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Abstract— The problem of noncausal identification of a time-
varying linear system subject to both smooth and occasional
jump-type changes is considered and solved using the preesti-
mation technique combined with the basis function approach
to modeling the variability of system parameters. The proposed
estimation algorithms yield very good parameter tracking
results and are computationally attractive.

I. INTRODUCTION

The problem of noncausal identification of a time-varying
finite impulse response (FIR) system, subject to both smooth
parameter changes and occasional parameter jumps, will be
considered and solved using a new identification paradigm
based on the concept of preestimation.

An example of application enabling the use of the pro-
posed approach is adaptive self-interference (SI) cancellation
in full-duplex (FD) underwater acoustic (UWA) communica-
tion systems [1] – [4]. In this case the transmit and receive
antennas operate simultaneously in the same frequency band-
width which allows to increase the channel throughput. As a
consequence, the far-end signal is strongly contaminated by
the self-interference introduced by the near-end transmitter
- the effect caused by multiple reflections of the emitted
signal from the sea surface, the bottom and surrounding
scattering objects. Channel coefficients (coefficients of its
impulse response) change smoothly over time, due to the
Doppler effect caused by the transmitter/receiver motion,
but may be also subject to occasional jumps caused by a
sudden appearence or disappearence of scatterers (fish, vessel
etc.) or by a sharp change in weather conditions. Channel
identification is needed to secure reliable communication as
it allows one to eliminate, or at least significantly reduce
self-interference. Moreover, when the entire data packets
are transmitted/received/decoded the noncausal estimation
techniques developed in this paper, which operate on the
prerecorded input/output data, are admissible and allow one
to achieve better tracking results compared to conventional
causal algorithms.

Most of the statistical literature on identification of dy-
namic systems with jump-type changes is devoted to linear
Markovian switching systems [6] – [11]. In this case system
parameters are assumed to switch among a finite set of
unknown but constant values. The switchings are modeled
by a finite state ergodic Markov chain, and parameter
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estimation is carried out using the maximum likelihood
approach or Bayesian reasoning. Apart from the fact that
the resulting estimation algorithms are computationally very
intense (especially when smoothing is involved), such a
problem formulation does not meet our current needs, as we
are interested in estimation/tracking of parameters that are
subject to both smooth continuous and jump-type variation.

As shown in [12], [13], when parameter jumps occur infre-
quently, the solution to the identification problem mentioned
above can be obtained by combining in an appropriate way
the results yielded by the causal (forward-time), anticausal
(backward-time) and noncausal (bidirectional) parameter
tracking algorithms based on stochastic [12] or deterministic
[13] models (hypermodels) of system parameter changes.
The current contribution is another step in this direction.
Unlike [12] and [13], where system parameters are estimated
“directly”, the approach developed in this paper is based
on a two-step identification procedure described in [14].
In the first step, system parameters are preestimated. Since
preestimates are “raw” parameter estimates, approximately
unbiased but very “noisy” (with a large variability), they
must be further processed (postfiltered) - this constitutes the
second step of the identification procedure.

The contribution of the paper is twofold. First, we propose
a new (improved) preestimation scheme, capable of coping
adequately with parameter jumps. Second, we design a new
postfiltering algorithm capable, at a very low computational
cost (linearly proportional to the number of estimated param-
eters), of accurately reproducing both smooth and jump-type
parameter changes.

II. PROBLEM STATEMENT

Many nonstationary systems, including telecommunication
channels [15], [16], can be well approximated by a time-
varying finite impulse response model of the form

y(t) =
n∑
i=1

θi(t)u(t− i+ 1) + e(t)

= θT(t)ϕ(t) + e(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, y(t) denotes the output signal, ϕ(t) = [u(t), . . . , u(t−
n+ 1)]T denotes regression vector made up of past samples
of the input signal u(t), θ(t) = [θ1(t), . . . , θn(t)]T is
the vector of time-varying system coefficients, and {e(t)}
denotes noise. Note that, unlike the conventional commu-
nication systems working in the simplex mode, in the full-
duplex case the input sequence {u(t)} , which is emitted
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by the near-end transmitter, is known. In this case {e(t)}
is a mixture of the far-end signal and the channel noise,
and the underlying goal of identification is extraction of
the signal {e(t)} from {y(t)}. This can be easily done
provided that channel parameters are known. The sequence
{θi(t), i = 1, . . . , n} can be interpreted as a time-varying
impulse response of the system (1).

We will assume that
(A1) {u(t)} is a sequence of zero-mean, independent and

identically distributed random variables with variance
σ2
u.

(A2) {e(t)}, independent of {u(t)}, is a sequence of zero-
mean, independent and identically distributed random
variables with variance σ2

e .
(A3) {θ(t)} is a uniformly bounded sequence independent

of {u(t)} and {e(t)}.
These assumptions are met in typical communication sys-
tems. Furthermore, we will assume that the entire seg-
ment of the input/output data Ω(N) = {u(t), y(t), t =
1, . . . , N}, of length N , is available and can be used to
estimate the time-varying trajectory of system parameters
{θ(t), t = 1, . . . , N}. In the UWA FD case, under typical
operating conditions, the length N of the transmitted data
packet is within from several hundred to several thousand
samples/symbols.

III. PREESTIMATION TECHNIQUE

A. Forward/backward preestimates

1) Forward preestimates: Forward-time preestimates can
be obtained by “inverse filtering” the estimates yielded by
the short-memory forward-time exponentially weighted least
squares (EWLS) algorithm

θ̂−(t) = arg min
θ

t∑
j=1

λt−j [y(j)− θTϕ(j)]2

=

 t∑
j=1

λt−jϕ(j)ϕT(j)

−1  t∑
j=1

λt−jϕ(j)y(j)

 . (2)

The effective width M−(t) of the exponential window is
given by M−(t) =

∑t
j=1 λ

t−j .
The inverse filtering formula, derived and analyzed in [14],

which can be used to obtain forward-time preestimates, has
the form

θ∗−(t) = M−(t)θ̂−(t)− λM−(t− 1)θ̂−(t− 1). (3)

The preestimates θ∗−(t) are approximately unbiased (no
matter how true parameters change). The term “preestimator”
is used because the estimates (3) have a very large variance.
Hence, to obtain reliable identification results, preestimates
must be further processed (“denoised”) by means of postfil-
tering.

The forgetting constant λ should be “as small as possible”
to guarantee that fast parameter changes will be tracked
successfully. On the other hand, λ shouldn’t be “too small”
to guarantee that the number of system parameters is not

greater than the steady-state equivalent number of obser-
vations N∞ = (1 + λ)/(1 − λ) ∼= 2/(1 − λ) (different
from the effective number of observations [17]) used for
their estimation - otherwise the estimation results would be
questionable from the statistical viewpoint. This leads to the
following recommendation

λ = max

{
0.9, 1− 2

n

}
. (4)

2) Backward preestimates: When causality of the esti-
mation scheme is not required, i.e., one has access to both
“past” and “future” (with respect to the current time instant
t) input/output data, parameter preestimates can be equally
well obtained by processing the estimates yielded by the
backward-time EWLS algorithm

θ̂+(t) = arg min
θ

N∑
j=t

λj−t[y(j)− θTϕ(j)]2

=

 N∑
j=t

λj−tϕ(j)ϕT(j)

−1  N∑
j=t

λj−tϕ(j)y(j)

 .
(5)

The effective width M+(t) of the corresponding exponential
window is given by M+(t) =

∑N
j=t λ

j−t.
The backward-time preestimates can be defined in an

analogous way to (3)

θ∗+(t) = M+(t)θ̂+(t)− λM+(t+ 1)θ̂+(t+ 1). (6)

B. Bidirectional preestimates

When local parameter variation is smooth, the forward
and backward EWLS estimates can be combined yielding
the following estimation formula

θ̂±(t) =
M−(t)θ̂−(t) +M+(t)θ̂+(t)

M−(t) +M+(t)
. (7)

The corresponding bidirectional preestimates can be defined
in the form

θ∗±(t) =
M−(t)θ∗−(t) +M+(t)θ∗+(t)

M−(t) +M+(t)
. (8)

The combined estimates θ̂±(t), after a slight modification,
will be further used to locally evaluate the “quality” of
bidirectional preestimates.

IV. PREESTIMATION REVISITED

In this section a new preestimation scheme will be
proposed, which combines unidirectional and bidirectional
preestimates in a way that allows one to benefit from the
advantages of both approaches while avoiding their weak-
nesses.

When system parameters change in a discontinuous way,
both unidirectional and bidirectional preestimation schemes,
which are in fact based on highpass filtering of EWLS esti-
mates, are prone to generate impulsive disturbances around
the points where the jumps occur: just after the jump in the
case of forward preestimates, just before the jump in the
case of backward preestimates, and both before and after the
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Fig. 1. Preestimation errors for different types of preestimates: forward
(a), backward (b), bidirectional (c) and competitive (d). All errors were
evaluated for θ1(t).

jump in the case of bidirectional preestimates. The effects
mentioned above are illustrated in Figs. 1a-1c, which show
preestimation errors obtained for the second-order (n = 2)
FIR system governed by

y(t) = θ1(t)u(t) + θ2(t)u(t− 1) + e(t) (9)

where {θ1(t)} is “piecewise-lowpass” and {θ2(t)} is
piecewise-constant – both parameter trajectories, depicted in
Fig. 2, have the same `2 norm. The applied input signal was
pseudo-random binary (u(t) = ±1) and the variance of the
white Gaussian noise {e(t)} was set to σ2

e = 0.028, which
corresponds to the average signal-to-noise ratio SNR=20 dB.
The jump-related artifacts are easy to spot.

A. Competitive preestimates

The competitive preestimation will be based on checking,
at each time instant t, which estimation algorithm provides
locally the best description of the identified system. For
forward/backward EWLS algorithms, as a local performance
measures one can adopt the estimates of the variance of the
corresponding one-step-ahead output prediction errors

E−(t) =
1

K + 1

K∑
i=0

ε2
−(t− i)

E+(t) =
1

K + 1

K∑
i=0

ε2
+(t+ i)

(10)

where ε−(t) = y(t)− θ̂T
−(t−1)ϕ(t), ε+(t) = y(t)− θ̂T

+(t+
1)ϕ(t) and K + 1 = 2k + 1 denotes the width of the local
decision window.

In the case of the combined EWLS algorithm, the one-step
ahead prediction errors can be replaced with leave-one-out
output interpolation errors, leading to

E±(t) =
1

K + 1

k∑
i=−k

ε2
±(t+ i) (11)

where ε±(t) = y(t) − [θ̂◦±(t)]Tϕ(t) and θ̂◦±(t) denotes the
leave-one-out version of θ̂±(t), obtained by eliminating from
the estimation process the central sample y(t)

θ̂◦±(t) =
M−(t− 1)θ̂−(t− 1) +M+(t+ 1)θ̂+(t+ 1)

M−(t− 1) +M+(t+ 1)
.

(12)

Let
Emin(t) = min{E−(t), E±(t), E+(t)}.

The competitive (winner-takes-all) preestimates can be de-
fined as follows1

θ∗(t) =

 θ∗−(t) if E−(t) = Emin(t)
θ∗±(t) if E±(t) = Emin(t)
θ∗+(t) if E+(t) = Emin(t)

. (13)

The competitive preestimates obtained for the system
(9) are shown in Fig.1d. Note that these preestimates are
almost free of jump-related artifacts typical of their forward,
backward and bidirectional counterparts.

Remark 1
The value of the forgetting constant λ sets the lower

bound on the distance between subsequent parameter jumps
Tmin guaranteeing sharp reproduction of jump changes. It
is known that the EWLS algorithm needs approximately
N∞ ∼= 2M∞ time steps to “forget” completely about the
parameter step change, i.e., to reduce to (almost) zero the
step-invoked transient bias error [18]. Hence, one can set
Tmin = N∞. If this condition is met, the forward/backward
EWLS algorithms manage to fully recover from the param-
eter step change before the next one occurs.

B. Collaborative preestimates
According to [18], instead of the “competitive” estimation

formula (13), one can use the following Bayesian “collabo-
rative” rule

θ∗(t) = µ−(t)θ∗−(t) + µ±(t)θ∗±(t) + µ+(t)θ∗+(t) (14)

where µ−(t), µ±(t) and µ+(t), obeying µ−(t) + µ±(t) +
µ+(t) = 1, denote the so-called model credibility coefficients
(related to posterior probabilities of different parameter “pat-
terns” [19]), which can be obtained from

µ?(t) ∝
[
Emin(t)

E?(t)

]K+1
2

, ? ∈ {−,±,+} (15)

where ∝ denotes proportionality.

1If the score Emin(t) is attained by more than one algorithm (which is
extremely unlikely), any of them can be chosen.
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V. POSTFILTERING

Denote by {θ∗j (t), t = 1, . . . , N} the preestimated trajec-
tory of the j-th system parameter θj(t). Since the prees-
timated trajectory can be regarded as a true trajectory con-
taminated with a zero-mean noise of large variance, to obtain
statistically meaningful estimation results, preestimates have
to be further processed (denoised). We will show that if the
identified FIR system is subject to both smooth and abrupt
parameter changes, excellent results can be obtained using
a new variant of the local basis function (LBF) approach
developed in [14].

Denote by {f1(i), . . . , fm(i)} the set of m discrete-time
basis functions (BF), linearly independent on [−∞,∞], and
by λ0, 0 < λ0 < 1, the forgetting constant (different from
λ) which will be used for estimation localization purposes.
For purely computational reasons, in the sequel we will use
powers of time as basis functions, namely

fl(i) = il−1, l = 1, . . . ,m (16)

Note that the basis functions (16) can be computed recur-
sively using

f(i+ 1) = Af(i) (17)

where f(i) = [f1(i), . . . , fm(i)]T and [A]ij = {
(
i−1
j−1

)
if i ≥

j, 0 otherwise}. The LBF approach is based on the assump-
tion that parameter changes can be locally approximated by
a linear combination of basis functions. To be able to sharply
reproduce parameter jumps, whenever they occur, we will use
a solution similar to that applied in the case of preestimation,
namely, we will combine results yielded by causal, anticausal
and noncausal LBF algorithms.

A. Causal LBF estimation

To derive the causal (forward-time) exponentially
weighted basis function (EWBF) estimate of θj(t), we will
adopt the following backward-time model of parameter evo-
lution

θj(t− i) =

m∑
l=1

ajlfl(i) = fT(i)αj , i = 0, . . . , t− 1 (18)

where αj = [aj1, . . . , ajm]T.
In agreement with the LBF paradigm, we will regard this

model as trustworthy only, or predominatly, in the “recent
past” (relative to t). The simplest way of making estimation
results dependent mainly on the recently observed data is by
means of exponential forgetting. This leads to the following
EWBF estimate of θj(t)

α̃−j (t) = arg min
α

t−1∑
i=0

λi0[θ∗j (t− i)− fT(i)α]2

= [V−(t)]−1v−j (t)

θ̃−j (t) = fT(0)α̃−j (t)

(19)

where

V−(t) =

t−1∑
i=0

λi0f(i)f
T(i)

= V−(t− 1) + λt−1
0 f(t− 1)fT(t− 1)

v−j (t) =

t−1∑
i=0

λi0θ
∗
j (t− i)f(i)

= λ0Av−j (t− 1) + θ∗j (t)f(0)

t = 1, . . . , N .

(20)

Denote by W−(t) the inverse of the matrix V−(t). It
is easy to derive the formula for recursive computation of
W−(t). Actually, note that λt−1

0 f(t − 1)fT(t − 1) = f̃(t −
1)f̃T(t − 1), where f̃(t) can be computed recursively using
f̃(t) = Ãf̃(t− 1) with Ã =

√
λ0A and f̃(0) = f(0). Then,

using the matrix inversion lemma [20], one arrives at

W−(t) = [V−(t− 1) + f̃(t− 1)f̃T(t− 1)]−1

= W−(t− 1)−W−(t− 1)f̃(t− 1)f̃T(t− 1)W−(t− 1)

1 + f̃T(t− 1)W−(t− 1)f̃(t− 1)
.

(21)

It is easy to show that, since limt−→∞ f̃(t) = 0, it holds that
the matrices W−(t) and V−(t) converge to their constant
steady state values W−(∞) and V−(∞), respectively. Since
the matrix W−(∞) can be precomputed, this leads to the
following asymptotic (valid for sufficiently large values of t)
matrix-inversion-free variant of (19)

α̃−j (t) = W−(∞)v−j (t). (22)

If the backward-time model of parameter trajectory (18) is
replaced with a more straightforward forward-time descrip-
tion

θj(i) = fT(i)αj , i = 1, . . . , t (23)

the corresponding regression matrix, unlike V−(t), indefi-
nitely grows with time. This means that the EWBF algorithm
based on (23) would need periodic resetting. It can be easily
shown that the forward-time and backward-time models are
equivalent in the sense that they yield the same estimates of
θj(t) for all values of t.

B. Anticausal LBF estimation

The anticausal (backward-time) EWBF algorithm is a
simple modification of the causal one

α̃+
j (t) = arg min

α

N−t∑
i=0

λi0[θ∗j (t+ i)− fT(i)α]2

= [V+(t)]−1v+
j (t)

θ̃+
j (t) = fT(0)α̃+

j (t)

(24)
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where

V+(t) =

N−t∑
i=0

λi0f(i)f
T(i)

v+
j (t) =

N−t∑
i=0

λi0θ
∗
j (t+ i)f(i)

= λ0Av+
j (t+ 1) + θ∗j (t)f(0)

t = N, . . . , 1.

(25)

Note that V+(N − t+ 1) = V−(t), t = N, . . . , 1.

C. Noncausal LBF estimation

As a noncausal (bidirectional) LBF solution we will use
the fast LBF (fLBF) estimator described in [14]

α̃±j (t) = arg min
α

L∑
i=−L

[θ∗j (t+ i)− fT(i)α]2

θ̃±j (t) = fT(0)α̃±j (t)

(26)

where L = int[1/(1−λ0)]. It is straightforward to show that

θ̃±j (t) =

L∑
i=−L

h(i)θ∗j (t+ i) (27)

where

h(i) = fT(0)

[
L∑

i=−L
f(i)fT(i)

]−1

f(i). (28)

Since
∑L
i=−L h(i) = 1, the fLBF estimator can be regarded

as a result of passing the preestimates through a linear
lowpass FIR filter with an impulse response {h(i), i ∈
[−L,L]}. Since for the basis (16) the impulse response
(28) is recursively computable, the convolution (27) can
be computed in a recursive way. Alternatively, for any set
of basis functions, the off-line computation of (27) can be
efficiently carried out using the FFT-based procedure.

D. Competitive LBF estimation

The competitive LBF estimation scheme will be de-
signed in an analogous way as the competitive preestima-
tion scheme. Let θ̃−(t) = [θ̃−1 (t), . . . , θ̃−n (t)]T, θ̃+(t) =

[θ̃+
1 (t), . . . , θ̃+

n (t)]T, θ̃±(t) = [θ̃±1 (t), . . . , θ̃±n (t)]T and

θ̃−(t|t− 1) = [θ̃−1 (t|t− 1), . . . , θ̃−n (t|t− 1)]T

θ̃+(t|t+ 1) = [θ̃+
1 (t|t+ 1), . . . , θ̃+

n (t|t+ 1)]T .

where θ̃−j (t|t − 1) = fT(−1)α̃−j (t) and θ̃+
j (t|t + 1) =

fT(−1)α̃+
j (t) denote the one-step-ahead predictions of θj(t)

based on the information gathered prior to t, or after t, re-
spectively. Finally, denote by θ̃◦±(t) the leave-one-out version

of θ̃±(t):

θ̃◦±(t) =

∑L
i=−L
i 6=0

h(i)θ∗(t+ i)∑L
i=−L
i 6=0

h(i)
=
θ̃±(t)− h(0)θ∗(t)

1− h(0)
.

(29)

and by K0 + 1 = 2k0 + 1 – the width of the local decision
window. The competitive estimate of θ(t) can be obtained
from

θ̃(t) =


θ̃−(t) if D−(t) = Dmin(t)

θ̃±(t) if D±(t) = Dmin(t)

θ̃+(t) if D+(t) = Dmin(t)

. (30)

where

D−(t) =
1

K0 + 1

K0∑
i=0

d2
−(t− i)

D±(t) =
1

K0 + 1

k0∑
i=−k0

d2
±(t+ i)

D+(t) =
1

K0 + 1

K0∑
i=0

d2
+(t+ i)

Dmin(t) = min{D−(t),D±(t),D+(t)}

(31)

and

d−(t) = y(t)− θ̃T
−(t|t− 1)ϕ(t)

d±(t) = y(t)− [θ̃◦±(t)]Tϕ(t)

d+(t) = y(t)− θ̃T
+(t|t+ 1)ϕ(t)

denote the corresponding prediction/interpolation errors.

E. Collaborative LBF estimation

Similarly as in the preestimation case, the collaborative
LBF estimates have the form

θ̃(t) = η−(t)θ̃−(t) + η±(t)θ̃±(t) + η+(t)θ̃+(t) (32)

where the credibility coefficients η−(t), η±(t) and η+(t),
η−(t) + η±(t) + η+(t) = 1, can be obtained from

η?(t) ∝
[
Dmin(t)

D?(t)

]K0+1
2

, ? ∈ {−,±,+} . (33)

The accuracy of the competitive and collaborative LBF
estimates can be further increased by means of postfiltration,
namely the estimates (30) and (33) can be smoothed in the
analogous way (using the same settings) as the preestimates
(13).

F. Adaptive selection of λ0 and m

So far we have assumed that the forgetting constant λ0,
which determines the effective memory span of EWBF/fLBF
algorithms, and the number of basis functions m, which
decides upon the flexibility of the basis function model (18),
are fixed design parameters, selected prior to identification. It
is known that small values of 1/(1−λ0) and/or large values
of m result in parameter estimates with a small bias but
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large variance, and that the opposite is true when 1/(1−λ0)
is large and/or m is small [14]. Since the mean square
parameter tracking error is the sum of its bias and variance
components, to guarantee good tracking performance of
the identification algorithm, one should choose compromise
values of λ0 and m, trading-off estimation bias and esti-
mation variance. The adaptive solution to this problem can
be obtained via parallel estimation. In this approach several
identification algorithms, equipped with different values of
λ0 ∈ Λ = {λ1, . . . , λk} and m ∈ M = {m1, . . . ,ml},
yielding the estimates θ̃?(t|λ0,m), are run concurrently and
compete/collaborate with each other. The best-local param-
eter estimate can be obtained using the formula

θ̃?̂(t)(t|λ̂0(t), m̂(t)) (34)

where

{?̂(t), λ̂0(t), m̂(t)} = arg min
λ0∈Λ,m∈M
?∈{−,±,+}

D?(t|λ0,m). (35)

Alternatively, one can implement the collaborative estimation
scheme analogous to (32)

θ̃(t) =
∑

λ0∈Λ,m∈M
?∈{−,±,+}

η?(t|λ0,m)θ̃?(t|λ0,m) (36)

where

η?(t|λ0,m) ∝
[
Dmin(t)

D?(t|λ0,m)

]K0+1
2

Dmin(t) = min

{
D?(t|λ0,m) : λ0 ∈ Λ,m ∈M,

? ∈ {−,±,+}
} (37)

subject to ∑
λ0∈Λ,m∈M
?∈{−,±,+}

η?(t|λ0,m) = 1.

VI. COMPUTATIONAL COMPLEXITY

Forward/backward EWLS estimates, and hence also the
parameter preestimates, can be computed at the cost of
O(n) multiply-add operations per time step using one of
the available fast transversal filter (FTF) algorithms [20],
[21] (some numerical safety measures are recommended if
FTF algorithms are implemented in finite-precision arith-
metic). Since postfiltering is carried out independently for
each system parameter, the cost of performing this step is
O(m2n). Finally, the cost of updating the statistics E−(t),
E±(t), E+(t) and D−(t), D±(t), D+(t) is O(1) and does
not depend on K and K0, respectively. Hence, the overall
cost of evaluating parameter estimates is O(m2n) per time
step, i.e., it linearly depends on the number of estimated
parameters. In contrast with this, the computational burden
of the algorithms presented in [12], [13] is O(m3n3) due
to the need to multiply and/or invert mn×mn-dimensional
matrices.

VII. COMPUTER SIMULATIONS

To check performance of the proposed approach, a parallel
estimation scheme was implemented for the system (9), com-
bining causal/anticausal/noncausal indirect LBF algorithms,
described in Section V, designed for 3 different values of m
(1, 2, 3) and 3 different equivalent estimation memory spans
L∞ (10, 30, 90) of the forward/backward EWBF algorithms.
For m = 1 it holds that L∞ = (1 + λ0)/(1 − λ0); for
m > 1 the analytical formulas allowing one to compute L∞
are given in [13]. The values of λ0 corresponding to different
choices of m and L∞ are shown in Table I. The forgetting
constant used at the preestimation stage was set to λ = 0.9,
and the widths of the decision windows - to K = K0 = 30.

TABLE I
THE VALUES OF THE FORGETTING CONSTANT λ0 CORRESPONDING TO

DIFFERENT CHOICES OF THE NUMBER OF BASIS FUNCTIONS m AND THE

EQUIVALENT MEMORY OF EWBF TRACKERS L∞ .

m \ L∞ 10 30 90

1 0.818 0.920 0.975
2 0.936 0.973 0.984
3 0.978 0.991 0.995

Table IIa summarizes results – averaged mean squared
parameter estimation errors – obtained for all 27 algorithms
(A−, A+, A±) under 3 different SNR levels (10 dB, 20 dB,
30 dB), and the results yielded by the corresponding compet-
itive and collaborative algorithms. Ensemble averaging was
performed over 100 realizations of the measurement noise.
Table IIb shows results obtained after the second round of
smoothing. Typical identification results, obtained for SNR=
20 dB, are shown in Fig. 2. Note that additional smoothing
noticeably improves the estimation results (further smoothing
does not). Finally, Table III shows the reference results
obtained using the state-of-the-art direct LBF approach de-
scribed in [13] (not based on preestimation).

In the majority of cases, especially for higher values of
SNR, the adaptive algorithms yield better results than any of
the component algorithms. Note also that while the one-shot
indirect LBF algorithm gives slightly worse results than its
direct counterpart (in spite of the fact that the component
algorithms seem to work better), the additional round of
smoothing makes the indirect and direct approaches fully
comparable in terms of estimation accuracy. As expected,
for the basic indirect LBF approach and the direct LBF
approach, the collaborative estimates are more accurate than
the competitive ones. This observation does not extend to the
smoothed indirect approach, most likely because in this case
the input estimation noise is not white any more (unlike the
preestimation noise).

The next example is more realistic and involves a simu-
lated underwater acoustic FD channel with 20 taps [3]. A sin-
gle data packet contained 5000 samples, which corresponds
to 5 s under the assumed sampling rate 1 kHz. The time-
varying taps were modeled as realizations of independent
random Gaussian processes (white noise bandlimited to 3 Hz,
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Fig. 2. Parameter trajectories of the simulated nonstationary system (two upper figures) and their estimates: competitive indirect LBF estimates (two
middle figures) and their smoothed versions (two lower figures).

TABLE II
MSE SCORES OBTAINED FOR INDIRECT LBF ALGORITHMS AND THEIR COMPETITIVE AND COLLABORATIVE VARIANTS. ALL RESULTS WERE

AVEREGED OVER 100 INDEPENDENT REALIZATIONS OF MEASUREMENT NOISE.

(a) Basic estimates

L∞ = 10 L∞ = 30 L∞ = 90 Competitive Collaborative

SNR m A− A+ A± A− A+ A± A− A+ A±

10 dB
1 7.80E-02 7.37E-02 6.03E-02 8.25E-02 7.66E-02 4.04E-02 2.57E-01 2.46E-01 6.44E-02

6.51E-02 5.88E-022 7.73E-02 7.21E-02 4.05E-02 1.11E-01 1.04E-01 6.04E-02 2.09E-01 1.99E-01 9.87E-02
3 1.04E-01 9.70E-02 4.47E-02 3.19E-01 3.01E-01 8.24E-02 6.33E-01 5.86E-01 1.55E-01

20 dB
1 2.47E-02 2.36E-02 1.29E-02 5.84E-02 5.67E-02 2.07E-02 2.48E-01 2.41E-01 5.77E-02

8.09E-03 6.97E-032 3.34E-02 3.20E-02 2.44E-02 9.06E-02 8.86E-02 5.33E-02 1.97E-01 1.91E-01 9.43E-02
3 7.81E-02 7.56E-02 3.14E-02 3.07E-01 2.94E-01 7.69E-02 6.25E-01 5.83E-01 1.52E-01

30 dB
1 1.95E-02 1.85E-02 8.20E-03 5.62E-02 5.46E-02 1.87E-02 2.47E-01 2.40E-01 5.71E-02

1.08E-03 9.26E-042 2.91E-02 2.79E-02 2.28E-02 8.87E-02 8.68E-02 5.26E-02 1.95E-01 1.90E-01 9.39E-02
3 7.55E-02 7.33E-02 3.01E-02 3.06E-01 2.92E-01 7.64E-02 6.25E-01 5.82E-01 1.52E-01

(a) Smoothed estimates

L∞ = 10 L∞ = 30 L∞ = 90 Competitive Collaborative

SNR m A− A+ A± A− A+ A± A− A+ A±

10 dB
1 5.20E-02 4.80E-02 4.13E-02 7.70E-02 7.19E-02 3.86E-02 2.56E-01 2.46E-01 6.55E-02

4.18E-02 5.88E-022 6.26E-02 5.78E-02 4.00E-02 1.08E-01 1.02E-01 6.15E-02 2.07E-01 1.99E-01 1.00E-01
3 9.93E-02 9.28E-02 4.54E-02 3.16E-01 3.00E-01 8.35E-02 6.32E-01 5.87E-01 1.56E-01

20 dB
1 2.27E-02 2.18E-02 1.18E-02 5.83E-02 5.70E-02 2.12E-02 2.47E-01 2.42E-01 5.82E-02

5.69E-03 6.97E-032 3.27E-02 3.14E-02 2.49E-02 9.09E-02 8.91E-02 5.38E-02 1.97E-01 1.92E-01 9.45E-02
3 7.83E-02 7.57E-02 3.21E-02 3.08E-01 2.96E-01 7.73E-02 6.27E-01 5.85E-01 1.52E-01

30 dB
1 1.90E-02 1.84E-02 8.08E-03 5.58E-02 5.51E-02 1.88E-02 2.46E-01 2.41E-01 5.69E-02

7.24E-04 9.25E-042 2.92E-02 2.82E-02 2.29E-02 8.94E-02 8.88E-02 5.25E-02 1.97E-01 1.93E-01 9.32E-02
3 7.64E-02 7.48E-02 3.03E-02 3.09E-01 2.98E-01 7.64E-02 6.27E-01 5.87E-01 1.51E-01

TABLE III
MSE SCORES OBTAINED FOR DIRECT LBF ALGORITHMS AND THEIR COMPETITIVE AND COLLABORATIVE VARIANTS. RESULTS WERE AVEREGED

OVER 100 INDEPENDENT REALIZATIONS OF MEASUREMENT NOISE.

L∞ = 10 L∞ = 30 L∞ = 90 Competitive Collaborative

SNR m A− A+ A± A− A+ A± A− A+ A±

10 dB
1 8.24E-02 7.51E-02 4.23E-02 8.55E-02 7.79E-02 3.95E-02 2.61E-01 2.48E-01 1.09E-01

3.98E-02 3.04E-022 8.19E-02 7.37E-02 4.29E-02 1.14E-01 1.04E-01 9.80E-02 2.14E-01 2.01E-01 2.02E-01
3 1.08E-01 9.73E-02 8.45E-02 3.26E-01 3.02E-01 3.18E-01 6.46E-01 5.95E-01 6.32E-01

20 dB
1 3.09E-02 2.38E-02 1.62E-02 6.40E-02 5.66E-02 2.88E-02 2.55E-01 2.42E-01 1.05E-01

5.43E-03 4.18E-032 3.95E-02 3.15E-02 3.44E-02 9.61E-02 8.71E-02 9.45E-02 2.04E-01 1.90E-01 2.00E-01
3 8.40E-02 7.41E-02 8.07E-02 3.17E-01 2.93E-01 3.16E-01 6.40E-01 5.90E-01 6.31E-01

30 dB
1 2.57E-02 1.87E-02 1.36E-02 6.18E-02 5.45E-02 2.77E-02 2.54E-01 2.41E-01 1.05E-01

7.87E-04 6.50E-042 3.53E-02 2.73E-02 3.36E-02 9.43E-02 8.54E-02 9.41E-02 2.02E-01 1.89E-01 2.00E-01
3 8.16E-02 7.18E-02 8.03E-02 3.16E-01 2.92E-01 3.16E-01 6.40E-01 5.90E-01 6.31E-01
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TABLE IV
MSE SCORES OBTAINED FOR A SIMULATED UWA CHANNEL FOR DIRECT AND INDIRECT LBF ALGORITHMS AND THEIR COMPETITIVE AND

COLLABORATIVE VARIANTS. ALL RESULTS WERE AVEREGED OVER 100 INDEPENDENT REALIZATIONS OF MEASUREMENT NOISE.

L∞ = 10 L∞ = 30 L∞ = 90
Competitive Collaborative

Method m A− A+ A± A− A+ A± A− A+ A±

Indirect LBF
1 4.71E-02 4.37E-02 3.32E-02 6.38E-02 5.69E-02 1.63E-02 3.67E-01 3.52E-01 2.06E-02

1.26E-02 1.17E-022 3.76E-02 3.57E-02 1.50E-02 9.04E-02 8.37E-02 1.89E-02 2.79E-01 2.64E-01 5.24E-02
3 6.52E-02 6.34E-02 1.48E-02 4.70E-01 4.58E-01 4.16E-02 9.88E-01 9.73E-01 2.28E-01

Direct LBF
1 8.93E-02 8.84E-02 2.12E-02 1.30E-01 1.30E-01 2.41E-02 4.80E-01 4.94E-01 1.44E-01

6.09E-03 5.12E-032 4.51E-02 4.82E-02 1.64E-02 1.59E-01 1.56E-01 9.76E-02 4.11E-01 4.03E-01 3.16E-01
3 1.22E-01 1.23E-01 5.77E-02 6.77E-01 6.65E-01 5.68E-01 1.23E+00 1.24E+00 1.12E+00

which corresponds to fast changes in the UWA case), and tap
variances var[θj(t)] declined exponentially for increasing j
to reflect the decaying power delay profile caused by the
spreading and absorption loss. The time-varying impulse
response generated in this way was subject to two jump
changes at instants t = 1500 and t = 3500, triggered by the
sudden appearance and disappearance of an extra scatterer,
respectively. The signal (self-interference) to noise ratio was
set to 50 dB which is typical of FD communication where
SNR is usually large (often in excess of 50 dB). All the
remaining technical details (the form of the input signal, the
choices of m, λ, λ0, K and K0) were exactly the same as
in the previous example.

The corresponding parameter tracking results obtained,
similarly as in the previous example, by means of combined
time and ensemble averaging, are shown in Table IV. Time
averaging was restricted to the interval [101, 4900] (the
results corresponding to the first and last 100 samples were
excluded since both border regions require special treatment).
Note that in the UWA channel case the adaptive selection
mechanisms still work satisfactorily. Unlike the previous ex-
ample, there is some performance gap between the direct and
indirect algorithms (in this case additional smoothing does
not improve tracking results noticeably). This performance
deterioration is a price that has to be paid for a reduction of
the computational load offered by the indirect approach.

VIII. CONCLUSION

A new, computationally simple approach to identification
of time-varying FIR systems was proposed and compared
with the state-of-the-art solution. The new method is based
on the preestimation paradigm which allows one to to convert
the problem of identification of a time-varying system to the
problem of smoothing properly generated preestimates of
system parameters. The proposed two-stage algorithm can
be used to identify systems with both continuous-smooth
and occasional jump-type parameter changes, typical of some
telecommunication applications.
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