

augmentation,
synthetic
CMBs
generation

Lu, Yan et al.
(2021)

SNP CNN – 98.18 98.54 98.36 – – 98.60 98.39

Afzal et al. (2022) BrainSuite, K-means Alex-Net 97.26 – – – – 96.5 96.21
augmentation clustering,

geometrical
features

(continued on next page)
Nevertheless, the aforementioned meticulous and comprehensive
analysis offers an opportunity to draw conclusions, outline the best
practices, and identify the essential components of a reliable automated
detection system for cerebral microbleeds that are included in Section 4
below.

4. Discussion

This section addresses the crucial aspects of an automated detection
system for cerebral microbleeds that we deem significant. After a
careful analysis of all the gathered scholars, we decided to present
15
our thoughts and conclusions related to the most reasonable, mean-
ingful, and, in our opinion, practical approaches to the problem being
analyzed.

4.1. Data

As emphasized earlier, the importance of data cannot be diminished
when it comes to the development and implementation of an automated
detection system, particularly for a ML model. While traditional image
processing methods may not require large amounts of data for training,
it is still essential to have adequate dataset for system evaluation,
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Table 4 (continued).
Stanley and
Franklin (2022a)

Resize, 1D CNN + LSTM – 98.76 – 98.78 – – 97.21 98.24

contrast
stretching,
normalization,
Gaussian Filter,
histogram
equalization,
morphological
operations,
Sharr gradient,
3D GCM

Sundaresan et al.
(2022)

fslreorient2std, Frangi filters, Geometric 91 – – – – 81 86

FSL FAST, FRST, intensity features
BET transformations, level

eigenvalues, threshold
Gaussian filter,
Laplacian
of Gaussian

Suwalska et al.
(2022)

BET, MiMSeg, Filtration, 90 21.95 – 0.54 – 98.95 –

standardization, 3D region geometric 91.5 48 – 1.92 – 95.2 –b

gray-scale growing, features,
change mask,

CNN

Koschmieder et al.
(2022)

HD-BET, N4, 3D-FRST CNN 87.7 – – 6.9 1.51 – –c

normalization, Segmentation CNN 91 – – 5.5 1.27 – –
growing, 3D U-Net 92.2 – – 3.4 1.08 – –

Kim et al. (2022) SWI generation, Faster R-CNN, – 94.66 25.64 – 8.82 – – –
normalization, U-Net
BET, slice
interpolation,
random crop/
sliding window

Nikseresht et al.
(2022)

N4, U-Net, PCA, 58.23 18.70 – 5 – – –

normalization, Frangi filters, ResNet18
BET Hessian

eigenvalue,
mask,

Lee et al. (2022) BET, EfficientDet-D3, – 96.05 76.76 – 0.88 – – –
normalization, ensemble of 85.03 79.67 – 0.55 – – –d

interpolation, three plane
crop, resize, detection
augmentation

Stanley and
Franklin (2022b)

N4, EEWMDC ELM, CNN, 97.11 97.31 – 3.5 – 97.24 98.06e

sharpening, feature SVM, CS, CO
FCCA, extraction
crop

Fan et al. (2022) Intensity 3D U-Net – 88.96* 80.9* – – – – –
scale,
standardization,
normalization,
crop, resize,
slice merging

Gunter et al. (2022) – Resample, ANN 95 – – 0.6 – – –
normalized
cross-correlation,

Vieira (2023) 3D FCN 3D CNN with 96.94 95.48 – 9.0 – – –
spatial pyramid
pooling

Ferrer et al. (2023) Augmentation MultiResUNet Ensemble of three 0.80 0.80 1.92
plane detection

aData marked with * were not provided in original paper. Instead, they were calculated either by us or the Authors of other papers listed in Table 4, based on data provided in
the original paper.
bResults achieved on additional validation dataset (see Table 3).
cAuthors presented three alternative methods for the first and second stages. The pre-processing was shared.
dResults achieved on additional validation dataset (see Table 3).
eThe best results achieved for ELM classifier.
16
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as well as for the validation and testing phases. This is because the
accuracy and effectiveness of the system depend on the quality and
quantity of the data used for the training. Therefore, a varied and a
broad dataset is necessary to ensure that the system can detect cerebral
microbleeds effectively and efficiently in a wide range of conditions. By
using a diverse dataset, the system can be trained to recognize different
variations of cerebral microbleeds regardless of the MRI machine,
leading to a more robust and reliable automated detection system.

In Section 2, the paper lists a range of datasets that were used in
reviewed approaches to the automatic CMB detection. However, these
datasets differ not only in their acquisition parameters but also in terms
of the origin and medical history of the patients. Moreover, there were
cases where the information about the used dataset is incomplete or
inconsistent with the source article, for example Suwalska et al. (2022).

The diversity between datasets makes it extremely challenging to
compare proposed approaches. Thus, standardization of the datasets
descriptions is necessary. In our opinion, it is essential to provide
information such as the origin of the data, its number, the acquisition
parameters, the sequence type, and a thorough MRI rating procedure.
At later stages, this could also enable verification of the datasets in
terms of biases and identification of their source. Standardization of the
datasets descriptions would facilitate the development of more robust
and reliable automated detection systems for cerebral microbleeds and
enable more accurate comparison between proposed approaches.

Moreover, some datasets have an insufficient number of subjects,
as highlighted in studies such as Barnes et al. (2011) and Kuijf et al.
(2011). In such cases, the tested subset may be not representative
enough to validate the proposed approach and conclusions drawn. The
system trained on such a narrowed dataset will reveal low general-
ization ability, as noted in van den Heuvel et al. (2016). To prevent
over-fitting, it is crucial to have a large and diversified dataset. Ad-
vanced regularization techniques, as described in Lee et al. (2022)
and Nusrat and Jang (2018), should also be applied to ensure optimal
training of the automated detection system.

It is worth underlining that in case of classical methods the whole
dataset may be used for testing purposes as the method itself does not
require data for training process. In contrast, when we consider the
machine-learning approaches most of available data is used for system
synthesis, including training. Therefore, the test subset is significantly
smaller and with relatively low number of samples the assessment of
generalization ability might be limited.

An interesting approach to overcome the data shortage problem
was proposed by Momeni et al. (2021) and Nikseresht et al. (2022).
It consisted of synthetic microbleeds generation based on previously
extracted CMB features. Another way to produce huge amounts of
synthesized data is employing the Generative Adversarial Network
(GAN) (Creswell et al., 2018). GAN is capable of generating novel
images by utilizing the features automatically extracted from a pre-
existing dataset comprising authentic objects. Nevertheless, it is worth
noting that both of these approaches also require a considerable amount
of data to initiate the process effectively. Although there is a possi-
bility of generating biased data, both methods still show promise in
expanding datasets along with other augmentation techniques.

To ensure impartial results, it is considered a good practice to use a
completely unrelated dataset for testing when evaluating a system. In
recent studies such as Ferlin et al. (2021), Lee et al. (2022), Momeni
et al. (2021) and Suwalska et al. (2022) adoption of this approach can
be observed. An unrelated dataset refers to data that has been acquired
from a different MRI machine, from subjects with different origins
and medical histories, and ranked by another rater. MRI examinations
performed on various machines may have different parameters, making
it important to synthesize a system that is resistant to features that
should not directly impact prediction. The use of various datasets
allows to evaluate the model’s generalization ability. However, while
using an unrelated dataset is desired, it is not always achievable in
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practice.
The limited availability of the datasets used in research is another
constraint that hinders the comparison of different approaches. It is
typical among researchers to either not share their data or share it
in a restricted manner, as indicated in datasets comparison Table 3.
This lack of transparency and openness in data sharing limits the
potential for validation of the proposed approaches. To address this
issue, we encourage open data sharing to promote reproducibility and
transparency of scientific research.

Establishing a benchmark dataset could significantly accelerate the
development in the addressed medical domain, despite the numerous
legal restrictions on medical data sharing (Leming et al., 2022). This
has already been demonstrated in the cases of brain glioma segmen-
tation (Baid et al., 2021) and determining skeletal age (Halabi et al.,
2019; Siegel, 2019).

Concluding, the dataset is the base of the computer-aided detection
system. It should be as large and diversified as possible. Moreover,
to provide transparency and comparison possibility, data should be
publicly available and precisely in the paper—with all acquisition
parameters.

4.2. Pre-processing

The pre-processing stage is also an important aspect to consider
when it comes to synthesizing a system. As described in Section 3.1,
there is a large number of possible operations that can be applied.
They should be adjusted considering the original image properties and
designed system requirements. Typically, we can divide approaches
into two groups—those where pre-processing is limited to necessary
operations like normalization and those where it plays an important
role in the detection such as SNP (see Table 4). Nevertheless, any image
transformations should be thought-out and justified. Bias field correc-
tion is a commonly used method in MRI pre-processing, as it can restore
important information. Using dedicated tools for skull stripping is also
preferred over simply removing part of the image, as demonstrated
in Wang et al. (2017), Zhang, Hou et al. (2018) and Zhang, Zhang
et al. (2018). However, even with dedicated pre-processing techniques,
images passed to the system may still be unintentionally deformed or
partial. It is important to take precautions to prevent valuable data
loss. Therefore, any operations that modify the image’s size should be
performed without content loss for instance in Sundaresan et al. (2022).

4.3. System development

When it comes to system design, we came to the conclusion that
there are several issues that should be addressed.

Firstly, the MRI data is given in the three-dimensional space. Re-
gardless of the algorithm employed, there is a stage in which infor-
mation from the third dimension must be used. Especially in the case
of detecting cerebral microbleeds, spatial dependencies play a crucial
role in distinguishing the CMBs from their most common mimics, which
are blood vessels (Al-masni et al., 2020a; Bian et al., 2013; Chen et al.,
2019, 2015; Chesebro et al., 2021; Dou et al., 2016; Fan et al., 2022;
Fazlollahi et al., 2014; Ferlin et al., 2021; Koschmieder et al., 2022;
Lee et al., 2022; Liu et al., 2019; Suwalska et al., 2022). While the
vessels can be distinguished based on spatial information, the other
CMB mimic, such as calcification, has a similar shape in the 3D space.
In such cases, utilizing additional MRI sequences, apart from SWI, can
be advantageous for identifying these mimics (Al-masni et al., 2020a).
The existing approaches can be categorized into three groups in terms
of dimension: 2D, 3D, and 2D with 3D information see Table 4. Two-
dimensional solutions consider individual slices for detection while
three-dimensional benefit from the spatial information, however, they
suffer from higher computation cost. There is also an intermediate
solution—using 2D images enriched with the information from adjacent

slices.
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In the majority of reported research, the CMB detection process
is broken down into two stages: CMB Candidates Detection, and CMB
Candidates Verification (see Table 4). This division is necessary due to
the resemblances between CMBs and their mimics, which can result in a
high number of false-positive candidates after CMB Candidates Detection
stage. In order to reduce FP candidates, the CMB Candidates verification
is necessary. Although it may increase computation time, it gives the
opportunity to obtain more reliable results. Nevertheless, maintaining
a balance between accuracy and efficiency is crucial, especially when
considering real-time usage.

Another issue worth considering is the nature of cerebral microb-
leeds. Due to the fact that they are small hemorrhages, it can be
challenging to detect them, even by an experienced radiologist. There-
fore, the system designed to identify CMBs should be sensitive to such
small objects. Automatic systems may prove to be more effective in
this regard since they can analyze information that is not visible to the
human eye. It is also proven that using more accurate and sensitive MRI
machines with properly adjusted parameters can increase the likelihood
of detecting all microbleeds, even very small ones. Nandigam et al.
(2009).

Another problem relates to the possibility of overlooking some
CMBs by an experienced rater. In any research regarding detection, es-
tablishing a ground truth is necessary. However, this can be extremely
challenging since the level of rater agreement may be relatively low,
such as 𝜅 = 0.68 (Seghier et al., 2011). To reduce this problem, the
initial rating should involve as many raters as possible. Additionally,
verification of system results may be useful, as some CMBs that were
missed by raters may be detected by the system and should not be
considered false-positive (Momeni et al., 2021). On the other hand, ra-
diologists have the advantage of being able to view potential CMB from
multiple perspectives and consult with teammates, which is not possible
for an automated system Therefore, providing additional information
such as gender, age, injury, angiography scans, etc. may also prove to
be beneficial (Kuijf et al., 2013).

From a clinical application perspective, certain practical respects
must also be taken into account when designing a CMB detection sys-
tem. It is crucial to keep the end user’s perspective in mind. Therefore,
when presenting results, the format should be designed with the user
experience in mind.

Providing a bounding-box or a circle as an indicator is crucial,
but including further information such as the confidence score of
the prediction can be highly beneficial. The machine-learning system
typically generates this value, and it might offer the radiologist insight
into the level of certainty, which can hasten the evaluation process.
We also suggest to present the results using medical rating scales like
MARS (Gregoire et al., 2009) BOMBS (Cordonnier et al., 2009) (see
Section 2.2) for a more comprehensive interpretation.

Furthermore, it is essential to incorporate the ability to accept or
reject a given prediction, by the end-user. As the system to be developed
is a computer-aided system, the user must have the possibility to
agree or disagree with the proposed outcome since their decision is
final. A highly desirable feature of the system is also the automatic
incorporation of such decisions through system retraining. However,
it is crucial to distinguish this decision from involving a human in the
loop. The raters possess indispensable knowledge for CMBs rating and
may be utilized during system design, such as to validate preliminary
results or to label extracted candidates as CMB and non-CMB, similar
to Chen et al. (2019). Nevertheless, they should not be employed as the
final stage of the process to enhance system performance. The reported
100% precision or specificity of a semi-automated system where a
human is part of the FP reduction process is simply misleading (Barnes
et al., 2011; Kuijf et al., 2013; Morrison et al., 2018). Even though
such semi-automated system significantly reduces the time required for
a single scan rating, this evaluation approach is confusing. Nonetheless,
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feedback from the radiologist regarding the prediction may be utilized
for instance for continual learning (Pianykh et al., 2020). Such an
approach could lead to improvements in an already working system.

Having analyzed existing approaches we concluded that ML-based
computer-aided systems report significantly higher results than clas-
sical image analysis systems. Furthermore, over the years, they have
become increasingly popular and widely adopted. ML-based systems
can be divided into two main groups considering the main approach:
classification and detection/segmentation. Some scholars report per-
forming microbleed detection by dividing the image into small pieces
and classifying them as either containing or not a microbleed. Whereas
others perform direct detection or segmentation on the whole image.

In our opinion, the most promising approaches appear to be those
that combine two-dimensional analysis with 3D information, incorpo-
rating neural network-based detection along with an additional cere-
bral microbleed verification process. Considering the nature of the
cerebral microbleeds, two primary challenges arise in their detection:
small sizes and similarity to other objects visible in the MRI. An
appropriate selection of the neural network may effectively address the
first challenge. Detecting small objects has been a challenge since the
early stages of machine learning-based system development. According
to Cheng et al. (2023), the state-of-the-art architectures for small object
detection are RoI Transformer (Ding et al., 2019) and Oriented R-
CNN (Xie et al., 2021). Therefore, we recommend focusing on these
architectures for further research.

4.4. Evaluation

Section 3.4 highlighted another crucial aspect to consider—system
evaluation, in which we presented various metrics and their correla-
tions. Ensuring that the system works effectively, reliably, and achieves
its intended purpose is vital. Therefore, it is necessary to select evalu-
ation metrics that accurately determine the system’s performance and
whether it meets the required specifications. Additionally, the chosen
evaluation metrics should align with the task’s specific requirements
to ensure optimal performance. The metrics used may differ depending
on the selected task, such as classification, detection, or segmentation.
In our opinion, it is crucial to report and analyze as many metrics as
possible when evaluating the system because they focus on different
aspects of the system’s performance. While achieving a sensitivity of
99% may initially appear as an outstanding result, it is not satisfactory
if it is confronted with a precision of only 40%. Researchers may
emphasize the importance of sensitivity while downplaying the number
of potential false positives, but this can be detrimental to the system’s
reliability and overall synthesis, like in Barnes et al. (2011). Therefore,
it is crucial to design a system that is balanced and optimized as a whole
to ensure optimal performance.

System evaluation plays a crucial role in enabling comparison be-
tween different approaches. As demonstrated in Table 4, it is apparent
that the researchers do not always provide all the necessary metrics
required for accurate comparisons. This lack of information can sig-
nificantly impede the identification of the current state-of-the-art and
hinder the comparison of different approaches. Therefore, it is essential
to present all relevant metrics to ensure accurate comparison and the
superiority of one approach over another can be determined.

Moreover, we suggest employing methods like k-fold validation
during the system development that can aid better evaluation within
the same dataset. The obtained results may differ depending on cho-
sen training, validation, and testing sets, making k-fold validation a
recommended approach (Al-masni et al., 2020a, 2020b; Ferlin et al.,
2021).

Another important aspect that we would like to draw attention to
is providing technical details regarding the system, for instance by
preparation of a system nameplate. It could contain a comprehensive
description of system properties and target data type. Moreover, there

should be information about hardware and selected parameters to
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Fig. 8. Guidelines for the synthesis of an automatic CMB detection system.

make the system reproducible. It should also highlight the operating
conditions of the system as well as its limitations.

In addition to the importance of providing relevant metrics for
system evaluation and obtaining high scores on those metrics, we
believe that there is a broader issue of system trustworthiness that
needs to be considered. While traditional image transformations and
morphological operations are relatively straightforward to explain, the
interpretability of black-box machine-learning systems remains a signif-
icant challenge (Amann et al., 2020; Angelov et al., 2021; Barredo Ar-
rieta et al., 2020). This issue is particularly important in medicine,
where the decision-making process must be transparent to ensure that
19
conclusions are based on the correct grounds rather than any inherent
bias. It has been also raised by many researchers in the field of CMB
detection (Chen et al., 2019; Chesebro et al., 2021; Ferlin et al., 2021;
Hong, Cheng, Zhang, 2019; Lu et al., 2017; Morrison et al., 2018;
Myung et al., 2021), but none of them has actually implemented it.
Thus, reducing bias is crucial to ensure that AI systems used in medicine
are reliable and trustworthy (Mikołajczyk et al., 2021). In this regard,
guidelines for designing responsible and trustworthy AI systems have
been proposed by experts in the field, such as those presented for
example by GoogleAI (GoogleAI, 2018). These guidelines emphasize
the importance of transparency, explainability, and interpretability in
AI systems, which can aid in establishing trust and mitigating any
concerns regarding potential biases. We would like to emphasize the
importance of addressing the issue of system trustworthiness to foster
the widespread adoption of AI systems in the medical field. It is crucial
to ensure that these systems are utilized safely and effectively to benefit
patients and healthcare providers.

5. Conclusions

One of the results of our research is a set of good practices and
recommendations, which we have presented in Fig. 8. This guide is
designed to assist researchers in their work and we are confident that
it will be a useful tool for those working in this area of research.
By following these guidelines, it is anticipated that more efficient
automatic CMB detection systems can be developed.

To the best of our knowledge, this paper represents the first com-
prehensive collation of all available research regarding automatic CMB
detection. By highlighting the limitations and challenges of current
approaches and identifying areas where improvements can be made,
we aimed to provide a valuable resource of knowledge and ideas for
further research within this domain. Given the medical character of
this task and the significant implications for patient care, it is essential
to establish reliable and accurate methods for detecting CMBs. By
providing a detailed analysis of existing research, we hope to inspire
new avenues of investigation and encourage a more comprehensive and
rigorous evaluation of obtained results. Concluding, this paper makes a
significant contribution to the field of automatic cerebral microbleeds
detection, and paving the way for further advancements in this area.
We believe that our findings will be of great value to researchers,
clinicians, and other stakeholders working in this area. We hope that
this paper will serve as a catalyst for better practices in knowledge
sharing and collaboration between different research groups, as well
as, stimulate further research and lead to improved system outcomes.
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Table A.5
Comparison of additional dataset acquisition parameters used in the reviewed approaches. Supplement information to Table 3.

Reference TR [ms] TE [ms] FA [◦] BW [Hz/px] Rating

Kuijf et al. (2011) 20 2.5/15 – – MARS

Barnes et al. (2011) 57 40 20 – Ayaz et al. (2010)

Hong, Cheng, Wang
(2019), Hong, Cheng,
Zhang (2019), Hong
et al. (2020)

– 20 15 120 MARS

Bian et al. (2013) and
Morrison et al. (2018)

56 28 20 – Similar to BOMBS/MARS

Kuijf et al. (2012) 20 T2 ∗ W, 7 T1W 2.5/15 T2 ∗ W,
3 T1W

– – MARS

Lu, Liu, Wang et al.
(2021), Lu, Nayak
et al. (2021),
Zhang, Hou et al.
(2018), Zhang et al.
(2016), Zhang, Zhang
et al. (2018), and Wang
et al. (2017, 2019)

28 20 15 120 MARS

Afzal et al. (2022) 17 24 – – Micro-drain functional rating
scale

Chen et al. (2015) – – – – –

Liu et al. (2020) 17 24 – – MARS

Vieira (2023) 17 24 – – MARS

Ateeq et al. (2018) 17 24 – – MARS

Rashid et al. (2021) 1900 T1W MPRAGE
(T1WMP), 3200
T2W, 35 SWI

2.93
T1WMP, 408 T2W,
7.5/ 15/ 22.5/ 30
SWI

9
T1WMP, 120 T2W,
15 SWI

170
T1WMP, 750 T2W,
200 SWI

Inspired by BOMBS

Sa-ngiem et al. (2019) – – – – –

Roy et al. (2015) – 25 – – –

Fazlollahi et al. (2013) – – – – –

Fazlollahi et al. (2014) 27 SWI,
2.3 T1W

20 SWI,
2.98 T1W

20 SWI,
9 T1W

– MARS

Dou et al. (2015) – – – – MARS

van den Heuvel et al.
(2015, 2016)

27 SWI,
2300 T1MPR

20 SWI,
2.98 T1MPR

15 SWI,
9 T1MPR

120 SWI,
240T1 MPR

MARS

Li et al. (2021) 5727
T2 FRFSE (T2F),
77.3 SWAN-W, 8400
T2W FLAIR (T2WF)

93 T2F,
45 SWAN-W, 145
T2WF

15
SWAN-W, 145
T2WF

833
T2F & T2WF, 625
SWAN-W

–

Fazlollahi et al. (2015) 27 SWI,
2.3 T1W

20 SWI,
2.98 T1W

20 SWI,
9 T1W

– MARS

Chesebro et al. (2021) 6.6 T1W,
17 T2 ∗ W SWI, 15
T2 ∗ W GRE

3 T1W,
24 T2 ∗ W SWI, 22
T2 ∗ W GRE

– – Greenberg et al. (2009)

Kuijf et al. (2013) 1653 T2 ∗ W,
11000 FLAIR, 7.9
T1W

20 T2 ∗ W,
125 FLAIR, 4.5 T1W

– – MARS

Chen et al. (2019) 40 SWI,
50 3DSPGR

2.4/12/14.3/20.3
SWI, 16 3DSPGR

25 – computer-
aided detection developed by
Bian et al. (2013) with rater

Seghier et al. (2011) 6000
T2W Fast Spin Echo
(T2WFSE), 300 T2 ∗
GRE

105 T2WFSE,
40 T2 ∗ GRE

20
T2 ∗ GRE

– MARS

Koschmieder et al.
(2022)

2300 T1 MP-RAGE
27 SWI

2.98 T1 MP-RAGE
20 SWI

9 T1 MP-RAGE
15 SWI

240 T1 MP-RAGE
120 SWI

Greenberg et al. (2009)

Kim et al. (2022) 27 20 15 120 –

Lee et al. (2022) 27 DS1, 28 DS2 20 15 – Greenberg et al. (2009)

(continued on next page)
Appendix. Supplementary details for data set

See Table A.5.
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Table A.5 (continued).
Al-masni et al. (2020a,
2020b)

27 HR,
40 LR

20 HR,
13.7 LR

15 120 Greenberg et al. (2009)

Myung et al. (2021) 1050 20 21 – –

Ferlin et al. (2021) 17 DS1,
27 DS2, 40 DS2

24 DS1,
20 DS2, 13.7 DS2

15 DS2 120 DS2 MARS DS1, Greenberg et al.
(2009) DS2

Momeni et al. (2021) 27 SWI,
2.3 T1W

20 SWI,
2.98 T1W

20 SWI,
9 T1W

– MARS

Liu et al. (2019) 49/50 1.5T,
27-34 3T

40 1.5T,
17.5-20 3T

15 1.5T,
12/15 3T

80 1.5T,
100-425 3T

–

Ferrer et al. (2023) 27 DS1, 17 DS2 20 DS1, 24 DS2 20 DS1 – MARS DS1 & DS2, Lu, Liu,
MacKinnon et al. (2021) DS3

Ghafaryasl et al. (2012) – – – – –

Sundaresan et al.
(2022)

504 T2*-GRE,
27 SWI

15 T ∗ 2-GRE,
9.4/20 SWI

– – MARS

Dou et al. (2016) 17 24 – – MARS

Stanley and Franklin
(2022b)

17 24 – – MARS

Stanley and Franklin
(2022a)

17 SWI,
27/40 SVS

24 SWI,
20/14 SVS

15
SVS

120 SVS MARS
SWI/Greenberg et al. (2009)
SVS
B

B

B

B

B

d

B

B

C
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