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We study the following scenario of online graph exploration. A team of k agents is initially 
located at a distinguished vertex r of an undirected graph. We ask how many time steps 
are required to complete exploration, i.e., to make sure that every vertex has been visited 
by some agent.
As our main result, we provide the first strategy which performs exploration of a graph 
with n vertices at a distance of at most D from r in time O (D), using a team of agents 
of polynomial size k = Dn1+ε < n2+ε , for any ε > 0. Our strategy works in the local 
communication model, in which agents can only exchange information when located at 
a vertex, without knowledge of global parameters such as n or D .
We also obtain almost-tight bounds on the asymptotic relation between exploration time 
and team size, for large k, in both the local and the global communication model.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Exploring an undirected graph-like environment is relatively straightforward for a single agent. Assuming the agent is 
able to distinguish which neighboring vertices it has previously visited, then in terms of the exploration time, there is no 
better systematic traversal strategy than a simple depth-first search of the graph, which takes 2(n − 1) moves in total for 
a graph with n vertices. The situation becomes more interesting if multiple agents want to collectively explore the graph 
starting from a common location. If arbitrarily many agents may be used, then we can generously send nD agents through 
the graph, where D is the distance from the starting vertex to the most distant vertex of the graph. At each step, we spread 
out the agents located at each node (almost) evenly among all the neighbors of the current vertex, and thus explore the 
graph in D steps.

While the cases with one agent and arbitrarily many agents are both easy to understand, it is much harder to analyze 
the spectrum in between these two extremes. Of course, we would like to explore graphs in as few steps as possible (i.e., 
close to D), while using a team of as few agents as possible. In this paper we study this trade-off between exploration 

✩ Some of the results of this paper appeared in the extended abstract [6], published in the Proceedings of the 40th International Colloquium on Automata, 
Languages and Programming (ICALP 2013).
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Table 1
Our bounds for the time required to explore general graphs with using Dnc agents. The same 
upper and lower bounds hold for trees. The lower bounds use graphs with D = no(1) .

Communication model Upper bound Lower bound

Global communication: D · (1 + 1
c−1 + o(1))

Theorem 3.3

D · (1 + 1
c − o(1))

Theorem 4.1

Local communication: D · (1 + 2
c−1 + o(1))

Theorem 3.3

D · (1 + 2
c − o(1))

Theorem 4.1

time and team size. A trivial lower bound on the number of steps required for exploration with k agents is Ω(D + n/k): for 
example, in a tree, some agent has to reach the most distant node from r, and each edge of the tree has to be traversed by 
some agent. We look at the case of larger groups of agents, for which D is the dominant factor in this lower bound. This 
complements previous research on the topic for trees [10,12] and grids [21], which usually focused on the case of small 
groups of agents (when n/k is dominant).

Another important issue when considering collaborating agents concerns the model that is assumed for the commu-
nication between agents. We need to allow communication to a certain degree, as otherwise there is no benefit to using 
multiple agents for exploration [12]. We may, for example, allow agents to freely communicate with each other, independent 
of their whereabouts, or we may restrict the exchange of information to agents located at the same location. This paper also 
studies this tradeoff between global and local communication.

1.1. The collaborative online graph exploration problem

We are given a graph G = (V , E) rooted at some vertex r. The number of vertices of the graph is bounded by n. Initially, 
a set A of k agents is located at r. We assume that vertices have unique identifiers that admit a total ordering. In each step, 
an agent visiting vertex v receives a complete list of the identifiers of the nodes in N(v), where N(v) is the neighborhood 
of v . Time is discretized into steps, and in each step, an agent can either stay at its current vertex or slide along an edge 
to a neighboring vertex. Agents have unique identifiers, which allows agents located at the same node and having the same 
exploration history to differentiate their actions. We do not explicitly bound the memory resources of agents, enabling them 
in particular to construct a map of the previously visited subgraph, and to remember this information between time steps. 
An exploration strategy for G is a sequence of moves performed independently by the agents. A strategy explores the graph 
G in t time steps if for all v ∈ V there exist a time step s ≤ t and an agent g ∈ A, such that g is located at v in step s. 
Our goal is to find an exploration strategy which minimizes the time it takes to explore a graph in the worst case, with 
respect to the shortest path distance D from r to the vertex furthest from r in the graph. Observe that, given a team of 
unbounded size, it is possible to perform exploration in D steps (e.g., using a team of nD agents, and naively flooding the 
graph, spreading out agents located at a vertex evenly among its neighbors at each step). We look for trade-offs between 
the size k of the team and the time required for exploration.

We distinguish between two communication models. For exploration with global communication we assume that, at the 
end of each step s, all agents have complete knowledge of the explored subgraph. In particular, in step s all agents know 
the number of edges incident to each vertex of the explored subgraph which lead to unexplored vertices, but they have 
no information on any subgraph consisting of unexplored vertices. In exploration with local communication two agents can 
exchange information only if they occupy the same vertex. The information that is exchanged includes the subgraph that an 
agent explored itself and the information received from other agents prior to the current meeting. Thus, each agent g has 
its own view on the vertices that were explored so far, based only on the knowledge that originates from the agent’s own 
observations and from other agents that it has met.

1.2. Our results

Our main contribution is an exploration strategy for a team of polynomial size to explore graphs in an asymptotically 
optimal number of steps. More precisely, for any ε > 0, the strategy can operate with Dn1+ε < n2+ε agents and takes time 
O (D). It works even under the local communication model and without prior knowledge of n or D .

We first restrict ourselves to the exploration of trees (Section 2). We show that with global communication trees can be 
explored in time D · (1 + 1/(c − 1) + o(1)) for any c > 1, using a team of Dnc agents. Our approach can be adapted to show 
that with local communication trees can be explored in time D · (1 + 2/(c − 1) +o(1)) for any c > 1, using the same number 
of agents. We then carry the results for trees over to the exploration of general graphs (Section 3). We obtain precisely the 
same asymptotic bounds for the number of time steps that are sufficient to explore graphs with Dnc agents as for the case 
of trees, under both communication models. The limit of our approach in terms of the smallest allowed team of agents is a 
team of k = (2 + ε)nD agents exploring graphs in time Θ(D log n), with local communication for any constant ε > 0.

Finally, we provide lower bounds for collaborative graph exploration that almost match our positive results (Section 4). 
More precisely, we show that, in the worst case and for any c > 1, exploring a graph with Dnc agents takes at least 
D · (1 + 1/c − o(1)) time steps in the global communication model, and at least D · (1 + 2/c − o(1)) time steps in the local 
communication model. Table 1 summarizes our upper and corresponding lower bounds.

http://mostwiedzy.pl


D. Dereniowski et al. / Information and Computation 243 (2015) 37–49 39

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

1.3. Related work

Collaborative online graph exploration has been intensively studied for the special case of trees. In [12], a strategy is 
given which explores any tree with a team of k agents in O (D + n/ log k) time steps, using a communication model with 
whiteboards at each vertex that can be used to exchange information. This corresponds to a competitive ratio of O (k/ log k)

with respect to the optimum exploration time of Θ(D + n/k) when the graph is known. In [17] authors show that the 
competitive ratio of the strategy presented in [12] is precisely k/ log k. Another DFS-based algorithm, given in [4], has an 
exploration time of O (n/k + Dk−1) time steps, which provides an improvement only for graphs of small diameter and 
small teams of agents, k = O (logD n). For a special subclass of trees called sparse trees, [10] introduces online strategies 
with a competitive ratio of O (D1−1/p), where p is the density of the tree as defined in that work. The best currently 
known lower bound is much lower: in [11], it is shown that any deterministic exploration strategy with k <

√
n has a 

competitive ratio of Ω(log k/ log log k), even in the global communication model. A stronger lower bound of Ω(k/ log k)

holds for so-called greedy algorithms [17]. Both for deterministic and randomized strategies, the competitive ratio is known 
to be at least 2 − 1/k, when k <

√
n [12]. None of these lower bounds concern larger teams of agents. In [20] a lower bound 

of Ω(D1/(2c+1)) on competitive ratio is shown to hold for a team of k = nc agents, but this lower bound only concerns 
so-called rebalancing algorithms which keep all agents at the same height in the tree throughout the exploration process. 
We remark that our algorithms are not rebalancing and break this lower bound with a competitive ratio of Θ(1).

In the offline model, when the graph is known in advance, the problem of establishing an optimal sequence of moves for 
k agents in a tree is shown in [12] to be NP-hard. The same model for online exploration is studied in [21], where a strategy 
is proposed for exploring graphs which can be represented as a D × D grid with a certain number of disjoint rectangular 
holes. The authors show that such graphs can be explored with a team of k agents in time O (D log2 D + n log D/k), i.e., 
with a competitive ratio of O (log2 D). By adapting the approach for trees from [11], they also show lower bounds on 
the competitive ratio in this class of graphs of Ω(log k/log log k) for deterministic strategies and Ω(

√
log k/log log k) for 

randomized strategies. These lower bounds also hold in the global communication model.
Collaborative exploration has also been studied with different optimization objectives. An exploration strategy for trees 

with global communication is given in [11], achieving a competitive ratio of (4 − 2/k) for the objective of minimizing the 
maximum number of edges traversed by an agent. In [9] a corresponding lower bound of 3/2 is provided.

Our problem can be seen as an online version of the k Traveling Salesmen Problem (k-TSP) [13]. Online variants of TSP 
(for a single agent) have been studied in various contexts. For example, the geometric setting of exploring grid graphs with 
and without holes is considered by [14,15,18,19,21], where a variety of competitive algorithms with constant competitive 
ratios is provided. A related setting is studied in [8], where an agent has to explore a graph while being attached to the 
starting point by a rope of restricted length. A similar setting is considered in [1], in which each agent has to return regularly 
to the starting point, for example for refueling. Online exploration of polygons is considered in [5,16].

The online exploration problem becomes considerably harder when vertices (including the root) have no unique iden-
tifiers. For unlabeled graphs of unknown size, it is impossible to perform exploration without additional power given to 
agents. In [7,22], the authors consider the problem of traversing all edges by one agent when visited vertices can be dis-
tinguished. In [7] Results for different graph classes (lines, trees, general graphs) and different agents initial knowledge 
(anchored map, unanchored map, no map) are presented. Algorithms with optimal overhead are presented for all scenarios 
except trees with unanchored map. In [2,3] agents can mark vertices of an unlabeled, strongly connected, directed graph 
using pebbles. For one agent, in [2] it was shown that one pebble is enough if the robot knows an upper bound on the 
size of the graph, and O (log log n) pebbles are necessary and sufficient otherwise. For two agents with constant number of 
pebbles, in [3] authors propose polynomial algorithm.

2. Tree exploration

We start our considerations by designing exploration strategies for the special case when the explored graph is a tree T
rooted at a vertex r.

For any exploration strategy, the set of all encountered vertices (i.e., all visited vertices and their neighbors) at the 
beginning of step s = 1, 2, 3, . . . forms a connected subtree of T , rooted at r and denoted by T (s) . In particular, T (1) is the 
vertex r together with its children, which have not yet been visited. For v ∈ V (T ) we write T (s)(v) to denote the subtree 
of T (s) rooted at v . We denote by L(T (s), v) the number of leaves of the tree T (s)(v). Note that L(T (s), v) ≤ L(T (s+1), v)

because each leaf in T (s)(v) is either a leaf of the tree T (s+1) or the root of a subtree containing at least one vertex. If v is 
an unencountered vertex at the beginning of step s, i.e., its parent was not yet visited, we define L(T (s), v) = 1.

2.1. Tree exploration with global communication

We are ready to give the procedure TEG (Tree Exploration with Global Communication). The pseudocode uses the command 
“move(s)”, describing the move to be performed by each agent, specifying the destination at which the agent appears at the 
start of time step s + 1. Since the agents can communicate globally, the procedure can centrally coordinate the movements 
of each agent. For simplicity we assume that x agents spawn in r in each time step, for some given value of x. Then, the 
total number of agents used after l steps is simply lx.
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Fig. 1. Illustration of proof of Lemma 2.1: computation of value of αi for a wave of agents descending in tree T .

Procedure TEG (tree T with root r, integer x) at time step s:
Place x new agents at r.
for each v ∈ V (T (s)) which is not a leaf do: {determine moves of the agents located at v}

Let A(s)
v be the set of agents currently located at v .

Denote by v1, v2, . . . , vd the set of children of v .
Let i∗ := arg maxi{L(T (s), vi)}. {vi∗ is a child of v with the biggest value of L}
Partition A(s)

v into disjoint sets Av1 , Av2 , . . . , Avd , such that:

(i) |Avi | = � |A(s)
v |·L(T (s),vi)

L(T (s),v)
�, for i ∈ {1, 2, . . . , d} \ {i∗},

(ii) |Avi∗ | = |A(s)
v | − ∑

i∈{1,2,...,d}\{i∗} |Avi |.
for each i ∈ {1, 2, . . . , d} do for each agent g ∈Avi do move(s) g to vertex vi .

end for
end procedure TEG.

If multiple children vi acquire the biggest value of L then vi∗ is chosen arbitrarily among them. The following lemma 
provides a characterization of the tradeoff between exploration time and the number of agents x released at every round in 
procedure TEG. In the following, all logarithms are with base 2 unless a different base is explicitly given.

Lemma 2.1. In the global communication model, procedure TEG with parameter x explores any rooted tree T in at most D · (1 +
log n

log(x/n)
) time steps, for x > n.

Proof. Fix any leaf f of the tree T . We want to prove that procedure TEG visits the leaf f after at most D · (1 + log n
log(x/n)

)

time steps. Take the path F = ( f0, f1, f2, . . . , f D f ) from r to f in T , where r = f0, f = f D f , and D f ≤ D . We define the 
wave of agents ws starting from r at time s and traversing the path F as the maximum sequence of the non-empty sets of 
agents which leave the root in step s and traverse edges of F in successive time steps, i.e., ws = (A(s)

f0
, A(s+1)

f1
, . . .), where 

we use the notation from procedure TEG. The size of wave ws in step s + t is defined to be |A(s+t)
ft

|, i.e., the number of 

exploring agents located at vertex ft at the beginning of time step s + t; initially, every wave has size |A(s)
f0

| = x. Note that 

each agent in A(s+i)
f i

, 0 ≤ i < D f , is located at r at the start of time step s. We denote the number of leaves in the subtree 

of T (i) rooted at f j by λ(i)
j = L(T (i), f j). Recall that if f j is not yet discovered in step i, by definition of the function L, we 

have λ(i)
j = 1. In general, 1 ≤ λ

(i)
j ≤ n. We define (cf. Fig. 1 for illustration)

αi = x
λ

(i)
1

λ
(i)
0

λ
(i+1)
2

λ
(i+1)
1

· · ·
λ

(i+D f −1)

D f

λ
(i+D f −1)

D f −1

.

We define the value α∗
i as the number of agents of the i-th wave that reach the leaf f , i.e., the size of the i-th wave in 

step i + D f . If α∗
1 = α∗

2 = · · · = α∗
i−1 = 0 and α∗

i ≥ 1 for some time step i, then we say that leaf f is explored by the i-th 
wave. Before we proceed with the analysis, we show the following auxiliary claim.
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Claim (*). For every i, if αi ≥ 1 then α∗
i > αi − 1, and thus αi − 1 is a lower bound on the number of agents reaching f in step 

i + D f − 1.

Proof of the claim. We define c j = λ
(i+ j)
j+1 /λ

(i+ j)
j for j = 0, . . . , D f − 1. For i ≥ 1 we have

αi = x

D f −1∏
j=0

c j.

Since c j ≤ 1 for all j and since αi ≥ 1, there exist at most log x different j such that c j ≤ 1/2. Denote the set of all such j
by J , with |J | ≤ log x. Also, denote the size of wave wi in step i + s by as (for s = 0, 1, 2, . . .), in particular a0 = x.

Consider some index s for which cs > 1/2. We have λ(i+s)
s+1 /λ

(i+s)
s > 1/2, thus more than half of all leaves of the tree 

T (i+s)( f s) also belong to the tree T (i+s)( f s+1). But then, in time step i + s + 1, agents are sent from f s to f s+1 according 
to the definition in expression (ii) in procedure TEG. Thus, we can lower-bound the size of wave wi in step i + s + 1 by 
as+1 ≥ ascs . Otherwise, if cs ≤ 1/2 (i.e., if s ∈J ), then agents are sent according the definition in expression (i) in procedure 
TEG, and hence as+1 ≥ �ascs�. Note that these bounds also hold if there are no agents left in the wave, i.e., as = as+1 = 0. 
Thus, we have:

as+1 ≥ ascs − δs, where δs =
{

1, if s ∈ J ,

0, otherwise.

Denote consecutive elements of J , s1 < s2 < s3 < · · · < s|J | . In this way we expand the expression for α∗
i = aD f :

α∗
i = aD f ≥ aD f −1cD f −1 − δD f −1 ≥ . . . ≥ (

...

(
(a0c0 − δ0)c1 − δ1

)
c2 − . . .

)
cD f −1 − δD f −1

= x

D f −1∏
j=0

c j −
D f −1∑

j=0

(
δ j

D f −1∏
p= j+1

c j

)
≥ αi −

|J |∑
i=1

D f −1∏
p=si+1

cp ≥ αi −
|J |∑
i=1

2−|J |+i−1 > αi − 1,

where in the last transformations we have taken into account that in the product 
∏D f −1

p=si+1 cp there are |J | −(i +1) elements 
cp belonging to the set of indices J , which are less or equal than 1/2. We have obtained α∗

i > αi − 1, which completes the 
proof of the claim. �

We now show that if the number of waves a in the execution of the procedure is sufficiently large, then there exists an 
index i ≤ a, such that αi ≥ 1. Thus, taking into account Claim (*), leaf f is explored at the latest by the a-th wave.

Take a waves and consider the product 
∏a

i=1 αi . Note that λ(s)
D f

= 1 for every s. Thus, simplifying the product of all αi by 

shortening repeating terms in numerators and denominators, and using 1 ≤ λ
(i)
j ≤ n, we get

a∏
i=1

αi = xa
a∏

i=1

D f −1∏
j=0

λ
(i+ j)
j+1

λ
(i+ j)
j

= xa

∏a
i=1

∏D f −1
j=0 λ

(i+ j)
j+1∏a

i=1
∏D f −1

j=0 λ
(i+ j)
j

= xa

∏a−1
i′=0

∏D f

j′=1 λ
(i′+ j′)
j′∏a

i=1
∏D f −1

j=0 λ
(i+ j)
j

= xa
(
∏D f

j′=1 λ
( j′)
j′ )(

∏a−1
i′=1

∏D f −1
j′=1 λ

(i′+ j′)
j′ )(

∏a−1
i′=1 λ

(i′+D f )

D f
)

(
∏a

i=1 λ
(i)
0 )(

∏a−1
i=1

∏D f −1
j=1 λ

(i+ j)
j )(

∏D f −1
j=1 λ

(a+ j)
j )

≥ xa

nanD f −1
≥ xa

na+D
. (1)

We want to find a, such that

a∏
i=1

αi ≥ 1.

Taking into account (1), it is sufficient to find a satisfying

xa

na+D
≥ 1,

which for x > n can be equivalently transformed by taking logarithms and elementary arithmetic to the form

a ≥ D log n

log(x/n)
.

Hence, for a = 
 D log n
log(x/n)

�, we have that there exists some i such that αi ≥ 1. For the same i we have α∗
i > αi − 1 ≥ 0, by 

Claim (*), which implies that α∗ ≥ 1, since α∗ is an integer. Thus, a waves are sufficient to explore the path F . This analysis 
i i
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can be done for any leaf f , thus it is enough to send a waves in order to explore the graph G . Considering that a wave wi
is completed by the end of step D + i − 1, the exploration takes at most D + a − 1 time steps in total. Thus, the exploration 
takes at most D · (1 + log n

log(x/n)
) time steps. �

We remark that in the above Lemma, the total number of agents used throughout all steps of procedure TEG is x · D ·
(1 + log n

log(x/n)
). For any c > 1, by appropriately setting x = Θ(nc), we obtain the following theorem.

Theorem 2.2. For any fixed c > 1 and known n, the online tree exploration problem with global communication can be solved in at 
most D · (1 + 1

c−1 + o(1)) time steps using a team of k ≥ Dnc agents.

2.2. Tree exploration with local communication

In this section we propose a strategy for tree exploration under the local communication model. In the implementation 
of the algorithm we assume that whenever two agents meet, they exchange all information they possess about the tree. 
Thus, after the meeting, the knowledge about the explored vertices and their neighborhoods, is a union of the knowledge of 
the two agents before the meeting. Since agents exchange information only if they occupy the same vertex, at any time s, 
the explored tree T (s) may only partially be known to each agent, with different agents possibly knowing different subtrees 
of T (s) .

In order to obtain a procedure for the local communication model, we modify procedure TEG from the previous section. 
Observe that in procedure TEG, agents never move towards the root of the tree, hence, in the local communication model, 
agents cannot exchange information with other agents located closer to the root. The new strategy is given by the procedure 
TEL (Tree Exploration with Local Communication).

In procedure TEL, all agents are associated with a state flag which may be set either to the value “exploring” or “no-
tifying”. Agents in the “exploring” state act similarly as in global exploration, with the requirement that they always move 
to a vertex in groups of 2 or more agents. Every time a group of “exploring” agents visits a new vertex, it detaches two 
of its agents, changes their state to “notifying”, and sends them back along the path leading back to the root. These agents 
notify every agent they encounter on their way about the discovery of the new vertices. Although information about the 
discovery may be delayed, in every step s, all agents at vertex v know the entire subtree T (s′)(v) which was explored until 
some previous time step s′ ≤ s. The state flag also has a third state, “discarded”, which is assigned to agents no longer used 
in the exploration process.

The formulation of procedure TEL is not given from the perspective of individual agents, however, based on its descrip-
tion, the decision on what move to make in the current step can be made by each individual agent. The correctness of the 
definition of the procedure relies on the following lemma, which guarantees that for a certain value s′ the tree T (s′)(v) is 
known to all agents at v .

Procedure TEL (tree T with root r, integer x) at time step s:
Place x new agents at r in state “exploring”.
for each v ∈ V (T (s)) which is not a leaf do: {determine moves of the agents located at v}

if v �= r then for each agent g at v in state “notifying” do move(s) g to the parent of v .
if v contains at least two agents in state “exploring” and agents at v do not have

information of any agent which visited v before step s then:
{send two new notifying agents back to the root from newly explored vertex v}
Select two agents g∗, g∗∗ at v in state “exploring”.
Change state to “notifying” for agents g∗ and g∗∗ .
move(s) g∗ to the parent of v . {g∗∗ will move to the parent one step later}

end if
Let A(s)

v be the set of all remaining agents in state “exploring” located at v .
Denote by v1, v2, . . . , vd all children of v , and by δ the distance from r to v .
s′ := � δ+s

2 �. {s′ is a time in the past such that T (s′)(v) is known to the agents at v}

Let i∗ := arg maxi{L(T (s′), vi)}. {vi∗ is a child of v with the biggest value of L}
Partition A(s)

v into disjoint sets Av1 , Av2 , . . . , Avd , such that:

(i) |Avi | = � |A(s)
v |·L(T (s′),vi)

L(T (s′),v)
�, for i ∈ {1, 2, . . . , d} \ {i∗},

(ii) |Avi∗ | = |A(s)
v | − ∑

i∈{1,2,...,d}\{i∗} |Avi |.
for each i ∈ {1, 2, . . . , d} do if |Avi | ≥ 2 then for each agent g ∈Avi do move(s) g to vi .
for each i ∈ {1,2, . . . ,d} do if |Avi | = 1 then change state to “discarded” for agent in Avi .

end for
for each v ∈ V (T (s)) which is a leaf do move(s) all agents located at v to the parent of v .

end procedure TEL.
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Lemma 2.3. Let T be a tree rooted at some vertex r and let v be a vertex with distance δ to r. After running procedure TEL until time 
step s, all agents which are located at vertex v at the start of time step s know the tree T (s′)(v), for s′ = � δ+s

2 �.

Proof. Suppose the claim of the lemma holds until time step s − 1, i.e., procedure TEL is well defined until time step s − 1.
Assume that agents following procedure TEL discover vertex v∗ in the subtree of v at distance δ∗ from v at the be-

ginning of time step s∗ ≤ s. This means that the parent of v∗ is visited at the beginning of s∗ and notifying agents sent 
from the parent of v∗ carry knowledge about v∗ towards the root. We need to prove that if s∗ ≤ s′ (i.e., if v∗ ∈ V (T (s′))), 
then agents located at v at time s know of v∗ . It suffices to show that, by the start of time step s, these agents have met a 
notifying agent (as defined in procedure TEL) coming from the parent of v∗ .

Since the distance from the root to the parent of v∗ is δ + δ∗ − 1, we have s∗ ≥ δ + δ∗ − 1. Thus:

δ + s

2
≥ s′ ≥ s∗ ⇒ s ≥ 2s∗ − δ ≥ s∗ + δ∗ − 1.

Since s ≥ s∗ + δ∗ − 1, the first of the notifying agents for v∗ (agent g∗ sent out from parent of v∗ at time s∗) reached vertex 
v on the path to the root by the start of time step s, and then continued its walk on the path to the root. The second of the 
corresponding notifying agents, g∗∗ , is exactly one step further from the root. Suppose that g ∈A(s)

v �= ∅. By the construction 
of procedure TEL, agent g has been descending along a path from root r to vertex v in consecutive time steps, reaching 
v at the start of time step s. It follows that g has encountered at some vertex on the path from r to v exactly one of the 
notifying agents g∗ , g∗∗ (passing the other on an edge), and so the claim holds. �
Lemma 2.4. In the local communication model, procedure TEL with parameter x explores any rooted tree T in at most D · (1 +
2 log n+log x/κ(x)

log(x/(2nκ(x))) ) time steps, for x > 2nκ(x) for any positive nondecreasing integer function κ(x).

Proof. As in the proof of Lemma 2.1, we consider any leaf f and the path F = ( f0, f1, . . . , f D f ) from r to f . As before, we 
denote the number of leaves in the subtree of T (i) rooted at f j by λ(i)

j = L(T (i), f j). Recall that if f j is not yet discovered 
in step i, we have L(T (i), f j) = 1. We adopt the definition of a wave from Lemma 2.1. We define the values αi differently, 
however, to take into account the fact that the procedure relies on a delayed exploration tree, and that some waves lose 
agents as a result of deploying notifying agents:

αi = x
λ

(� i
2 �)

1

λ
(� i

2 �)
0

λ
(� i

2 �+1)

2

λ
(� i

2 �+1)

1

· · ·
λ

(� i
2 �+D f −1)

D f

λ
(� i

2 �+D f −1)

D f −1

.

We call a wave whose agents were the first to visit at least κ(x) nodes of path F a discovery wave. There are at most 
� D f

κ(x) � discovery waves, each of which explores at least κ(x) nodes of the considered path. Observe that if a wave is not a 
discovery wave, then the number of notifying agents it sends out is at most 2κ(x) − 2.

We define by α∗
i the number of agents of the i-th wave that reach leaf f . We now prove that the following analogue of 

Claim (*) from the proof of Lemma 2.1 holds for non-discovery waves.

Claim (**). Let i be a time step for which αi ≥ 1 and wi is not a discovery wave then, α∗
i > αi − 2κ(x), and thus αi − 2κ(x) is a lower 

bound on the number of agents reaching f in step i + D f − 1.

Proof of claim. We define c j = λ
(� i

2 �+ j)
j+1 /λ

(� i
2 �+ j)

j for j = 0, . . . , D f − 1. Then

αi = x

D f −1∏
j=0

c j.

Since c j ≤ 1 for all j and since αi ≥ 1, there exist at most log x different j such that c j ≤ 1/2. Denote the set of all such j
by J , with |J | ≤ log x. Denote by Q the set of all such indices s that wave wi sends two notifying agents from vertex f s . 
By the assumption of the claim, we have that wi is not a discovery wave thus |Q| ≤ κ(x) − 1. Also, denote the size (number 
of agents) of wave wi in step i + s by as (s = 0, 1, 2, . . .), where a0 = x. Finally, let R be the set of indices s such that as ≥ 2
and as+1 = 0; note that R has at most one element.

Consider an index s /∈ R for which cs > 1/2 and assume that wave wi does not send notifying agents from vertex f s

(i.e. s /∈ Q). We have λ(i+s)
s+1 /λ

(i+s)
s > 1/2, thus more than half of all leafs of the tree T (i+s)( f s) also belong to the tree 

T (i+s)( f s+1). But then, in time step i + s + 1, agents are sent from f s to f s+1 according to the definition in expression 
(ii) in the pseudocode of procedure TEL. Thus, we can lower-bound the size of wave wi in step i + s + 1 as: as+1 ≥ ascs . 
Otherwise, if s /∈ R ∪ Q and cs ≤ 1/2 (i.e., if s ∈ J ), then agents are sent according the definition in expression (i) in the 
pseudocode, and then as+1 ≥ �ascs�. Finally, if s ∈Q then in vertex f s wave wi reduces by 2 notifying agents, while if s ∈R
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then the wave may be reduced by one more agent (as+1 = 0 instead of as+1 = 1, since agents are always deployed in groups 
of two or more), and after that we can perform a similar analysis. Eventually, depending on which of the sets J , Q, R node 
s belongs to, we obtain:

as+1 ≥ ascs − δs, where δs = δ
( j)
s + δ

(q)
s + δ

(r)
s ,

and

δ
( j)
s =

{
0, if s /∈ J
1, if s ∈ J ,

δ
(q)
s =

{
0, if s /∈ Q
2, if s ∈ Q,

δ
(r)
s =

{
0, if s /∈ R
1, if s ∈ R.

Denote consecutive elements of J , s1 < s2 < s3 < · · · < s|J | . In this way we expand the expression for α∗
i = aD f :

α∗
i = aD f ≥ aD f −1cD f −1 − δD f −1 ≥ . . . ≥ (

...

(
(a0c0 − δ0)c1 − δ1

)
c2 − . . .

)
cD f −1 − δD f −1

= x

D f −1∏
j=0

c j −
D f −1∑

j=0

(
δ j

D f −1∏
p= j+1

c j

)
≥ αi −

D f −1∑
j=0

((
δ
( j)
j + δ

(q)

j + δ
(r)
j

) D f −1∏
p= j+1

c j

)

≥ αi −
D f −1∑

j=0

(
δ
( j)
j

D f −1∏
p= j+1

c j

)
−

D f −1∑
j=0

(
δ
(q)

j + δ
(r)
j

) ≥ αi −
|J |∑
i=1

D f −1∏
p=si+1

cp − 2|Q| − |R|

≥ αi −
|J |∑
i=1

2−|J |+i−1 − 2|Q| − |R| > αi − 1 − 2
(
κ(x) − 1

) − 1 = αi − 2κ(x).

We have α∗
i > αi − 2κ(x), which completes the proof of the claim. �

It is left to prove that if the number of waves a in the execution of the procedure is sufficiently large, there exists 
an index i ≤ a, such that wave wi is not a discovery wave and αi ≥ 2κ(x). Note that we can set κ(x) to an arbitrary 
nondecreasing function (even a constant). We again consider the product

a∏
i=1

αi = xa
a∏

i=1

D f −1∏
j=0

λ
(� i

2 �+ j)
j+1

λ
(� i

2 �+ j)
j

= xa

∏a
i=1

∏D f −1
j=0 λ

(� i
2 �+ j)

j+1∏a
i=1

∏D f −1
j=0 λ

(� i
2 �+ j)

j

= xa

∏a−2
i′=−1

∏D f

j′=1 λ
(� i′

2 �+ j′)
j′∏a

i=1
∏D f −1

j=0 λ
(� i

2 �+ j)
j

= xa
(
∏D f

j′=1 λ
( j′−1)

j′ )(
∏D f

j′=1 λ
( j′)
j′ )(

∏a−2
i′=1

∏D f −1
j′=1 λ

(i′+ j′)
j′ )(

∏a−2
i′=1 λ

(� i′
2 �+D f )

D f
)

(
∏a

i=1 λ
(� i′

2 �)
0 )(

∏a−2
i=1

∏D f −1
j=1 λ

(i+ j)
j )(

∏D f −1
j=1 λ

(� a−1
2 �+ j)

j )(
∏D f −1

j=1 λ
(� a

2 �+ j)
j )

≥ xa 1(D f −1)·(a−1)

na+2D f −2
≥ xa

na+2D
. (2)

We now choose a so as to guarantee that there exists at least one non-discovery wave αi ≥ 2κ(x). Since there are at 
most � D

κ(x) � discovery waves, we require that the (� D
κ(x) � + 1)-st biggest value αi is at least 2κ(x). Observe that since we 

have αi ≤ x, it suffices to choose a so that:

a∏
i=1

αi ≥ x� D
κ(x) �(2κ(x)

)a
.

Taking into account (2), it is sufficient to find a satisfying

xa

na+2D
≥ x

D
κ(x)

(
2κ(x)

)a
,

which holds for sufficiently large x (we assume that x > 2nκ(x)) for a = 
 2D log n+D log x/κ(x)
log(x/(2nκ(x))) �. Now, we have that there exists 

some index i ≤ a such that αi ≥ 2κ(x) and wave wi is not a discovery wave. For the same i we have α∗
i > αi − 2κ(x) ≥ 0, 

by Claim (**), which implies that α∗
i ≥ 1, since α∗

i is an integer. Thus, a waves are sufficient to explore the path F . This 
analysis can be done for any leaf f , thus it is enough to send a waves in order to explore the graph G . We obtain that 
exploration takes at most D + a − 1 ≤ D · (1 + 2 log n+log x/κ(x)

) time steps. �
log(x/(2nκ(x)))
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Fig. 2. Illustration of exploration of general graphs: (a) the explored graph G , (b) the virtually explored tree of walks T , with highlighted nodes belonging 
to Pmin, (c) an example of a subtree T (s) ⊆ T with highlighted nodes which are counted when computing function L (this tree T (s) does not correspond to 
a real execution of procedure TEL on T ).

By setting x = nc and κ(x) = 
log x� in Lemma 2.4 we obtain a strategy for online exploration of trees in the model with 
local communication.

Theorem 2.5. For any fixed c > 1, the online tree exploration problem can be solved in the model with local communication and 
knowledge of n using a team of k ≥ Dnc agents in at most D(1 + 2

c−1 + o(1)) time steps.

3. General graph exploration

In this section we develop strategies for exploration of general graphs, both with global communication and with local 
communication. These algorithms are obtained by modifying the tree-exploration procedures given in the previous section.

Given a graph G = (V , E) with root vertex r, we call P = (v0, v1, v2, . . . , vm) with r = v0, vi ∈ V , and {vi, vi+1} ∈ E
a walk of length 	(P ) = m. Note that a walk may contain a vertex more than once. We introduce the notation P [ j] to 
denote v j , i.e., the j-th vertex of P after the root, and P [0, j] to denote the walk (v0, v1, . . . , v j), for j ≤ m. The last vertex 
of path P is denoted by end(P ) = P [	(P )]. The concatenation of a vertex u to path P , where u ∈ N(end(P )) is defined as 
the path P ′ ≡ P + u of length 	(P ) + 1 with P ′[0, 	(P )] = P and end(P ′) = u.

Let P be the set of walks P in G having length 0 ≤ 	(P ) < n. We introduce a linear order on walks in P such that for 
two walks P1 and P2, we say that P1 < P2 if 	(P1) < 	(P2), or 	(P1) = 	(P2) and there exists an index j < 	(P1) such 
that P1([0, j]) = P2([0, j]) and P1([ j + 1]) < P2([ j + 1]). The comparison of vertices from V is understood as comparison 
of their identifiers in G .

We now define the tree T with vertex set P , root (r) ∈ P , such that vertex P ′ is a child of vertex P if and only 
if P ′ = P + u, for some u ∈ N(end(P )). We first show that agents can simulate the exploration of T while in fact moving 
around graph G . Intuitively, while an agent is following a path from the root to the leaves of T , its location in T corresponds 
to the walk taken by this agent in G (see Fig. 2 for an example).

Lemma 3.1. A team of agents can simulate the virtual exploration of tree T starting from root (r), while physically moving around 
graph G starting from vertex r. The simulation satisfies the following conditions:

(1) An agent virtually occupying a vertex P of T is physically located at a vertex end(P ) in G.
(2) Upon entering a vertex P of T in the virtual exploration, the agent obtains the identifiers of all children of P in T .
(3) A virtual move along an edge of T can be performed in a single time step, by moving the agent to an adjacent location in G.
(4) Agents occupying the same virtual location P in T can communicate locally, i.e., they are physically located at the same vertex 

of G.

Proof. We define the simulation so that claims (1–4) hold for all time steps. Initially, claim (1) is trivially true since 
end((r)) = r. Suppose that at the start of some step s, an agent occupies some virtual location P in T , and its cor-
responding physical location is end(P ). Claim (2) holds for this step, since the set of children of P in T is given as 
{P + u ∈ P : u ∈ N(end(P ))}, P is stored in the agents memory (as the identifier of its location in T ), and the neighbor-
hood of end(P ) in G is accessible to the agent by definition. When required to move to a virtual location P ′ adjacent to P
in T , the agent performs a move to vertex end(P ′) ∈ V . Note that if P ′ is the child of P in T , then end(P ′) ∈ N(end(P )) by 
definition of T , whereas if P ′ is the parent of P in T , then end(P ′) = P [	(P ) − 1] ∈ N(end(P )) from the definition of walk P . 
After such a move, claim (1) is immediately satisfied, and claims (2–3) follow by induction on time. Claim (4) is a trivial 
consequence of claim (1). �
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We remark that the number of vertices of tree T is exponential in n. Hence, our goal is to perform the simulation with 
only a subset of the vertices of T . For a vertex v ∈ V , let Pmin(v) ∈ P be the minimum (with respect to the linear order 
on P) walk ending at v . We observe that, by property (1) in Lemma 3.1, if, for all v ∈ V , the vertex Pmin(v) of T has 
been visited by at least one agent in the virtual exploration of T , the physical exploration of G is completed. We define 
Pmin = {Pmin(v) : v ∈ V }, and show that all vertices of Pmin are visited relatively quickly if we employ the procedure TEG
(or TEL) for T , subject to a simple modification. In the original algorithm, we divided the agents descending to the children 
of the vertex according to the number of leaves of the discovered subtrees. We introduce an alternate definition of the 
function L(T (s), v), so as to take into account only the number of vertices in T (s) corresponding to walks which are smallest 
among all walks in T (s) sharing the same end-vertex.

Lemma 3.2. Let T (s) ⊆ T be a subtree of T rooted at (r). For P ∈ V (T (s)), let L(T (s), P ) be the number of vertices v of G, for which the 
subtree of T (s) rooted at P contains a vertex representing the smallest among all walks contained in T (s) which end at v:

L
(
T (s), P

) =
∣∣∣V

(
T (s)(P )

) ∩
⋃
v∈V

{
min

{
P ′ ∈ V

(
T (s)) : end

(
P ′) = v

}}∣∣∣,
and for P ∈ P \ V (T (s)), let L(T (s), P ) = 1. Subject to this definition of L, procedure TEG with parameter x > n (procedure TEL with 
parameter x > 2nκ(x) for any nondecreasing function κ(x)) applied to tree T starting from root (r) visits all vertices from Pmin within 
D · (1 + log n

log(x/n)
) (respectively, D · (1 + 2 log n+log x/κ(x)

log(x/(2nκ(x))) )) time steps.

Proof. The set Pmin spans a subtree Tmin = T [Pmin] in T , rooted at (r). We can perform an analysis analogous to that used 
in the proofs of Lemmas 2.1 and 2.4, evaluating sizes of waves of agents along paths in the subtree Tmin. We observe that 
for any P ∈Pmin which is not a leaf in Tmin, we always have L(T (s), P ) ≥ 1. Moreover, we have L(T (s), P ) ≤ |V (T (s)(P ))|, and 
so L(T (s), P ) ≤ n. Since these two bounds were the only required properties of the functions L in the proofs of Lemmas 2.1
and 2.4, the analysis from these proofs applies within the tree Tmin without any changes. It follows that each vertex of Pmin

is reached by the exploration algorithm within D · (1 + log n
log(x/n)

) time steps in case of global communication, and within 

D · (1 + 2 log n+log x/κ(x)
log(x/(2nκ(x))) ) time steps in case of local communication. �

We recall that by Lemma 3.1, one step of exploration of tree T can be simulated by a single step of an agent running on 
graph G . Thus, appropriately choosing x = Θ(nc) and κ(x) = 
log x� in Lemma 3.2, we obtain our main theorem for general 
graphs.

Theorem 3.3. For any c > 1, the online graph exploration problem with knowledge of n can be solved using a team of k ≥ Dnc agents:

• In at most D · (1 + 1
c−1 + o(1)) time steps in the global communication model.

• In at most D · (1 + 2
c−1 + o(1)) time steps in the local communication model.

For the case when we do not assume knowledge of (an upper bound on) n, we provide a variant of the above theorem 
which also completes exploration in O (D) steps, with a slightly larger multiplicative constant.

Theorem 3.4. For any c > 1, there exists an algorithm for the local communication model, which explores a rooted graph of unknown 
order n and unknown diameter D using a team of k agents, such that its exploration time is O (D) if k ≥ Dnc .

Proof. Let c′ = c+1
2 , 1 < c′ < c. For a graph G , the algorithm proceeds by assuming geometrically increasing upper bounds 

D̄ = 1, 2, 4, . . ., on the value of D . For a fixed value of D̄ , we set n̄ = �(k/D̄)1/c′ �, and perform exploration of the graph using 
the algorithm from Theorem 3.3 with parameter c′ , assuming that the explored graph has at most n̄ vertices, and using 
D̄n̄c′ ≤ k agents. After at most D̄ · (1 + 2

c′−1 + o(1)) time steps (where the asymptotic o(1) value follows from Theorem 3.3) 
exploration is interrupted, and all agents return to the root vertex in at most O (D̄) steps. If exploration of G has been 
completed, then the algorithm stops. This can be detected since the agents are aware which vertices still have unexplored 
neighbors. If the exploration has not been completed, we continue for a doubled value of D̄ , until the bound n̄ = 0 is 
reached. Finally, if exploration has been unsuccessful so far, we perform an arbitrary valid exploration algorithm, e.g. Depth 
First Search (DFS) with a single agent.

The algorithm always completes exploration successfully in finite time. Observe that if in the stage with D̄ = 2
log2 D� and 
n̄ = �(k/D̄)1/c′ � we have n̄ ≥ n, then exploration is completed successfully in this stage, and the total time of all exploration 
stages is O (D). Observe that we have D̄ < 2D and k ≥ Dnc , and so it suffices that �(nc/2)1/c′ � ≥ n. This holds for sufficiently 
large n. If the condition k ≥ Dnc does not hold or n is too small, then the algorithm reaches the final phase in which DFS is 
executed, resulting in a correct exploration of the graph in finite time. �
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Fig. 3. An example of a tree in Tn,D .

We remark that by choosing κ(x) = 1 and x = (2 + ε)n for any constant ε > 0 in Lemma 2.3, we can also explore a graph 
using k = (2 + ε)nD agents in time Θ(D log n), with local communication. This bound is the limit of our approach in terms 
of the smallest allowed team of agents.

4. Lower bounds

In this section, we show lower bounds for exploration with Dnc agents, complementary to the positive results given by 
Theorem 3.3. The graphs that produce the lower bound are a special class of trees. The same class of trees appeared in the 
lower bound from [12] for the competitive ratio of tree exploration algorithms with small teams of agents. In our scenario, 
we obtain different lower bounds depending on whether communication is local or global.

Theorem 4.1. For all n > 1 and for every increasing function f , such that log f (n) = o(log n), and every constant c > 0, there exists a 
family of trees Tn,D , each with n vertices and height D = Θ( f (n)), such that

(i) for every exploration strategy with global communication that uses Dnc agents there exists a tree in Tn,D such that number of 
time steps required for its exploration is at least D(1 + 1

c − o(1)),
(ii) for every exploration strategy with local communication that uses Dnc agents there exists a tree in Tn,D such that number of time 

steps required for exploration is at least D(1 + 2
c − o(1)).

Proof. We prove the theorem assuming that the number of agents is nc , rather than Dnc . The asymptotic form of the 
bounds in claims (i) and (ii) remains unchanged since D = no(1) by assumption, and Dnc = nc+o(1) . In previous sections we 
assumed that certain number of agents spawned in the root r every round. Here we assume that all nc agents are available 
in the first round.

(i) First we define the family of trees Tn,D (see Fig. 3). It is possible to find D = Θ( f (n)) such that for any n there exist 
integers Δ and κ such that n = DΔ + κ + 1 and 0 ≤ κ ≤ D − 1. Note that Δ = n−(κ+1)

D . Given a vector q = (q1, . . . , qD) ∈
{1, . . . , Δ}D , we define T (q) as the tree rooted at r with vertex set

V
(
T (q)

) = {r} ∪
D⋃

i=1

V i ∪ W ,

where V i = {vi
1, . . . , v

i
Δ} is the set of nodes at distance i from the root r and W = {w1, w2, . . . , wκ } is the set of additional 

nodes attached to the root. For convenience, we set v0
q0

= r, and we define the edge set by

E
(
T (q)

) =
D⋃

i=1

{{
vi−1

qi−1
, vi

j

} ∣∣ j = 1, . . . ,Δ
} ∪ {{r, w j}

∣∣ j = 1,2, . . . κ
}
,

which means that one specific vertex vi−1
qi−1

from level i − 1 is connected to all vertices on level i. We set Tn,D = {T (q) 
∣∣ q ∈

{1, . . . , Δ}D}. Since we are interested in lower bounds we will not consider vertices from W , we assume that exploration is 
finished when all vertices from V i sets are explored.

We prove that each exploration strategy that uses at most nc agents needs at least D(1 + 1
c −o(1)) steps to explore some 

tree in Tn,D .
Let S be any exploration strategy that uses at most nc agents. We select a tree from Tn,D based on the behavior of S in 

the class of trees Tn,D . More precisely, let T ∈ Tn,D be such that, for each i = 1, . . . , D − 1, if s is the first step in which a 
vertex in V i is visited, then one of the vertices in V i holding the minimum number of agents in step s is the one having 
the vertices in V i+1 as children. In the following we bound the number of steps of S while exploring T . We say that S

http://mostwiedzy.pl


48 D. Dereniowski et al. / Information and Computation 243 (2015) 37–49

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

makes progress in time step s if for some i ∈ {1, . . . , D}, some vertex in V i is not visited in step s − 1 and all vertices in V i
are visited at the start of step s. If only a strict non-empty subset of vertices of V i are visited in some step s, then, by the 
choice of T , the vertex in V i that has Δ children is among those not visited in step s. We have nc agents in v0

q0
in step 1. 

In step 2 at most nc/Δ agents reach v1
q1

. In steps 3 at most nc/Δ2 agents reach v2
q2

, and so on. Thus S exploring tree T
can make progress in at most �logΔ nc� consecutive time steps. This is due to the choice of T .

Let p be the number of maximal sequences of consecutive time steps in which S makes progress. Let si , i = 1, . . . , p, be 
the length of the i-th such sequence. By the above, we obtain that si ≤ �logΔ(nc)� for each i = 1, . . . , p. Since the strategy 
S explores the entire tree T , the total number of steps in which S makes progress equals D , the height of the tree T . We 
obtain D = ∑p

i=1 |si| ≤ p�logΔ nc�. Thus we can lower bound the value p

p ≥ D

�c logΔ n� ≥ D
logΔ

c log n
= D

log(n − (κ + 1)) − log D

c log n
= D

(
1

c
− o(1)

)
, (3)

because log D = Θ(log f ) = o(log n) and log(n − (κ + 1))/ log n = 1 − o(1). Each pair of maximal sequences of consecutive 
time steps in which S makes progress has to be separated by at least one step in which S makes no progress in tree T . 
Thus there are at least p − 1 steps without progress and at most D steps with progress. Let s′ be the first step in which all 
vertices are visited when executing S in T . By (3) and by the choice of T ,

s′ ≥ p − 1 + D ≥ D

(
1

c
− o(1)

)
− 1 + D = D

(
1 + 1

c
− 1

D
− o(1)

)
≥ D

(
1 + 1

c
− o(1)

)
,

where 1
D = o(1) because f is increasing. This completes the proof of (i).

(ii) We use the same family of trees T as in (i). Let S be any exploration strategy with local communication that uses 
at most nc agents.

We select a tree from Tn,D based on the behavior of S in the class of trees Tn,D . If step s is the first step in which 
a vertex in V i is visited, then, since communication is local, agents located in vertex vi−1

qi−1
have no knowledge about the 

degrees of the vertices in V i in step s. Since no agent comes back from V i in step s, agents in vi−1
qi−1

have the same knowledge 
in steps s − 1 and s. We select T ∈ T in such a way that a vertex in V i for which the sum of the number of agents in steps 
s and s + 1 is minimized, is the vertex vi

qi
. Now, similarly as in (i), we lowerbound the number of steps.

We have nc agents in v0
q0

in step 1. Together, in steps 2 and 3, in total at most nc/Δ agents reach v1
q1

. In steps 3 and 
4 at most nc/Δ2 agents reach v2

q2
, and so on. Thus in the first �logΔ nc� + 2 time steps, there are two steps in which the 

algorithm does not make progress in terms of levels explored. Similarly as in previous part of the theorem the number 
of time steps without progress can be lowerbounded by D( 2

c − o(1)). Thus the exploration takes at least D(1 + 2
c − o(1))

steps. �
When looking at the problem of minimizing the size of the team of agents, our work (Theorem 3.4) shows that it 

is possible to achieve asymptotically-optimal online exploration time of O (D) using a team of k ≤ Dn1+ε agents, for any 
ε > 0. For graphs of small diameter, D = no(1) , we can thus explore the graph in O (D) time steps using k ≤ n1+ε agents. 
This result almost matches the lower bound on team size of k = Ω(n1−o(1)) for the case of graphs of small diameter, which 
follows from the trivial lower bound Ω(D + n/k) on exploration time (cf. e.g. [12]). The question of establishing precisely 
what team size k is necessary and sufficient for performing exploration in O (D) steps in a graph of larger diameter remains 
open.
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