
Fast Approximate String Search for Wikification

Szymon Olewniczak[0000−0002−9387−8546]

Julian Szymański[0000−0001−5029−6768]

Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology, Poland

{szymon.olewniczak,julian.szymanski}@eti.pg.edu.pl

Abstract. The paper presents a novel method for fast approximate
string search based on neural distance metrics embeddings. Our research
is focused primarily on applying the proposed method for entity re-
trieval in the Wikification process, which is similar to edit distance-based
similarity search on the typical dictionary. The proposed method has
been compared with symmetric delete spelling correction algorithm and
proven to be more efficient for longer stings and higher distance values,
which is a typical case in the Wikification task.

Keywords: information retrieval · neural embeddings · edit distance ·
convolutional neural networks · approximate matching

1 Introduction

The goal of our research is to build an efficient method for Wikification [12],
a process of creating links between arbitrary textual content and Wikipedia
articles. The links must be relevant to the context of the processed content what
is a non-trivial task. Wikification might be considered as a variant of the more
general task of Entity Linking.

The Entity Linking systems usually split the process into two stages [10]:
entity retrieval and entity disambiguation. In the first stage, the goal is to ex-
tract all candidates from content i.e. spans of text that might be linked to our
knowledge-base (Wikipedia article’s base in case of Wikification). In the second
stage among all candidates only the relevant ones, that make sense in the context
of the processed text, are selected.

Wikipedia is composed of many articles and covers a large number of topics
from different disciplines. Carefully implemented Wikification tool can support
many crucial information retrieval tasks such as text representation that is the
basis of achieving good results of text classification. It makes Wikification a very
important problem among other NLP tasks.

The first stage of Wikification - an entity retrieval may be considered as a
specific variant of the Named Entity Recognition (NER) problem. We called it
extended NER because we consider here not only named entities but also some
common nouns and phrases. One of the possible approaches to this problem is
to extract all links’ labels from Wikipedia articles and use them as a dictionary
of possible entities.

Postprint of: Olewniczak S., Szymański J. (2021) Fast Approximate String Search for Wikification. In: Paszynski M.,
Kranzlmüller D., Krzhizhanovskaya V.V., Dongarra J.J., Sloot P.M. (eds) Computational Science – ICCS 2021. ICCS 2021.
Lecture Notes in Computer Science, vol. 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_29

https://doi.org/10.1007/978-3-030-77967-2_29

2 S. Olewniczak, J. Szymański

To further improve the quality of entity retrieval, we can adopt an approxi-
mate string matching for our dictionary of possible entities. The goal of approx-
imate string search is for a given query string q, we retrieve a dictionary element
or elements that is the most similar to q according to some metric.

There are many reasons to adopt this strategy for entity retrieval. First, the
terms in source text might be misspelled what is even more common for rare
named entities. Second, the words in a phrase may be compounded (some spaces
might be omitted). Third, the words in phrases can have slightly different vari-
ants regarding their position in a sentence, which is common in many languages.
Fourth, the words in phrase might be reordered, for example, name and surname
may be swapped in an entity describing a person, without changing the meaning
of the entity.

2 Approximate string search

Formally, approximate string search is defined as a task of retrieving elements
from dictionary D that are similar to query string q, according to a given met-
ric dist(.). We will denote the set of retrieved elements as X. The dictionary
elements and query string are sequences constructed from some finite alphabet
A.

There are two variants of approximate string search. The first is called a
radius based nearest neighbors search (rNN). In this variant we receive all the
terms X from the D which satisfy the condition for some predefined r:

∀x ∈ X : dist(q, x) ≤ r (1)

Second, called k-nearest neighbours search (kNN) retrieves k nearest neigh-
bours for a query q such as:

∀d ∈ D \X : dist(q, d) ≥ max(dist(q,X)) (2)

In the entity retrieval task, we are rather interested in the best match rather
than all possible matches for two reasons. First, we don’t want to create too
many possibilities for the entity disambiguation stage. Second, there is usually
one correct match that the user really meant. Thus in our research, we use kNN
variant for approximate string search.

The most common distance metric for approximate string search is edit dis-
tance. Its simplest variant is called Levenshtein distance, where we count the
smallest possible number of basic transformations that are required in order to
transform one string into another. There are three kinds of transformation de-
fined in Levenshtein distance. The first is insertion which means inserting an
additional character on a selected position. The second is deletion which means
deleting a selected charter from a string and the last one is substitution which
replaces one character with the other.

For misspellings correction, an extended variant of Levenshtein distance called
Damerau-Levenshtein is commonly used [3]. In this method, we allow the ad-
ditional transformation of text called transposition which means swapping twoD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Fast Approximate String Search for Wikification 3

adjacent characters in a string. This modified metric is known to better represent
misspellings occurring on real data.

The problem with edit distance metrics is that calculating them between
two strings is computationally costly. The best currently known algorithm of
computing the distance between two strings has O(n2)/log(n) complexity[8]. In
addition, if the strong exponential time hypothesis (SETH) is true, the distance
cannot be calculated in time lower than O(D2−γ) for any fixed γ > 0.

Another problem with edit distance metrics is that they are not perfect when
it comes to real data. For example, in our experiments on Wikipedia’s List of
common misspellings dataset [16] and the dictionary from SymSpell project [4],
the Damerau-Levenshtein resulted in 86% of correct matches, while the Lev-
enshtein metric over the same data achieved 79% accuracy. There are several
reasons for the mismatches, where among others there is the fact that similarly
sounding phones are more easily mistaken.

Additionally, from the entity retrieval point of view, the edit distance metrics
are useless when it comes to word rearranging in a phrase or synonyms detection.
Nevertheless, they might be a good approximation in many use cases.

3 Related work

Calculating the edit distance between two strings is a computationally costly
task. It causes that the most straightforward approach to approximate string
search, that is iterating over the entire dictionary D and comparing each element
with q is usually too slow. To speed up that process we may use an auxiliary
data structure, called index, that is intended to reduce the number of actual
commissions that we conduct.

There are many indexing methods proposed both for rNN and kNN approx-
imate searches [17,9]. Most generally we split them into two main categories:
exact indexes and approximate indexes. Exact indexes guarantee that if there
exists a record satisfying the search criteria, it will be returned. On the other
hand, an approximate index might sometimes fail but by relaxing the conditions,
it might also work faster.

For exact indexes, most common are solutions based on inverted indexes or
trees. In an inverted index approach, we create a data structure that allows
us to narrow the set of possible results, before conducting actual edit distance
calculations. As an example of this approach, we can give the DevideSkip [7]
algorithm or AppGram [15]. The main disadvantage of this approach is that we
still need to do the manual purification of candidates, which can make them im-
practical when the dictionary elements are long or a high edit distance threshold
is required.

Another class of exact indexes is trees-based methods. Most generally these
methods reduce the time complexity of a dictionary search from linear to log-
arithmic. As an example for kNN approximate search, we can give a classical
BK-Tree data structure or HS-Topk algorithm [14] which uses hierarchical seg-
ment tree index together with preliminary purifying. The disadvantage of theseD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

4 S. Olewniczak, J. Szymański

approaches is that the time complexity is also dependant on the dictionary size
and the length of a query string.

Another interesting class of solutions is indexes based on all potential mis-
spellings generation. The solution has O(1) time complexity but their spatial
complexity is tremendous and grows really fast with the maximum supported
edit distance between strings. However, in the case of Levenshtein distance (or
Damerau-Levenshtein) the spatial complexity of these methods can be highly
improved by generating not all the possible misspellings but only the deletions.
This method is called symmetric delete spelling correction algorithm and was
utilized by FastSS [13], which is currently state-of-the-art for small edit distance
values. The method was future improved by Wolf Garbe in SymSpell [4] where
we the all deletions generation can be reduced only to the prefix of selected
length. This allows us to establish a compromise between the space and time
complexity of the method.

Another category of index structures is approximate indexes. The main idea
behind this class of solutions is embedding a costly edit distance metric space
in another metric space (for example Euclidean) that will retain the properties
of the original metric. After the projection, we can use locality sensitive hashing
function to quickly compute kNN for our query term.

The main challenge for approximate indexes is to find a good embedding
function. There were several proposed embedding functions for edit distance, for
example, [11] or more recently CGK [1]. The main drawback of these embedding
functions is that they are data independent. It means they work exactly the
same regardless of the dictionary used in the search, which reduces the accuracy
of the method. To mitigate the problem, the approach of training embedding
functions from data using neural networks (a.k.a. learning to hash) was proposed
recently: [2,18]. These approaches turned out to have much better properties than
previously used functions, and what is also very important, they offer a more
general framework, that can be used to embed many different metrics, not only
the edit distance based ones.

4 SimpleWiki labels dataset

Our study aimed to create an efficient index for Wikification. To test the rel-
evance of a proposed method we decided to test it with Wikipedia in Simple
English. We called our test dictionary: SimpleWiki labels dataset.

The SimpleWiki labels dataset was created by parsing all the SimpleWiki
articles and extracting all the links from them. Then, for each link we got its
anchor text (which we called label) and added it to our dictionary. Before storing
in dictionary we also removed all the charters from the label that are not English
letters, digits or space character.

Generated dataset consists of 227,575 unique labels. Comparing to the dataset
of 82,767 English words1 it has different characteristics which are summarized
in Table 1.

1 We refer here to English words dictionary from SymSpell project [4].D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fast Approximate String Search for Wikification 5

In the Figure 1 we have also presented the differences in distribution of
Damerau-Levenshtein metric between elements in both datasets. It is visible that
in case of English words the distribution is much more concentrated than in the
SimpleWiki labels. This differences in datasets might cause that the methods
that were designed to work optimally for English words, might not be optimal
for entity retrieval in Wikification process.

Table 1. Comparison of the SimpleWiki labels and English words datasets.

Dataset SimpleWiki labels English words

Dataset size 227,575 82,767
Avg. Len. 14.13 8.1
Std. Dev. 7.66 2.55
Min. Len. 1 1
Max. Len. 164 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Damerau-Levenshtein distance

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Nu
m
be
r o

f p
ai
rs
 w
ith

 g
iv
en
 d
ist
an
ce
/N
um

be
r o

f a
ll
pa
irs

en_words_1
simplewiki_labels_1

Fig. 1. A compression between distributions of Damerau-Levenshtein distances in En-
glish dictionary and SimpleWiki labels dataset.

5 Our method

Proposed index structure for approximate entity retrieval for Wikification uses
approximate index with embedding function. Our solution is inspired by CNN-
ED [2] but it was improved to better fit the task. First, our embedding function
is trained with approximate string search in mind, not the approximate stringD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

6 S. Olewniczak, J. Szymański

join as in the original paper. Second, we trained our function for Damerau-
Levenshtein distance, not the Levenshtein, which better reflects the actual mis-
spellings made by people. Finally, we provided a complete end-to-end solution,
not only the embedding function itself, which can be compared with other ap-
proximate string search methods.

Our index structure consists of three main components. The first is an em-
bedding function, that is trained to map our Damerau-Levenshtein metric space
to Euclidean metric space. The second is a training component of the embedding
function. The third is an efficient kNN index for Euclidean metric space, which
we use to perform the actual search.

5.1 Embedding function

Our embedding function is neural network with one convolutional layer, one
pooling layer, and the final dense layer. In the input, the function receives one-hot
encoded strings. The maximum length of the input string is M=167 characters
(the maximum label length of SimpleWiki labels is 164). The alphabet consists of
37 characters which are: ”qwertyuiopasdfghjklzxcvbnm1234567890” and space.

One-hot encoding means that we transform each input string S of length L
to the matrix X of size: |A| × L where |A| is the size of our alphabet. Then for
each character in a string:

|A|∑
i=1

L∑
j=1

Xij =

{
1 if Sj = Ai

0 if Sj 6= Ai
(3)

If the string length is lower than the maximum string input, we fill the rest
of the input matrix with zeros.

The convolutional layer uses 1D convolutional with 64 output channels, the
kernel of size 3, stride 1, and padding 1, without a bias. As a result the network
transforms the input of size N × |A| ×M (N is a batch size) to matrix of size
N × 64 ×M . The results of convolution are further passed to ReLU for non-
linearity. The convolutional step is crucial in our function because it detects
the local modifications in the input, without being sensitive to the modification
position, which would be a case in deeply connected layers.

After the convolutional layer comes the pooling layer. We decided to use a
max-pooling function with kernel size 2, which was inspired by the CNN-ED
model. We tested our model both with and without the pooling layer and it
turned out that the pooling significantly reduces the size of the network without
a negative impact on the predictions. The max-pooling reduces the convolutional
layer output from N × 64×M to N × 64×M/2.

The output is constructed from the dense layer that maps its input to the
vector of floats of size 100. This vector forms our final embeddings. The network
has 538,404 trainable parameters and takes 2,05 MB of memory. Figure 2 shows
the network architecture.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Fast Approximate String Search for Wikification 7

Fig. 2. The architecture of neural embedding function.

5.2 Training component

Loss function. The proposed embedding function was trained using triplet loss
[5], together with mean square error:

L(sacr, spos, sneg) = Lt(sacr, spos, sneg) + αLm(sacr, spos, sneg) (4)

where α is the scaling factor, set to 0.1.
In the triplet loss approach, we train our network by sampling and comparing

triplets from our training set. The first element of triplet is called anchor, the
second is a positive example and the third is a negative example. In Damerau-
Levenshtein metric space the distance between sacr and spos is smaller than the
distance between sacr and sneg. In a triplet loss we want to move the relation
from Damerau-Levenshtein metric space to Euclidean space using a vector repre-
sentations from embedding function: yacr, ypos, yneg. The triplet loss is formally
defined as follows:

Lt(sacr, spos, sneg) = max(0, ‖yacr − ypos‖ − ‖yacr − yneg‖+ η) (5)

where η = dist(sacr, sneg) − dist(sacr, spos) and dist(.) is a function that
returns a Damerau-Levenshtein distance between its arguments, divided by the
average distance between all pairs in the dictionary:

dist(s1, s2) =
dist(s1, s2)

1
|D|2

|D|∑
i=1

|D|∑
j=1

dist(di, dj)

(6)

The triplet loss function pushes ‖yacr − ypos‖ to 0 and ‖yacr − yneg‖ to be
greater than ‖yacr−ypos‖+η. Where the η is in fact the actual distance between
the negative and the positive examples.

The triplet loss itself is relative positioning loss function, which means that
it only positions the learning set elements in a correct order, without preserving
the absolute distance values between them. To mitigate the issue the additional
mean square error loss is introduced. The Lm is formally defined as:

Lm(sacr, spos, sneg) = (‖yacr − ypos‖ − dist(sacr, spos))2+

(‖yacr − yneg‖ − dist(sacr, sneg))2+

(‖ypos − yneg‖ − dist(spos, sneg))2
(7)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

8 S. Olewniczak, J. Szymański

This loss component aims to make the Euclidean distance between embedding
vectors the same as the averaged Damerau-Levenshtein distance between strings.
Figure 3 presents a visual summary of the proposed learning architecture.

Fig. 3. Triplet Loss Network architecture.

Training samples. During each epoch of the training process, we iterate over
all elements of the dictionary in random order, considering them our anchor
elements. Then for each anchor, we select one positive and one negative example.
The examples are selected either from the other dictionary elements or generated
by corrupting the anchor word. In the first case, we consider the top 100 kNN of
the anchor word and choose the positive and negative examples at random from
them. In the second case, the positive and the negative examples are generated by
corrupting the anchor, such that the positive example is at Damerau-Levenshtein
distance 1 from the anchor and the negative at distance 2.

We train our Triplet Loss Network with a batch size of 64 and a learning
rate of 0.001 until the epoch loss stabilizes.

5.3 Index

In order to achieve the full potential of our solution, in addition to a good
hashing function, we need an efficient method to retrieve near neighbors from
the dictionary. In our solution, we decided to use a faiss library [6], which is
currently state-of-the-art for kNN search in Euclidean distance, using GPU.

We construct our index by creating a hash for every element in our dictionary.
These hashes are then used to create the faiss index structure. Then for every
incoming query string, we calculating the hash for it and look up its nearest
neighbors in the index structure. Figure 4 summarizes this process.

6 Results

To test our method for different dictionary elements’ lengths and edit distances,
we prepared three different test cases. For the first test case, we took only theD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Fast Approximate String Search for Wikification 9

Fig. 4. The index construction process (white arrows) and approximate string search
using index structure (gray arrows).

SimpleWiki labels that are no longer than 10 characters. For the second test
case, we took the labels that are longer than 20 characters. For the last one
we took all the SimpleWiki labels. The distances’ distribution of the first and
second test case labels is presented in Figure 5. The distribution of distances
over all SimpleWiki labels was already presented in Figure 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Damerau-Levenshtein distance

0.00

0.05

0.10

0.15

0.20

0.25

Nu
m
be
r o

f p
ai
rs
 w
ith

 g
iv
en
 d
ist
an
ce
/N
um

be
r o

f a
ll
pa
irs

simplewiki_labels_min20_1
simplewiki_labels_max10_1

Fig. 5. Comparison of distributions of Damerau-Levenshtein distances between Sim-
pleWiki labels of maximum length 10 and minimum length 20.

To test the performance of our method, we decided to compare it with Sym-
Spell 6.7, which is currently state-of-the-art for small edit distances and short
dictionary elements [4]. All of our tests were 1NN searches. When there were
several possibilities (several words with an identical distance to the query), any
of them was considered a correct result.

Additionally, we tested the neural hashing method in two variants. In the first
valiant, we retrieved the 1NN for the query string hash and returned it as theD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

10 S. Olewniczak, J. Szymański

result. In the second variant, we retrieved 10NN for the query hash and returned
the dictionary element with the smallest Damerau-Levenshtein distance to the
query string.

All benchmarks were performed on Ubuntu 20.04, with Intel Core i7-8700
CPU, 16 GB RAM, and NVIDIA GeForce GTX 1660 GPU. For running Sym-
Spell, we used .NET Core SDK 2.1.811 and for distance embeddings, Python
3.8.5, PyTorch 1.6.0, and Faiss 1.6.3.

For the first test case, we prepared three test sets. Every set contained 10
misspellings per word in the dictionary, which gave us 766,370 examples per set.
The first set contained misspellings generated at Damerau-Levenshtein distance
1 from the original word. The second contained misspellings at distance 2. The
third contained misspellings at distance 3.

Our hashing function was separately trained for the SimpleWiki labels sub-
set used in this test case. In order to better fit the new dictionary statistics, we
changed the input size of the function to 15 and increased the number of con-
volution output channels to 4096. Table 2 summarizes the running time of the
SymSpell and both variants of the neural hashing method, for processing all test
sets. Figure 6 shows the dependency between the maximum allowed Damerau-
Levenshtein distance between the correct and misspelled word and running time
of each procedure. As we can observe, the execution time of the SymSpell method
grows within the maximum allowed distance between a misspelled and correct
version of a label, while the execution time of the neural hashing method remains
constant.

Table 2. The execution times (in seconds) of processing test sets for the first test case.
”Ed” is the maximum allowed Damerau-Levenshtein distance between the correct and
misspelled label for the test set.

Ed Symspell, prefixLength=7 Neural Embeddings, 1NN Neural Embeddings, 10NN

1 2.508 74.784 74.264
2 11.834 75.909 75.913
3 48.143 74.146 80.055

Table 3 shows the percent of correct results for the neural hashing method in
its 1NN and 10NN variants. We consider the result correct, when the returned
dictionary element is the correct form of the misspelled word or any other dic-
tionary element with the same distance to the query string as the misspelled
word.

Our second test case also contained the three test sets. Same as in the pre-
vious case, each set contained 10 misspellings per every word in the dictionary,
which gave us 344,250 examples per test set. Because the second test case was
built from longer labels, we also decided to test it against higher Damerau-
Levenshtein distances. The first test set in the case contained the misspelled
labels with Damerau-Levenshtein distance 3 to the correct form. The second setD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Fast Approximate String Search for Wikification 11

Fig. 6. The execution time compared to growing maximum allowed distance between
correct and misspelled labels.

Table 3. The percent of correct results for the two variants of the neural hashing
method, for the first test case. ”Ed” is the maximum allowed Damerau-Levenshtein
distance between the correct and misspelled label for the test set.

Ed Neural Embeddings, 1NN Neural Embeddings, 10NN

1 94.993 % 99.700 %
2 84.169 % 97.133%
3 77.515 % 94.329 %

contained the misspelled labels with Damerau-Levenshtein distance 4 and the
final set with the distance 5.

For the neural hashing method, we used here the convolutional network with
the same architecture as for the full labels set but trained only on the subset
examples. Table 4 shows the execution time for SymSpell and both variants of
the neural method for the test sets. Figure 7 plots the execution time of all
the methods according to the growing maximum distance of misspelled words.
As we can see, the neural method outperforms the SymSpell starting from edit
distance = 4 and is much faster for the edit distance = 5.

Table 4. The execution times (in seconds) of processing test sets for the second test
case. ”Ed” is the maximum allowed Damerau-Levenshtein distance between the correct
and misspelled label for the test set.

Ed Symspell, prefixLength=7 Neural Embeddings, k=1 Neural Embeddings, k=10

3 45.727 70.367 72.145
4 193.047 72.668 74.922
5 1057.782 74.066 76.962

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

12 S. Olewniczak, J. Szymański

Fig. 7. The execution time compared to growing maximum allowed distance between
correct and misspelled labels.

Table 5 shows the precision of the neural method for both variants. As we can
see the results are very precise, even for 1NN. This shows that the neural method
is well suited for the dictionaries with more sparse distance distributions.

Table 5. The percent of correct results for the two variants of the neural hashing
method, for the second test case. ”Ed” is the maximum allowed Damerau-Levenshtein
distance between the correct and misspelled label for the test set.

Ed Neural Embeddings, 1NN Neural Embeddings, 10NN

3 97.599 % 98.865 %
4 96.403 % 98.05 %
5 95.395 % 97.423 %

Our final test case had only one test set that contained 10 misspellings per
each label in the SimpleWiki labels dataset, which gave us 2,275,750 examples.
The misspellings were introduced here in a progressive manner, which means
that the maximum allowed Damerau-Levenshtein distance between the correct
and the misspelled word grew with the label’s length. We were calculating the
Maximum Damerau-Levenshtein distance between the correct word w of length
L and the misspelled word using the following formula:

maxed =

{⌈
L
5

⌉
if L <= 40

8 if L > 40
(8)

The progressive error rate was meant to reflect the real-world cases, where the
probability of the typo, grows accordingly to the phrase length. The execution
times for the test set and the accuracy of the neural algorithm are presented in
Table 6. As we can see here, the performance of the neural hashing method is
superior to the SymSpell algorithm, while the correctness is still on a high level.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Fast Approximate String Search for Wikification 13

Table 6. The execution times (in seconds) of processing test set and the percent of
correct results for the two variants of the neural hashing method, for the third test
case.

Method Symspell, prefixLength=9 Neural Emb.,1NN Neural Emb., 10NN

Execution time (s) 4933.292 508.678 556.225
Correctness 100% 88.851% 96.933%

7 Conclusions and Future works

The paper presented a novelty solution for an approximate string matching in-
dex, that is based on the latest research in the field of neural network metrics
embeddings. The work has two important contributions. First is the convolution
neural network-based embedding function optimized directly for Wikification.
Secondly, according to our knowledge, this is the first attempt to combine the
embedding function with an efficient Euclidean space search algorithm for the
approximate string search task.

Our results show that the neural hashing method might be a good alternative
to the other approximate string matching indexes, for the entity retrieval in the
Wikification process. However, there are still many areas that might be further
explored.

Firstly, we want to test our method for different distance metrics, e.g. weighted
edit distance or phonetic algorithms. Thanks to the generality of our solution, it
can be used with any distance metric. Particularly, we want to test the method
for learning metrics from the data approach, where the metric is learned from
the real user misspellings.

Secondly, we want to find the correlation between the dictionary and the
actual size of the embedding neural network. We should consider here not only
the dictionary size but also the element lengths and used metric. The correlation
would be very important in the adaptation of the method for different use cases.

Finally, we want to future investigate the possibilities of joining the neural
method with the traditional ones, to get the best from both worlds. We think
that using the SymSpell for the shorter strings and the neural hashing method
for longer ones might be the best solution for practical applications.

Acknowledgments

The work was supported by funds of Department of Computer Architecture,
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University
of Technology.

References

1. Chakraborty, D., Goldenberg, E., Koucký, M.: Streaming algorithms for embed-
ding and computing edit distance in the low distance regime. In: Proceedings ofD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

14 S. Olewniczak, J. Szymański

the Forty-Eighth Annual ACM Symposium on Theory of Computing. p. 712–725.
STOC ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2897518.2897577

2. DAI, X., Yan, X., Zhou, K., Wang, Y., Yang, H., Cheng, J.: Convolutional em-
bedding for edit distance. Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (Jul 2020).
https://doi.org/10.1145/3397271.3401045

3. Damerau, F.J.: A technique for computer detection and correc-
tion of spelling errors. Commun. ACM 7(3), 171–176 (Mar 1964).
https://doi.org/10.1145/363958.363994

4. Garbe, W.: Symspell, https://github.com/wolfgarbe/symspell, last accessed 18
Dec 2020

5. Hermans, A., Beyer, L., Leibe, B.: In Defense of the Triplet Loss for Person Re-
Identification. arXiv preprint arXiv:1703.07737 (2017)

6. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search
with gpus. IEEE Transactions on Big Data pp. 1–1 (2019).
https://doi.org/10.1109/TBDATA.2019.2921572

7. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approxi-
mate string searches. In: Alonso, G., Blakeley, J.A., Chen, A.L.P. (eds.) Pro-
ceedings of the 24th International Conference on Data Engineering, ICDE 2008,
April 7-12, 2008, Cancún, Mexico. pp. 257–266. IEEE Computer Society (2008).
https://doi.org/10.1109/ICDE.2008.4497434

8. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit dis-
tances. Journal of Computer and System Sciences 20(1), 18 – 31 (1980).
https://doi.org/https://doi.org/10.1016/0022-0000(80)90002-1

9. Rachkovskij, D.: Index structures for fast similarity search for symbol strings. Cy-
bernetics and Systems Analysis 55(5), 860–878 (2019)

10. Sevgili, O., Shelmanov, A., Arkhipov, M., Panchenko, A., Biemann, C.: Neural
entity linking: A survey of models based on deep learning (2020)

11. Sokolov, A.: Vector representations for efficient comparison and search for similar
strings. Cybernetics and Systems Analysis 43(4), 484–498 (2007)

12. Szymański, J., Naruszewicz, M.: Review on wikification methods. AI Communica-
tions 32(3), 235–251 (2019)

13. T. Bocek, E. Hunt, B.S.: Fast Similarity Search in Large Dictionaries. Tech. Rep.
ifi-2007.02, Department of Informatics, University of Zurich (April 2007)

14. Wang, J., Li, G., Deng, D., Zhang, Y., Feng, J.: Two birds with one stone: An
efficient hierarchical framework for top-k and threshold-based string similarity
search. In: Gehrke, J., Lehner, W., Shim, K., Cha, S.K., Lohman, G.M. (eds.)
31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul,
South Korea, April 13-17, 2015. pp. 519–530. IEEE Computer Society (2015).
https://doi.org/10.1109/ICDE.2015.7113311

15. Wang, X., Ding, X., Tung, A.K.H., Zhang, Z.: Efficient and effective knn sequence
search with approximate n-grams. Proc. VLDB Endow. 7(1), 1–12 (Sep 2013).
https://doi.org/10.14778/2732219.2732220

16. Wikipedia:Lists of common misspellings/For machines,
https://en.wikipedia.org/wiki/Wikipedia:Lists of common misspellings/For machines:
Last accessed 18 Dec 2020

17. Yu, M., Li, G., Deng, D., Feng, J.: String similarity search and join: a survey.
Frontiers of Computer Science 10(3), 399–417 (2016)

18. Zhang, X., Yuan, Y., Indyk, P.: Neural embeddings for nearest neighbor search
under edit distance (2020), https://openreview.net/forum?id=HJlWIANtPH

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1145/2897518.2897577
https://doi.org/10.1145/3397271.3401045
https://doi.org/10.1145/363958.363994
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/ICDE.2008.4497434
https://doi.org/https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1109/ICDE.2015.7113311
https://doi.org/10.14778/2732219.2732220
https://openreview.net/forum?id=HJlWIANtPH
http://mostwiedzy.pl

	Fast Approximate String Search for Wikification

