
Extraction of Information from Born-Digital PDF

Documents for Reproducible Research

Jacek Siciare and Bogdan Wiszniewski
Department of Intelligent Interactive Systems, Faculty of ETI, Gdansk, Poland

Email: siciarek@gmail.com, bowisz@eti.pg.gda.pl

Abstract—Born-digital PDF electronic documents might

reasonably be expected to preserve useful data units of their

source originals that suffice to produce executable papers

for reproducible research. Unfortunately, developers of

authoring tools may adopt arbitrary PDF generation

strategies, producing a plethora of internal data

representations. Such common information units as text

paragraphs, tables, function graphs and flow diagrams, may

require numerous heuristics to handle properly each vendor

specific PDF file content. We propose a generic Reverse

MVC interpretation pattern that enables to cope with that

arbitrariness in a systematic way. It constitutes a component

of a larger framework we have been developing for making

executable papers out of PDF documents without injecting

in the PDF file any extra data or code.

Index Terms—information retrieval models, content mining,

executable papers, user interfaces

I. INTRODUCTION

A born-digital PDF document, generated by an

authoring or typesetting tool from the electronic original,

is a data structure combining text, vector and bitmap

graphics – composed of data objects from a small set

including numbers, strings, arrays, dictionaries and

streams, among others. Extracting useful information

from such a document requires predefined interpretation

patterns that underlie the data contained in its objects.

Unfortunately, the internal logical structure of the

original (source) document is severely degraded after

being exported to the PDF format, so that only its visual

layout and placement of objects may indicate basic

relationships between different logical units of the

document content. Two PDF files looking identical on a

computer screen may have their internal structure of data

objects arranged in the entirely different way. This is

because developers of authoring tools may use different

strategies to generate PDF files, making the internal

document data structure vendor sensitive. In consequence,

instead of literally parsing the PDF content in terms of

formal grammar rules or data containers delimited by tags,

visual interpretation must be performed in order to

retrieve any useful information from it.

We propose for that purpose the Reverse MVC (rMVC)

reconstruction pattern, which intentionally refers to the

Manuscript received July 15, 2014; revised December 19, 2014.

Model-View-Controller (MVC) design pattern–well

known in programming Web applications.

In the paper we demonstrate its use for extracting

information from tables, function graphs and flow

diagrams within the context of reproducible research.

Information we focus on in the paper are: data series

extracted from columns or rows of tables, as well as from

line graphs, data records extracted from table rows, and

data flows extracted from block and workflow diagrams.

A. Reproducible Research

The reproducible research principle requires that

conclusions reported in a scientific paper can be

reproduced independently by different readers using the

content of its tables, graphs, diagrams, and other

information units. Augmenting the original document

with data and services may turn it into the executable

paper, suitable for implementing such reproducible

research scenarios, as simple exercises with the paper's

functionality when tracing the paper's content from data

contained in the paper to conclusions presented by the

author, repeating experiments reported in the paper with

alternative or voluminous data and computational

resources provided by the paper's publisher, or interactive

design of experiments that can combine data and services

provided by the paper with some third party data or

services.

The Executable Paper Grand Challenge launched by

Elsevier in 2011 has identified a set of key attributes of

executable scientific papers including executability, short

and long-term compatibility, ability to validate data and

code, conveying work done on large-scale computers,

management of large size files and tracking of reader's

actions, among others [1].

Numerous initiatives have been started to achieve the

objectives listed above–some of them well before the

challenge was launched by Elsevier.

One is Amrita capable of converting PDF documents

into interactive entities with embedded JavaScript, for

which the PDF viewer constitutes their computing

environment [2]. One disadvantage of this approach is its

strong dependence on the Rich Media technology–a

solution that can persist for as long as supported by

Adobe.

The Sweave tool can integrate in Latex documents

various information units in the form of text, figures,

tables, etc., based on the data analysis performed by

238©2016 Engineering and Technology Publishing

Journal of Advanced Management Science Vol. 4, No. 3, May 2016

doi: 10.12720/joams.4.3.238-244

special chunks of R code embedded in the source

document [3]. Owing to that the final PDF document will

always be up-to-date, and the information necessary to

trace back all steps of the data analyses available for

inspection–if only the author makes the data and the

relevant code available.

The Planetary system provides a Web-based authoring

environment enabling authors to semantically annotate

LaTeX source documents before transforming them into

XHTML [4]. One advantage of this approach is that no

system-level programming skills are required from

authors. It narrows, however, the authoring process to just

one source document format.

IPOL is an on-line journal publishing algorithms for

image processing and analysis [5]. Authors must submit

with their manuscripts the implementation software in

C/C++, and the relevant datasets as Web pages.

Components of the submissions are evaluated by referees

and upon acceptance the code is distributed under the free

software license. While making the IPOL papers

executable is supported by the journal's technical staff

and does not require authors to be skilled Web interface

designers, distribution of their software remains outside

of their control. An alternative would be providing to the

paper readers some external Web service for executing

the code outside of the actual paper location, under

control of the paper's author.

The Collage Authoring Environment enables authors to

augment traditional paper content with computational

experiments combining code snippets and data files [6].

These experiments can be repeatedly executed by readers

using a common Web browser, with the support of the

publisher's server providing the required execution

capability. There is practically no limitation on the

programming language of the submitted code snippets,

data formats or the paper theme, so practically any on-

line journal of interactive publications may be created.

Although the interactive elements of code are embedded

in the publication interface, it remains executable for as

long as it is located on the publisher's server and the

interested reader stays connected.

B. Interactive Open Document Architecture (IODA)

We have proposed an Interactive Open Document

Architecture (IODA) that does not require authors to

prepare their papers with any specific authoring or

typesetting tools in order to make them executable; it also

enables augmentation of existing (already published)

papers with the execution capability, without any need for

prior arrangements nor interfering with the overall paper

generation process [7].

The IODA document consists of three layers, as shown

in Fig 1.

The bottom data layer contains the original document

file in a printable form, accompanied by other textual or

binary data and document services. The services may be

implemented as embedded–with the executable binary

code or scripts, or specified as local or external ones.

Local services may be performed at the client’s side upon

copying data from the data layer, whereas external

services, which the document may want to call, are

provided from outside of the current document location.

data

layer

information

layer

knowledge

layer

series of data…

paper file
data

code

plot area
formula

…calculated by the formula

Figure 1. IODA layers

The middle information layer contains interpretation

patterns for extracting logical information units from data

provided by the data layer, whereas the top knowledge

layer combines these units with services of the data layer

into contexts enabling interactive experimentation of the

readers with the document content.

Throughout the rest of the paper we concentrate on

services embedded in the IODA document data layer that

can support implementation of interpretation patterns

provided by its information layer. In particular we will

address the following two problems:

Problem 1: Extraction from the original PDF document

file of any data that may constitute meaningful units of

information, despite of its logical structure degradation

when compared to its source original.

Problem 2: Recognizing and interpreting the relevant

data objects in the PDF document file, despite of their

alternative representations generated by various vendor

specific PDF generators.

II. LOGICAL STRUCTURE DEGRADATION

The extent to which logical structure of the original

document is degraded in the PDF document is specific to

the particular PDF generator used. For example, the data

object representing the text Lorem ipsum in the PDF file

generated by the LibreOffice Writer tool will look like:

Tf[<01>2<020304>-6<05>2<0607>2<0809>-2<0A>-7<05>10<0B>]TJ

But when generated by the PDFLatex tool will look

quite different:

Td[(Lorem)-333(ipsum.)]TJ 154.421 -615.691 Td [(1)]TJ

It may be seen that LibreOffice encoded each character

of the example text with its respective key in the font

dictionary (placed in the generated output PDF file as a

separate data object), whereas PDFLatex represented the

two component words directly as PDF strings, but

eliminated the middle space by replacing it with a

numerically determined visual offset -333.

239©2016 Engineering and Technology Publishing

Journal of Advanced Management Science Vol. 4, No. 3, May 2016

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

This example indicates that attempting a universal

procedure for retrieving logical units of information from

the PDF document would be unrealistic, given the variety

of possible strategies for generating “identically looking'”

PDF documents.

A. Plain Text

Continuity of sentences forming a paragraph may be

broken into lines, words, or single characters, depending

on the placement and/or orientation of the text in the

original document. Text related data objects in the PDF

file specify its size, position in the page and the font

dictionary. Its component characters may be represented

directly by strings or indirectly by keys in the font

dictionary. When the text unit is rotated or its characters

are scattered over some area even positions of individual

characters may be specified separately.

B. Tables

Relations between cells, their content and borders, row

labels and column headings, may be lost by the PDF

generator, since they are free to assume any particular

order of data objects inside the produced file.

Tables are usually represented as text lines (cell

content) surrounded by cell borders. Labels and headings

can be recognized if its font parameters differ from

parameters of the cell content. Borders are line segments

of a given length, so analysis of position and relations

between text lines and graphical elements is necessary to

retrieve tabular data.

Sometimes degradation inflicted by the PDF generator

may go beyond the capacity of any analysis, especially

when the original table lacked any graphical components.

For example LibreOffice puts data objects with graphical

elements of the table in the output PDF file before the

objects with the textual content, whereas PDFLatex puts

graphical and textual data objects describing each single

table cell side by side.

C. Function Graphs

The common form of function graphs in research

papers are line plots, which are usually approximated

with line segments of the length measured in points (pt).

Accuracy of the approximation depends strongly on the

segment length assumed by the generator used to produce

the output file. The respective pieces of information,

including axes, the grid, tics (if any), value (text) labels of

tics, and other graphical elements of data series, are split

in numerous data objects of the document file. Before

extracting values of data series, e.g. by sampling, curves

must be reconstructed from the line segments by

searching and analyzing all respective data objects in the

file. Consider Fig. 2 illustrating the problem.

Positions of all segments of the line plot, e.g.

((x1,y1)(x2,y2)) and ((x2,y2)(x3,y3)), must be retrieved and

their respective ends matched before sampling to extract

the data series, e.g. ...,di-1,di,di+1,..., could be applied.

In order to do that properly it is needed to determine

the range of the plot and calculate the sampling rate

proportional to that range or the distance of tics.

Accuracy of the so extracted data depends on the size of

segments approximating the line plot in the analyzed PDF

document.

(x1,y1)

(x2,y2)

(x3,y3)

di-1

di

di+1

i-1 i i+1… …

Figure 2. Interpretation of a function graph.

Extraction of multiple data series is possible if

individual color or line pattern attributes are explicitly

specified by the analyzed data objects, for otherwise

multiple plots could not be distinguished.

D. Flow Diagrams

Nodes and arcs, visualized as various meaningful

shapes, like boxes, circles, arrows, etc., are usually

represented in the output PDF file as paths to be plotted

by the underlying graphics engine, using elementary

operations: moveTo, lineTo, curveTo and closePath.

While reconstruction of these shapes is possible by

mimicking the plotting operations, relations between

shapes, e.g. links, are lost.

Arcs in turn are lines with optional arrows at their ends.

Problems occur when retrieving arcs described by dashed

or dotted lines. While horizontal and vertical lines can be

retrieved easily–if they only have their respective (dotted

or dashed) patterns indicated in the corresponding PDF

data objects, skewed lines are usually composed of line

segments with some empty space between them,

complicating their recognition.

Other elements of interest may be textual or iconic

descriptions placed all over the page area containing the

diagram–with arbitrary positions, in general hard to

associate with shapes.

III. RELATED WORK

Extraction of logical information units from PDF files

has been attracting attention of the document analysis and

recognition research community for over a decade, in the

context of content mining and understanding of electronic

documents published on the Web–with tables and

diagrams considered the most informative components of

scientific and technical publications.

For example, the AIDAS tool was developed to extract

content from technical manuals for a database of training

materials [8]. The underlying idea of AIDAS was to sort

data objects of each PDF document page on their

coordinates and then run a set of grammars on them to

filter out specific elements of the logical document

structure, such as sections, lists, paragraphs, tables and

figures. The approach was incremental, i.e. domain

240©2016 Engineering and Technology Publishing

Journal of Advanced Management Science Vol. 4, No. 3, May 2016

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

specific grammars could be added to recognize various

classes of content, and would not fail for the unknown

content. However, adopting this approach for extracting

data for reproducible research would be problematic.

Discovery of the logical structure of the PDF document

concerned in fact only the presentation level–sufficient

for partitioning the document content in chunks and store

them in the database, but demanded more analysis to

generate series of data from function graphs or identify

flows in diagrams. Grammars capable of achieving that

would have to capture specificity of PDF generators, thus

developed separately for each specific vendor.

An impressive amount of effort has been spent by

researches on automatic detection and recognition of

tables and graphics in PDF documents. Although the

particular approaches may vary in detail, e.g. some

attempt machine learning techniques to separate diagrams

in classes [9], classify tables with regard to the use of

ruling lines based on the analysis of the significantly

large set of document corpora [10], develop heuristics for

aligning basic content elements and grouping them by

considering their spatial features [11], or providing

grouping rules to obtain higher level graphic and text

objects from primitive objects, like line segments,

rectangles, etc. [12], their common denominator is the

bottom-up approach. In general it involves analysis of

various PDF data objects in the document page and

clustering them to form more complex structures up to

the point where the table or figure is finally detected and

localized in the page.

Recognition of tables, graphs and diagrams are all

considered in the related literature very difficult problems.

The reason is probably subscribing by researchers to the

bottom-up philosophy and striving for uniformity of

recognition rules, which based on our experience with

executable papers, make the recognition task

unnecessarily complex. The bottom-up approach is

certainly justified for analyzing raster images of scanned

documents, where attempts to build uniform recognition

rules based on clustering of pixels are more

straightforward than in the case of graphical primitives

occurring in PDF files [13].

We propose instead a top-down approach. Firstly, no

automatic segmentation of logical units of the document

structure is needed if users can interact directly with the

IODA document via its knowledge layer, as shown in Fig.

1. Note that the respective page and area containing the

table or the diagram of interest may be just indicated or

marked on the screen by the human reader.

Secondly, PDF generators used by individual authoring

tools are quite stable in what graphical primitives they

produce, and how they combine these primitives to render

complex structures. Therefore, instead of analyzing

thousands of PDF documents in order to classify these

primitives, as well as the ways they may be combined, we

preferred to find out what PDF data objects the most

popular tools could generate. Information on the

particular make and version of the PDF generator used to

produce the paper is present in the file and can be easily

retrieved!

Finally, especially in the case of table recognition,

certain formatting rules are imposed by the publisher, so

instead of searching document repositories for similar

looking documents it might be wiser to analyze the

template or style sheet used to generate the given

document of interest.

The above observations have led us to the concept of

the generic interpretation pattern driven by the set of

vendor specific recognition rules. Its core is the rMVC

pattern.

IV. REVERSE MVC PATTERN

Our rMVC interpretation pattern, like its MVC design

pattern counterpart, separates the Model component

holding units of data, from the Controller component

with the control logic, and the View component providing

presentation of the model data. In MVC the Model

notifies the View on any change of the state of its data,

but does not know details of the presentation. Only upon

being notified by the Model the View retrieves the

necessary data from it to produce the actual visual output.

The Controller intercepts user generated events and sends

requests to both: the View, to change presentation of the

Model data, and the Model, to update their states

accordingly.

Since MVC provides a template solution for graphical

interpretation of units of data (from the Model to the

View), reversing the process (from the View to the Model)

should get the units of data when interpreting their visual

presentation. In other words, rMVC can provide a

template solution for extracting information units from

the PDF document, being nothing less than visual

interpretation of data dispersed inside the document file.

Conceptually, extraction of document data in the form

enabling their use in various reproducible research

scenarios, corresponds in fact to the reconstruction of the

Model. This idea is outlined in Fig. 3.

page area data

V C M

document

file

data layer

information layer

recognition

rules

interpretation

operations

interpretation pattern

data series, data records,

directed graphs, …

Figure 3. Reconstruction with Reverse MVC.

We propose a generic interpretation pattern, combining
recognition rules and interpretation operations.

Recognition rules provide the relevant logic for the

Controller (C) component shown in Fig. 3, whereas

interpretation operations are used to process data of the

Model (M) component. The extraction process is started

by the View (V) component, which gets a single page of

the PDF document, filters out and decodes its textual data

241©2016 Engineering and Technology Publishing

Journal of Advanced Management Science Vol. 4, No. 3, May 2016

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

streams, separates metadata to obtain the document

generator make and version info, and transfers them to C.

Based on that info C chooses the appropriate

recognition rules for the page area to which the

interpretation pattern is applied. These rules involve

heuristics matching the particular vendor, or follow

explicit specifications of the publisher, as in the case of

the Sweave package mentioned before.

Recognition rules are used by C to analyze streams

positioned in the area indicated by the reader, whereas

interpretation operations extract units of data, create data

structures in the internal rMVC application format and

transfer them to M.

In our current implementation M provides tabular data

as series, and function graphs as samples, both in JSON

[14], and flow diagram data as a collection of nodes and

arcs in XML [15].

The interpretation pattern in Fig 3 may be applied

repeatedly to the same page area, if more then one logical

unit of information is expected, e.g. the page contains a

table and a function graph located side by side or

embedded one in another.

V. INTERPRETATION PATTERNS

While it is relatively easy to analyze individual data

objects in the PDF file, e.g. with regular expressions,

their visual context needs vendor sensitive algorithms

capable of structuring them accordingly to human

perception of patterns. That is why we propose to take an

advantage of rMVC with the generic interpretation

pattern augmented with recognition rules capturing

vendor specific heuristics. They enable separation of

various logical units of information in the document

content, e.g. aligning coordinates of text elements to

graphical elements when recognizing table cells.

Thus identified units of data can be processed next

with interpretation operations to make them usable, e.g.

exporting them to the required data format, like CSV or

XML.

Below we present example interpretation patterns for

tables, function graphs and flow diagrams that we have

implemented already with our generic interpretation

pattern. In each case the specified rules had to be

redefined for each specific vendor, in order to capture its

specific PDF generation strategy, whereas the

interpretation operations remain invariant for all vendors.

A. Table Patterns

Recognition rules for tabular data in PDF files

generated by the LibreOffice generator are the following:

 The page area contains vertical and horizontal

objects with equal x and y coordinates and text

elements are surrounded by these segments;

 Fonts of table headers differ from the rest of the

table. If not, additional subrules have to be applied

to detect them;

 The table is in the normal form, i.e, it does not

contain joined cells. Detection and splitting of

joined cells requires the additional subrule;

 Tabular data are lists of records, where values of

table headers are field names.

Interpretation operations to be performed on data

identified with the table recognition rules enable to:

 Sort tabular data by the given field name in the

ascending or descending order;

 Filter with the use of regular expressions;

 Partition the specified set of records into subsets

with regard to various attributes;

 Aggregate data with functions like sum, mean,

max, etc.;

 Export data to any specified format, e.g. CSV or

XML;

 Redirect extracted data to specific external

interpretation services.

B. Graph Patterns

Recognition rules for function graphs generated by

Gnuplot would be the following:

 The page area includes the border, axes, grid and

tick segments, along with tick value labels;

 Adjacent line segments, optionally distinguished

by color or line pattern attributes, represent the

line plot;

 Relative positions of tick segments and their value

labels determine the range of x and y coordinates;

 Line plot segments determine a series of samples

for the assumed resolution (sampling rate and

quantization levels).

Interpretation operations for data extracted with the

function graph recognition rules make it possible to:

 Show and hide the specified data series;

 Cut off line plot sections to provide the specified

range;

 Export extracted data series to any specified

textual or graphical format;

 Redirect extracted data to specific external

interpretation services.

C. Diagram Patterns

Surprisingly in our experiment with BPMN diagrams,

both LibreOffice Draw [16] and Xfig/transfig [17]

generated PDF files that could be handled with the same

set of rules specified below:

 The biggest rectangular shape in the page area is

the BMPN diagram boundary;

 Data objects inside the boundary are graphical and

textual components of the diagram;

 Graphical objects are shapes of the predefined set

of node elements, textual and iconic descriptions,

relations and arrow heads;

 Graphical objects are shapes of the predefined set

of node elements, textual and iconic descriptions,

relations and arrow heads;

 Relative positions of textual descriptions and

graphical objects determine relations between

components of the flow;
 Node components are vertices and relation

components are edges of the directed graph. Other
elements are metadata.

242©2016 Engineering and Technology Publishing

Journal of Advanced Management Science Vol. 4, No. 3, May 2016

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Interpretation operations for data extracted with the

flow diagram recognition rules make it possible to:

 Generate the adjacency matrix and perform basic

graph operations, e.g. finding the shortest path in

the graph or building its spanning tree;

 Extract the specified flow for further analysis;

 Redirect processing of extracted data to the

specified external interpretation services;

 Export the adjacency matrix to various data

formats.

VI. IMPLEMENTATION

A prototype implementation of the rMVC pattern

outlined in Fig. 3 concerned first extraction of tabular

data from PDF documents. The objective was to exploit

regular expressions to filter out lines with definitions of

graphical and textual objects from textual PDF stream

objects. It, however, turned out to be quite onerous, as

implementation of regular expressions in Java required

considerable effort. When compared to just a few

characters in Perl, in Java the significant portions of code

had to be written to get the regular expression with a

similar functionality. Later we switched to Inkscape [18],

the tool capable of converting PDF to SVG. Owing to

that the content of document pages was much easier to be

searched for various vector graphics objects with popular

XML tools.

We have analyzed several vendor specific PDF

generation strategies in order to compare them and to

define their relevant recognition rules. They included

extraction of data series from the LibreOffice Writer and

the Microsoft Word tables [14], extraction of data series

from Gnuplot function graphs, and extraction of business

logic from BPMN flow diagrams generated with

LibreOffice Draw [16], Xfig [17] and PDFLatex [19].

Substantial discrepancies between PDF generation

strategies have been observed. Although their detailed

presentation is well beyond the size limit for this paper,

one conclusion is obvious – there is no chance

whatsoever to get a set of PDF generation rules widely

accepted by all major vendors of authoring and/or

typesetting tools. In consequence it will not be able to

provide one common set of recognition rules for basic

information units that may be found in research papers

published as PDF files.

VII. CONCLUSION

The reproducible research principle states that
conclusions reported in a scientific paper can be
reproduced independently by different readers using the
paper content. If not provided otherwise, the data must be
properly interpreted and extracted from the document file
and specific execution services provided to process them.

We prefer to address the above problem with a

“lightweight” approach, and propose two major

innovations beyond the current state-of-the-art – one in

the area of information extraction from the PDF

document content, and another in the area of paper

executability.

Information extraction: we focus on extracting just as

much information as possible from the area explicitly

indicated by the paper’s reader and in the top-down

fashion, with predefined interpretation patterns, instead of

combining graphical elements to see what can be found

and where in the paper. This approach is more efficient,

as not all information extracted from the paper content is

useful for reproducible research. As indicated before we

are interested in extracting data series from tables and

function graphs, and flows from diagrams.

Paper executability: we enable the executable paper to

be self-sufficient, i.e. executable outside of the publisher's

server. The multilayered IODA architecture supports that

by clearly separating document data (the data layer) from

their underlying interpretation patterns (the information

layer) and the reproducible research scenarios (the

knowledge layer). This separation significantly eased the

effort on extracting information from born-digital PDF

documents and enabled us to successfully address all the

key attributes of the executable paper postulated by

Elsevier.

ACKNOWLEDGMENT

This work was supported in part by the National

Science Center grant no. DEC1-2011/01/B/ST6/06500.

REFERENCES

[1] Elsevier. (2011). The Executable Paper Grand Challenge. [Online].

Available: http://www.executablepapers.com.

[2] J. Quirk. (2012). Executable Papers–The Day the Universe
Changed. [Online]. Available: http://www.amrita-

ebook.org/doc/amp/2011.

[3] F. Leisch, “Sweave: dynamic generation of statistical reports using
literate data analysis,” in Proc. Comp. Statistics COMPSTAT’02,

Berlin, Germany, 2002, pp. 575-580.
[4] M. Kohlhase, “The planetary project: Towards eMath3.0,” in Proc.

11th Int. Conf. on Intelligent Computer Mathematics CICM'12,

Bremen, Germany, 2012, pp. 448-452.
[5] N. Limare, L. Oudre, and P. Getreuer, “IPOL: Reviewed

publication and public testing of research software,” in Proc. IEEE
8th Int. Conf. on E-Science (e-Science), Chicago, IL, USA, 2012,

pp. 1-8.

[6] E. Ciepiela, D. Haręźlak, M. Kasztelnik, J. Meizner, G. Dyk, P.
Nowakowski, and M. Bubak, “The collage authoring Environment:

from proof-of-concept prototype to pilot service,” Procedia
Computer Science, vol. 18, pp. 769-778, 2013.

[7] J. Siciarek and B. Wiszmiewski, “IODA–An interactive open

document architecture,” Procedia Computer Science, vol. 4, pp.
668-677, 2011.

[8] A. Anjewierden, “AIDAS: Incremental logical structure discovery
in PDF documents,” in Proc. 6th Int. Conf. on Document Analysis

and Recognition, Seattle, WA, USA, 2001, pp. 374-378.
[9] R. P. Futrelle, M. Shao, Ch. Cieslik, and A. E. Grimes, “Extraction,

layout analysis and classification of diagrams in PDF documents,”

in Proc. 7th Int. Conf. on Document Analysis and Recognition,
ICDAR’03, Edinburgh, Scotland, UK, 2003, pp. 1007-1014.

[10] T. Hassan and R. Baumgartner, "Table recognition and

understanding from PDF files," in Proc. 9th Int. Conf. on
Document Analysis and Recognition, Parana, 2007, pp. 1143-1147.

[11] E. Oro and M. Ruffolo, “PDF-TREX: An approach for
recognizing and extracting tables from PDF documents,” in Proc.

243©2016 Engineering and Technology Publishing

Journal of Advanced Management Science Vol. 4, No. 3, May 2016

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

10th Int. Conf. on Document Analysis and Recognition, ICDAR'09,
Barcelona, Spain, 2009, pp. 906-910.

[12] A. Gabdulkhakova and T. Hassan, “Document understanding of

graphical content in natively digital PDF documents ,” in Proc.
the 2012 ACM Symp. on Document Engineering (DocEng '12),

Paris, France, 2012, pp. 137-140.
[13] W. Szwoch and M. Mucha, “Recognition of hand drawn

flowcharts,” in Image Processing and Communications

Challenges 4, Advances in Intelligent Systems and Computing, vol.
184, R. S. Choras, Ed, Springer, 2013, pp. 65-72.

[14] J. Siciarek, “Semantics driven table understanding in born-digital
documents,” in Image Processing and Communications

Challenges 5, Advances in Intelligent Systems and Computing, vol.

233, R. S. Choras, Ed, Springer, 2014, pp. 153-160.
[15] P. Pieniążek, “Automatic extraction of business logic from digital

documents,” in Proc. 6th Int. Conf. in Image Processing &
Communications, Sept. 10-12, 2014, Bydgoszcz, Poland (in press).

[16] I. Vignoli, “LibreOffice: State of the project,” presented at the

LibreOffice Conference, Milano, Italy, Sept. 25-27, 2013.
[17] T. Sato and B. V. Smith. (2013). Xfig user manual. [Online].

Available: http://xfig.org/userman/authors.html
[18] T. Bah, Inkscape: Guide to a Vector Drawing Program, 4th ed.

Prentice Hall, 2011.

[19] K. Höppner, “Strategies for including graphics in LATEX
documents,” The PracTEX Journal, No. 03, Rev. 2005-07-15, pp.

1-11, 2005.

Jacek Siciarek got his BSc in Computer Science
from Gdansk University (UG) in 2005 and MSc

in Computer Science from Gdansk University of

Technology (GUT) in 2008 (with honours). He
started his PhD studies in 2010 at the Department

of Intelligent Interactive Systems at GUT and is
expected to complete them by the end of 2014. He

is currently employed as a software architect in a

private company in Gdansk and as an investigator
in the project “MENAID – methods and tools for next generation

document engineering”, funded by the Polish National Science Centre.
His research interests include document engineering, advanced human-

computer interfaces and Web programming.

 Bogdan Wiszniewski

got his MSc in Electronics

in 1977 from Gdansk University of Technology

(with honours), PhD in 1984 and DSc in 1998,

both in Computer Science and from Gdansk
University of Technology. In 2006 was granted

the Professor academic title by the President of
Poland. Since 2000 he is the Head of the

Department of Intelligent Interactive Systems at

Gdansk University of Technology. He
coordinated several national and international

 projects

funded by national (Polish) and

international funds, from the

areas of distributed processing, software engineering, document analysis

and document engineering. His publication record of seven books and

about 200

papers, includes

international and national

books, book
chapters, journal articles and conference papers. The current research

focus of prof. Wiszniewski is on advanced

human-computer interaction,

document-centric virtual collaboration, intelligent agents and automated

negotiation.

244©2016 Engineering and Technology Publishing

Journal of Advanced Management Science Vol. 4, No. 3, May 2016

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

