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Achieving compact size has emerged as a key consideration in modern microwave design. While 
structural miniaturization can be accomplished through judicious circuit architecture selection, precise 
parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance 
requirements for electrical characteristics. Due to the intricate nature of compact structures, global 
optimization is recommended, yet hindered by the excessive expenses associated with system 
evaluation, typically conducted through electromagnetic (EM) simulation. This challenge is further 
compounded by the fact that size reduction is a constrained problem entailing expensive constraints. 
This paper introduces an innovative method for cost-effective explicit miniaturization of microwave 
components on a global scale. Our approach leverages response feature technology, formulating the 
optimization problem based on a set of characteristic points derived from EM-analyzed responses, 
combined with an implicit constraint handling approach. Both elements facilitate handling size 
reduction by transforming it into an unconstrained problem and regularizing the objective function. 
The core search engine employs a machine-learning framework with kriging-based surrogates refined 
using the predicted improvement in the objective function as the infill criterion. Our algorithm is 
demonstrated using two miniaturized couplers and is shown superior over several benchmark routines, 
encompassing both conventional (gradient-based) and population-based procedures, alongside a 
machine learning technique. The primary strengths of the proposed framework lie in its reliability, 
computational efficiency (with a typical optimization cost ranging from 100 to 150 EM circuit analyses), 
and straightforward setup.

Keywords Microwave circuits, Compact circuits, Simulation-driven design, Size reduction, Numerical 
optimization, Machine learning, Surrogate modeling

 The significance of maintaining compact size has been consistently increasing in the design of contemporary 
passive high-frequency devices, primarily driven by various application areas such as implantable systems1, 
energy harvesting2, mobile communications3, the internet of things4, or RFID5. Due to the dependence of the 
physical dimensions of passives components on the guided wavelength, achieving miniaturization is a complex 
endeavour. It is typically accomplished through a combination of methods, including transmission line (TL) 
meandering6, exploiting slow-wave phenomena7 (e.g., compact microstrip resonant cells, CMRCs8), integrating 
defected grounds9, utilizing metamaterials10, employing substrate-integrated waveguides11, or incorporating 
auxiliary structures (stubs12, slots13, shorting pins14). While often unavoidable, this approach results in intricate 
geometries characterized by numerous parameters and the presence of strong cross-coupling effects. Both 
aspects pose significant design challenges. On the one hand, precise rendition of circuit characteristics demands 
computationally expensive electromagnetic (EM) simulation, as neither analytical nor circuit-theory-based 
models provide sufficient accuracy15,16. On the other hand, geometry parameters must be meticulously tuned in 
a synchronized manner, preferably utilizing rigorous optimization methods17,18.

Optimizing microwave components at the EM level poses challenges primarily due to its computational 
cost. The associated expenses are considerable, even for local parameter tuning (utilizing methods like gradient-
based19 or stencil-based algorithms20), not to mention global search21, statistical analysis (e.g., yield estimation22), 
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design centering23, or multi-criterial design24. Numerous efforts have been made in the literature to streamline 
EM-driven design procedures25–30. Some available methods include cost reduction in sensitivity estimation for 
gradient-based algorithms (employing adjoint sensitivities31, restricted gradient updates32,33), surrogate-based 
techniques utilizing both behavioural34 and physics-based metamodels35, and machine learning frameworks36. 
Surrogate modelling methods applied in these procedures encompass kriging37, radial basis functions38, Gaussian 
process regression39, support vector machines40, as well as artificial neural networks41–43. Physics-based routines 
often rely on space mapping44 or various response correction methods45–47.

In the realm of compact components, parameter tuning is typically geared towards achieving miniaturization, 
making the reduction of circuit size a primary objective48. Simultaneously, stringent conditions are imposed 
on electrical performance metrics, such as the required return loss level, port isolation across a specified 
frequency range, power split ratio, or the phase response49,50. Numerically, this results in highly constrained 
optimization problems, where the constraints are computationally heavy to assess, relying on EM simulation. 
Explicit constraint handling is generally challenging, although recent developments have shown promise 
(e.g51). , . Another approach involves implicit constraint control using penalty functions52, with the main goal 
(diminishing size) supplemented by penalty components measuring potential constraint violations53. While this 
enables reformulation of the problem into an unconstrained task, penalty coefficient adjustment is crucial for 
optimization process performance. Manual setup is non-trivial and usually requires multiple attempts, each 
followed by a test optimization run. Recently, adaptive approaches have been proposed with penalty terms 
automatically adjusted using actual constraint levels and/or the algorithm’s convergence status54,55. However, 
these methods are suitable for local parameter tuning, whereas the geometric complexity of compact circuits 
necessitates global optimization. The most prevalent solution methods are bio-inspired algorithms56–59. 
Unfortunately, their global search capability comes at the cost of poor computational efficiency. In fact, direct 
EM-driven nature-inspired optimization is impractical if not prohibitive. Mitigation methods primarily rely 
on surrogate modelling techniques25,26,60,61. Typical surrogate-assisted frameworks take the form of iterative 
procedures, where the metamodel serves as a predictor, facilitating the identification of the optimum design, and 
is progressively refined using accumulated EM simulation data. Infill points are generated using various rules 
favouring the improvement of the model’s dependability62, allocation of the optimum63, or balanced exploration 
and exploitation64. Algorithms of this kind are often referred to as machine learning procedures65,66.

The bottleneck in surrogate-assisted methods lies in constructing the metamodel itself, hindered by the 
nonlinearity of microwave circuit responses and dimensionality issues67. Consequently, many algorithms are 
only showcased using test cases that involve a limited number of variables and/or within restricted parameter 
ranges68,69. This study introduces a novel surrogate-based methodology for globally simulating-driven 
miniaturization of microwave components. Our approach is a machine learning framework that operates by 
incorporating response features of the circuit of interest, enabling the creation of a reliable surrogate model with 
small training datasets. The infill criterion is involves the enhancement of the predicted merit function, and the 
infill points are generated using a particle swarm optimizer (PSO)70. This is facilitated by the employing penalty 
functions for controlling design constraints, which allow us to reformulate the problem into an unconstrained 
task, aside from the lower/upper parameter bounds defining the search space. Our technique has been showcased 
using two couplers and juxtaposed against several benchmark methods, including gradient-based optimization, 
population-based procedures, and a machine learning framework directly processing complete frequency 
characteristics of the circuit. The results demonstrate consistent and competitive operation with respect to 
achievable size reduction and low running costs. The average expenses incurred by the search process are merely 
about 100 EM circuit analyses.

The paper encompasses several original components and technical contributions, including: (i) the creation 
of an innovative machine learning procedure designed for explicit reduction of microwave device’s size; (ii) the 
implementation of mechanisms that facilitate the search process, such as conducting optimization using response 
features and implicit constraint handling; (iii) the demonstration of the framework’s competitive operation in 
terms of design quality and consistency of produced solutions; (iv) the exhibition of excellent computational 
efficiency in the proposed procedure. As far as the authors are aware, there have been no comparable algorithms 
reported in the literature to date.

Simulation-based size reduction. Constraint handling
This part of the work revisits the formulation of EM-based miniaturization for microwave components as a 
nonlinear constrained minimization problem. We also explore explicit and implicit constraint handling and 
provide an overview of existing solution methodologies. The global search procedure will be detailed in Sect. 3.

Microwave circuit size reduction as optimization problem
Compact structures have gained significant importance across various application areas, including the 
IoT, RFID, and wearable/implantable devices. The design of these structures involves selecting appropriate 
circuit architectures, employing techniques like transmission line meandering6, incorporating metamaterial 
components10, or leveraging the slow-wave phenomenon7. To achieve the necessary electrical performance 
while keeping a small size, concurrent adjustment of all circuit dimensions is essential. Traditional parametric 
studies are no longer sufficient, necessitating rigorous numerical optimization instead.

It should be emphasized that design of compact microwave components differs somehow from the 
development of other types of high-frequency structures, in particular, compact antennas. In antenna design, 
a possible size reduction is impeded by physical constraints, e.g., the required current length path to ensure 
sufficient impedance matching at the lower end of the operating bandwidth. In the case of conventional 
microwave components, the situation is similar. For example, the transmission line lengths are related to the 
operating frequency and expressed in terms of the guided wavelength. However, using technique such as 
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those mentioned in the previous paragraph allows to bypass these physical limitations. At the same time, these 
techniques result in topologically complex designs described by the increased number of parameters, and the 
need to use full-wave EM simulations to ensure accurate circuit evaluations. These factors contribute to making 
the optimization process (including explicit size reduction) a challenging endeavour.

This section presents the formalization of the miniaturization task as a nonlinear minimization problem. The 
pertinent notation is detailed in Table 1, and the design task at hand is expressed as follows:

The feasible space Xf in Eq. (1) is defined as the subset of X such that design constraints are satisfied for all 
x ∈ Xf.

 
x∗ = arg min

x∈Xf

A(x) (1)

Explicit and implicit treatment of design constraints
Managing design constraints represents a challenging aspect of optimization-driven circuit miniaturization. 
In addition to geometrical conditions such as lower and upper parameter bounds, constraints are applied to 
electrical characteristics and necessitate electromagnetic (EM) analysis for evaluation. Explicitly addressing these 
costly constraints is troublesome, particularly in the context of global optimization. An alternative approach is 
implicit treatment using a penalty function method52, where the problem (1) is formulated as:

 
x∗ = argmin

x
UP (x) (2)

The merit function UP in (2) is defined as

 UP (x) = A(x) +
∑ng+nh

k=1
βkck(x) (3)

In this formulation, the main design goal (miniaturization) is accompanied by contributions from penalty 
functions ck(x), which quantify constraint violations. The weighting factors βk (penalty coefficients) dictate the 
influence of individual terms. Examples of constraints are outlined in Table 2. Table 3 offers potential definitions 
for the penalty functions, wherein some cases measure relative constraint violations concerning assumed 
acceptance thresholds (e.g., − 20 dB).

Note that the power factor of two is used, [.]2, so that UP is a smooth function at the boundary feasible space 
Xf. This alleviates the difficulties pertinent to the exploration of that region, otherwise necessary as one or more 
constraints are normally active at the minimum-size design.

A practical problem of implicit constraint handling is a selection of the coefficients βk. Their values cannot 
be too low, as this would impede constraint control. If βk are too high, numerical issues arise due to high 
nonlinearity of UP in the region adjacent to the boundary of Xf. Finding the optimum levels of βk is non-trivial. 
The adaptive constraint handling strategies proposed recently54,55, address this issue to a great extent. At the same 

Constraint Type Analytical description$

Input matching |S11| not exceeding –20 dB over the operating bandwidth [f1f2] Inequality |S11(x,f)| ≤ –20 dB for f Î [f1f2]

Port isolation |S41| not exceeding –20 dB over the operating bandwidth [f1f2] Inequality |S41(x,f)| ≤ –20 dB for f Î [f1f2]

In-band transmission ripple not exceeding 0.2 dB over the operating bandwidth [f1f2] Inequality |S21(x,f)| ³ –0.2 dB for f Î [f1f2]

Power split ratio between output ports 2 and 3 equal to KP at the center frequency f0 Equality |S31(x,f)| – |S21(x,f)| = KP at f = f0;

Phase difference between output ports 2 and 3 equal to 90° at the center frequency f0 Equality ÐS31(x,f) – ÐS21(x,f) = 90° at f = f0;

Table 2. Example constraints in size-reduction of microwave components $The symbol |Sjk(x,f)| stands for the 
modulus of the S-parameter Sjk at the design x, and frequency f.

 

Symbol Meaning Comment

x = [x1 … xn]T Vector of design parameters Typically, the variables are the circuit geometry parameters (dimensions in mm)

X Parameter space Typically, X is an interval [l u], where l = [l1 … ln]T and u = [u1 … un]T are lower 
and upper bounds on design parameters so that lk ≤ xk ≤ uk, for k = 1, …, n

A(x) Circuit size For planar circuits, A(x) is typically a footprint area in mm2

Sjk(x,f)
Scattering parameters at the design x and 
frequency f; j and k refer to the circuit port 
numbers

Scattering parameters are complex numbers; in the design process we handle 
their moduli |Sjk|, expressed in decibels

gk(x) ≤ 0, k = 1, …, ng, Inequality constraints Typically, expressed using acceptance thresholds for selected circuit 
characteristics, e.g., |S11(x,f)| ≤ –10 dB for f within the frequency range of interest

hk(x) = 0, k = 1, …, nh, Equality constraints Typically, expressed using target values for selected circuit characteristics

Xf Feasible space Xf ⊂ X contains parameter vectors x for which all constraints are satisfied, i.e., 
gk(x) ≤ 0 for k = 1, …, ng, and hk(x) = 0 for k = 1, …, nh

Table 1. Simulation-based microwave size reduction. Notation and terminology.
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time, improved explicit constraint handling methods have been proposed51,71. Both types of approaches offer 
reasonable trade-offs between constraint control and possible size reduction; however, they are only applicable 
to local optimization.

Global size reduction by response features and parameter space pre-screening
This section offers a comprehensive overview of the proposed global size reduction method. The technique 
utilizes a surrogate-assisted machine learning approach, integrating an iterative prediction-correction scheme. 
In this process, the surrogate model guides the search towards the optimal design and refines itself iteratively 
with accumulated electromagnetic (EM) simulation data. The size reduction task is reformulated concerning 
the characteristic points of the circuit, as outlined in Eq.  (1). Subsequently, we revisit the response feature 
method, present an analytical formulation of the feature-based merit function, discuss the pre-screening step of 
the optimization process, detail the generation of infill points using nature-inspired algorithms, and provide a 
summary of the operational flow of the complete framework.

Response feature approach. Size reduction task reformulation
The size reduction procedure proposed in this study relies on efficient surrogate models designed to accelerate 
the exploration of the parameter space. The primary challenge lies in the high nonlinearity of microwave 
component characteristics, making them challenging to represent accurately using data-driven methods, 
especially across broad ranges of frequencies and geometry parameters. Figure 1 illustrates exemplary responses 
of a miniaturized coupler, which is considered as one of the verification circuits in Sect. 4. The high nonlinearity 
of the frequency characteristics poses difficulty in being accurately represented by data-driven surrogates. 
Consequently, optimization for any specific objectives (e.g., size reduction) concerning a given target operating 
frequency must be conducted in a global sense, as local tuning is likely to converge to an inferior local optimum 
due to the inherent nonlinearity.

Fig. 1. Scattering parameters of a microstrip coupler at selected random parameter vectors. The characteristics 
are highly nonlinear, therefore, difficult to be represented using data-driven surrogates. At the same time, given 
a target center frequency (here, 1.5 GHz), coupler optimization with local (e.g., gradient-based) routines would 
fail when initiated from majority of the shown designs.

 

Constraint Penalty function

 Input matching |S11| not exceeding –20 dB over the operating bandwidth [f1f2] c(x) =
[
max{max{f1≤f≤f2:|S11(x,f)|}+20,0}

20

]2

 Port isolation |S41| not exceeding –20 dB over the operating bandwidth [f1f2] c(x) =
[
max{max{f1≤f≤f2:|S41(x,f)|}+20,0}

20

]2

 In-band transmission ripple not exceeding 0.2 dB over the operating bandwidth [f1f2] c(x) =
[
max{−min{f1≤f≤f2:|S21(x,f)|}−0.2,0}

0.2

]2

Power split ratio between output ports 2 and 3 equal toKPat the center frequencyf0 c(x) = [|S31(x, f0)| − |S21(x, f0)| −KP ]
2

Phase difference between output ports 2 and 3 equal to 90° at the center frequencyf0 c(x) = [∠S31(x, f0)− ∠S21(x, f0)− 90◦]2

Table 3. Possible formulation of penalty functions for constraints of Table 2.
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To tackle these challenges, we leverage the response feature technology72. The underlying concept involves 
reformulating the problem using suitably defined characteristic (feature) points extracted from the frequency 
responses, utilizing EM simulation data73. As observed in existing literature, the dependence between the 
feature points and geometry variables exhibits less nonlinearity compared to the corresponding relationship 
for frequency characteristics74–76. This regularization of objective functions leads to faster convergence in 
optimization processes75, enabling global search ability even with formally local algorithms, and reducing the 
training set size for metamodel rendition76. The feature point selection should align with the designated design 
objectives, making them problem-dependent73. Specific examples are illustrated in Fig.  2. The characteristic 
points identified in Fig. 2(a) correspond to the minima of the matching and isolation responses (relevant for 
managing the operating frequency of the circuit), − 20 dB levels of |S11| and |S41| (pertinent for the circuit’s 
matching/isolation bandwidth), and the levels of the transmission responses at the center frequency (helpful for 
controlling the power split ratio).

The most important advantage of response features is their weakly-nonlinear dependence on the circuit 
designable parameters72–76. Figure  2(a) demonstrates this using the coupler of Fig.  1, in the form of the 
dependency between the feature-based-evaluated operating parameters and selected design variables. Needless 
to say, representing such dependencies through behavioral models is considerably simpler than behavioral 
modeling of the frequency characteristics. The size reduction framework proposed in this study leverages the 
properties of response features illustrated here.

For the purpose of restating the design task using characteristic points, we need appropriate notation, which 
has been introduced in Fig.  3. Figure  3(a) describes a general notation, whereas Fig.  3(b) elaborates on the 
specific choice of the feature points for coupling structures. These particular points allow us to account for the 
− 20 dB bandwidth for |S11| and |S41|, as well as the power split ratio KP, which can be calculated as KP = fL.5 – fL.6.

Let, as before, f1 and f2 define the frequency range over which both |S11| and |S41| are to be not higher than 
− 20 dB, and KP stands for the target power split ratio. These conditions become design constraints (cf. Tables 
2 and 3) from the points of view of circuit size reduction A(x). The size reduction problem, equivalent to (1), but 
expressed using response features takes the form of

Fig. 2. Response features for a coupler structure: (a) possible characteristic point choices: o – points associated 
with the minima of |S11| and |S41|, ∗ - points corresponding to the power division ratio computed at the 
frequency f0 being the average of the frequencies of |S11| and |S41| minima, ▢- points corresponding to − 20 
dB levels of |S11| and |S41|; (b) relationship between operating conditions (extracted from the response features, 
here the center frequency f0 and power split ratio KP) and selected design variables of the circuit. The plots are 
created using a set of randomly-generated designs. Only the points for which the corresponding characteristics 
allow for extracting the approximated operating parameters, as indicated above, are illustrated. Clear patterns 
can be observed although the shown designs were not subject to optimization.
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x∗ = argmin

x
UF (x, fP (x)) (4)

in which the merit function UF is determined using the feature vector fP(x). For a particular coupler design task 
as discussed above, it may be defined as

 

UF (x, fP (x)) = A(x) + β1






max{ff.1 − f1, 0}
max{ff.3 − f1, 0}
max{f2 − ff.2, 0}
max{f2 − ff.4, 0}






2

+

+β2


ff.5 − f1+f2

2

2
+ β3[(fL.5 − fL.6)−KP ]

2

 (5)

As before, minimization of the circuit footprint area A(x) is the main goal. Then, we have three penalty terms. 
The first one is to ensure that the bandwidth constraint imposed on |S11| and |S41| is fulfilled.

Note that this term is only contributing to UF if there is a bandwidth violation either at f1 or f2. The second 
term is to enforce that the center frequency of the coupler is in the middle of the prescribed bandwidth, whereas 
the last term controls the power split constraint. The coefficients βk can be set to relatively high values because 
the search process will be conducted by means of the surrogate model. In this paper, we set βk = 104 for k = 1, 2, 3.

Fig. 3. Notation pertinent to response features as utilized in this work: (a) general notation, (b) an example 
selection of features for the microstrip coupler design problem (cf. (5)).
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Parameter space pre-screening. Constructing initial surrogate model
The machine-learning-based framework proposed in this paper utilizes a surrogate model to expedite the 
optimization process. The procedure begins by a pre-screening of the search space and constructing the initial 
metamodel s(0)(x). For efficiency and reliability, s(0)(x) is built using characteristic points (cf. Section 3.1). It 
represents the components of the feature vector, i.e.,

 
s(0)(x) =

[[
s
(0)
f.1(x) ... s

(0)
f.K(x)

]T [
s
(0)
L.1(x) ... s

(0)
L.K(x)

]T]T
 (6)

The modelling method employed here is kriging interpolation37, yet, this choice is not critical. The model is 
identified based on the dataset {xB

(j), fP(xB
(j))}, j = 1, …, Ninit, with the feature vectors fP(xB

(j)) determined using 
EM simulation results at xB

(j).
The parameter Ninit is not determined beforehand. The samples are generated sequentially until the 

metamodel’s accuracy achieves the prescribed level. Here, the metric of choice is the relative root-mean square 
(RMS) error77. The target predictive power is Emax. The samples xB

(j) are generated to satisfy the following 
conditions:

• The circuit size A(xB
(j)) ≤ Amax (a user-defined parameter);

• The circuit size A(xB
(j)) ≥ Amin (a user-defined parameter);

• The feature points are extractable at xB
(j);

The first two conditions are optional and introduced to avoid EM analysis for designs at which the circuit size is 
clearly too large or too small; the necessary limits Amin and Amax can be deduced from prior experiments with 
the circuit. For the last condition, at certain designs the of the response features may not be possible, e.g., due to a 
severe distortion of the circuit outputs, in which case the design would not be included into the training dataset.

The pseudocode of the pre-screening and training data generation procedures has been shown in Fig. 4. 
Owing to a relatively simple relation between the characteristic points and circuit’s design variables, it is possible 
to construct usable models using small numbers of samples Ninit, typically less than a hundred. However, as the 
circuit outputs at some of the random designs are degenerated, the actual number of trial points is considerably 
larger than Ninit, usually by a factor between 1.5 and 3.

Fig. 4. Parameter space pre-screening and training data generation for initial surrogate model construction.
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Infill point generation
The core stage of the size reduction process is launched upon constructing the initial surrogate s(0), as described 
in Sect. 3.2. It iteratively produces infill points x(i+1), i = 0, 1, 2, …, and the updated surrogate models s(j), j = 1, 
2, … .

The role of the surrogates is to provide predictions about the minimum-size design, which are obtained by 
optimizing the current metamodel in a global sense, as

 
x(i+1) = argmin

x∈X
UF (x, s

(i)(x)) (7)

The problem (7) is equivalent to (5), except that the vector fP(x) at x is predicted using the surrogate s(i). Further, 
(7) is solved using particle swarm optimization (PSO)78. At this juncture, the specific choice of the global 
optimization routine is of secondary significance, as the surrogate model is cost-effective to evaluate. PSO (or 
any other nature-inspired algorithm) can be configured with a substantial computational budget. Furthermore, 
the optimization problem is formulated in terms of response features, rendering it numerically more manageable 
than the conventional approach (refer to Sect. 2).

From a machine learning standpoint, the procedure outlined in Eq. (7) aligns with the infill criterion being 
grounded on the predicted improvement in the objective function79. The rationale for selecting this criterion is 
twofold: (i) due to the feature-based formulation, the initial surrogate model typically exhibits a sufficiently high 
quality, and (ii) the promising subset of the search space has already been identified through the pre-screening 
process detailed in Sect. 3.2. The surrogate model undergoes refinement after each iteration.

In particular, the infill point xB
(i+1) generated by solving (7) is added, along with the corresponding response 

feature vector fP(xB
(i+1)), to the training dataset, which becomes {xB

(k),fP(xB
(k))}k = 1, …, Ninit + j, where xB

(Ninit+j) = x(i) 
for j = 1, 2, …. The surrogate model is rebuilt using this set and employed as a predictor in the next iteration.

The following termination conditions are utilized (as logical alternatives): (i) convergence in argument, i.e., 
||x(i+1) – x(i)|| < ε, (ii) no objective function improvement over the last Nno_improve iterations. The default control 
parameter values are ε = 10–3 and Nno_improve = 10.

Optimization algorithm
This section provides an overview of the procedural workflow for the proposed method of global feature-
based size reduction of microwave components. We commence by delving into the control parameters, which 
are consolidated in Table  4. It is crucial to underscore that there are only three parameters, with two being 
associated with the termination condition. These parameters primarily govern the requisite resolution of the 
search process. For typical microwave components featuring geometry parameters expressed in millimeters, a 
resolution of 0.001 mm is more than sufficient. The last parameter determines the necessary predictive power 
of the initial surrogate. A 10% relative error (default value) is a mild condition; however, given that the model 
is rendered using characteristic points of the system outputs, this condition can typically be achieved with less 
than a hundred samples (also due to the pre-screening procedure), resulting in computational efficiency for the 
entire framework.

Figure 5 shows the pseudocode of the complete algorithm. For auxiliary elucidation, Fig. 6 provides its flow 
diagram. Steps 2 and 3 constitute the initial stage of the process that include parameter space pre-screening and 
a rendition of the initial metamodel. Both were elaborated on in Sect. 3.2. The core part of the size reduction 
procedure are Steps 5 through 8. Therein, a series of optimum design approximations are generated using the 
assumed infill criterion (predicted objective function improvement), and the surrogate model is re-built based 
on the EM analysis data acquired thus far. The process is continued until the termination condition has been 
fulfilled.

At this point, a few comments should be made concerning the implementation and the complexity of the 
proposed procedure. The underlying programming environment is Matlab. As indicated earlier, there are several 
algorithmic components that include randomized pre-screening, definition and extraction of the feature points, 
surrogate model construction and its (global) optimization, as well as interfacing EM simulation software. 
Most of these components are straightforward to implement (pre-screening, surrogate model rendition, model 
optimization). In particular, in this work, kriging interpolation is employed as an underlying modelling approach. 
It is widely available through third-party toolboxes82–84 (here, we use the Matlab toolbox SUMO82). Surrogate 
model optimization is carried out using PSO, which is one of the most popular bio-inspired techniques. This 
algorithm is easy to implement, and although a plethora of implementations are available, our own Matlab 
implementation is employed here. There are two algorithmic components which are less generic: (i) the interface 
between the programming language (here, Matlab) and EM simulation software (here, CST Microwave Studio), 
which is implemented using Visual Basic to allow batch simulations and automated data acquisition from the EM 
solver; (ii) a procedure for extracting response features. The last component is the only one which is problem-
dependent, and generally changes for a different arrangement of the response features.

Parameter Meaning Default value

Emax  Maximum value of relative root-mean square error of the initial surrogate (error estimated using cross-validation), cf. Section 3.2 10%

ε Termination threshold for convergence in argument, cf. Section 3.3 10–2

Nno_improve Termination threshold for no objective function value improvement, cf. Section 3.3 10

Table 4. Control parameters of the presented algorithm for globalized size reduction procedure.
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However, the feature selection and extraction only vary between different types of microwave circuits (e.g., 
couplers, filters, power dividers). Consequently, a library of extraction procedures may be implemented and 
employed as necessary because the number of different types of circuits is rather limited. Apart from this aspect, 
the remaining part of the procedure is generic and does not require re-implementation for different design 
scenarios.

Results and benchmarking
In this part of the paper, we examine the characteristics of the size reduction framework outlined in Sect. 3. The 
algorithm is deployed to obtain minimum-size designs for two microstrip couplers. Additionally, it is juxtaposed 
against several state-of-the-art methods, encompassing nature-inspired optimization, local (gradient-based) 
tuning, and a machine learning procedure directly handling the frequency characteristics of the circuits under 
consideration. The aim of the numerical experiments is to evaluate the operation of both the proposed method 
and selected state-of-the-art techniques in terms of achievable miniaturization rate, precision in controlling 
design constraints, and computational efficiency.

Test cases
Our numerical experiments are conducted using a compact rat-race coupler80 (Circuit I), and a compact branch-
line coupler with CMRCs81 (Circuit II). The circuit geometries as well as the essential parameters have been 
shown in Figs. 7 and 8, respectively. The EM simulation models are carried out using CST Microwave Studio. 
The primary design goal is minimization of the footprint area A(x). Furthermore, we impose the following 
constraints: (i) h1(x) = |S31(x,f0) – S21(x,f0)|, and (ii) g1(x) = max{f ∈ F : max{|S11(x,f)|, |S41(x,f)|}} + 20 dB; 
therein, f0 stands for the center frequency, whereas F is the target bandwidth. The first constraint is introduced 
to maintain equal power division, whereas the second is to secure the assumed − 20 dB bandwidth for |S11| and 
|S41|. Both constraints are controlled using penalty functions, cf. (2), (3).

The penalty coefficients are set to 100 and 1,000 for the equality and inequality constraint, respectively. These 
values provide a good trade-off between the miniaturization rate and the quality of constraint handling. In 
particular, given that the typical circuit size is a few hundred mm2, the contribution of the penalty term (cf. (3)) 
is 2.5 for inequality constraint violation of 1 dB (corresponding to relative violation of 0.05), and quickly goes up 
if the violation increases. This setup is generally sufficient to ensure that the constraint violation at the optimized 

Fig. 5. Operating flow of the suggested global feature-based size reduction algorithm.
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design does not exceed one dB or so, which is practically acceptable. Similarly, the penalty coefficient of 100 for 
the equality constraints brings the penalty of one for absolution power split ration violation of 0.1 dB, which 
is again sufficient for practical purposes. It should also be noted that the parameters spaces are large for both 
circuits: the average upper-to-lower variable bound ratio is as high as about thirteen for Circuit I, and almost 
seven for Circuit II.

Fig. 7. Circuit I80: (a) geometry, (b) essential parameters.

 

Fig. 6. Flow diagram of the proposed algorithm for global size reduction of microwave passive components.
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Results
The presented methodology has been employed to optimize Circuits I and II using the setup of Table 4, i.e., 
Emax = 10%, ε = 10–2, and Nno_improve = 10. For the sake of comparison, three benchmark techniques have been 
employed, as specified in Table 5. These include:

• A gradient-based optimizer, utilized to demonstrate multimodality of the considered design task, the latter 
justifying the need for global search. The algorithm is initiated from random starting points.

• A bio-inspired algorithm, utilized to demonstrate the challenges of nature-inspired size reduction of micro-
wave components. Particle swarm optimizer (PSO) is chosen as a representative procedure. The computa-
tional budget is kept at 1,000 objective function evaluations. This number is low for this class of algorithms, 
yet, it is high from the perspective of EM-driven design (the typical algorithm run would take two to three 
days to complete).

• A population-based search procedure, differential evolution (DE), selected as one of the most successful 
methods for continuous optimization. Here, the computational budget is also kept at 1,000 objective function 
evaluations for the same reasons as in the case of PSO.

• A machine learning procedure that employs the same infill criterion and surrogate model (kriging) as the 
algorithm of Sect. 3. However, it works at the level of complete circuit characteristics. This algorithm is in-
corporated into the benchmark set to illustrate the benefits of integrating the response feature technology 
into the optimization framework proposed in this work. The values of control parameters of the PSO and DE 

Algorithm Algorithm type Setup

I Trust-region gradient based optimizer
Algorithm setup:
• Random initial design;
• Response gradients estimated using finite differentiation;
• Termination criteria based on convergence in argument and reduction of the trust region size.

II
Particle 
swarm 
optimizer 
(PSO)

Algorithm setup:
• Swarm size N = 10,
• Standard control parameters (χ = 0.73, c1 = c2 = 2.05);
• Number of iterations set to 100.

III
Differential 
evolution 
(DE)85

Algorithm setup:
• Population size N = 10;
• Standard control parameters (crossover probability CR = 
0.9, differential weight F = 0.8);
• Number of iterations set to 100.

IV Machine learning procedure

Algorithm similar to that of Sect. 3:
• Initial surrogate set up to ensure relative RMS error not higher than 10% with the maximum 
number of training samples equal to 400;
• Optimization based on processing the circuit frequency characteristics (unlike response 
features in the proposed procedure);
• Infill criterion: minimization of the projected objective function improvement79.

Table 5. Benchmark algorithms.

 

Fig. 8. Circuit II81: (a) geometry, (b) essential parameters.
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algorithms are standard as found in the literature. The assumption is that a typical used does not tune the algo-
rithm for a particular task at hand but employs the most conventional parameter values. Regarding Algorithm 
IV, the acceptance threshold of 10% is chosen because this level of relative RMS error normally corresponds 
to almost decent visual alignment between surrogate-predicted and EM-simulated circuit responses and can 
therefore be treated as a sufficient starting point for further ML-based search process. The computational 
budget of 400 samples for initial surrogate model construction is selected for purely practical reasons (to 
avoid excessive costs of model rendition given a relatively long EM simulation time).

The investigation into the repeatability of solutions involved conducting ten independent runs of each algorithm. 
Tables  6 and 7 present numerical results, offering average values and standard deviations of the circuit size, 
design constraint violations, and the average computational cost of the optimization process. Figures  9 and 
10  visually depict the circuit responses for the optimized designs obtained in selected runs of the proposed 
procedure, highlighting the evolution of the circuit footprint area and the values of design constraints.

Discussion
The results gathered in Sect. 4.2 provide an extensive performance assessment of the explicit circuit miniaturization 
framework, as well as how it compares to the three benchmark algorithms outlined earlier.

To start, it is noteworthy to examine the outcomes obtained using the gradient search procedure (Algorithm 
I). This method demonstrates poor repeatability of solutions; for instance, the standard deviation of the footprint 

Optimization algorithm

Performance figure

Circuit size A 
[mm2] 1 Sth(A) [mm2] 2

Inequality constraint Equality constraint

CPU 
cost7

Violation g1 
[dB] 3

Std(g1) 
[dB] 4

Violation h1 
[dB] 5

Std(h1) 
[dB] 6

Algorithm I 295.1 24.7 3.6 1.9 0.2 0.1 77 [5.2 
h]

Algorithm II 541.5 240.4 5.5 6.8 0.7 0.1 1,000 
[66.7 h]

Algorithm III 573.2 112.3 3.8 3.6 0.5 0.3 1,000 
[66.7 h]

Algorithm IV 270.3 13.3 6.3 3.6 1.0 2.2 398.4 
[26.6 h]

Machine learning with 
response features (this 
work)

293.9 15.3 0.7 0.2 0.0 0.06 110.0 
[7.3 h]

1Optimized footprint area of the circuit averaged over ten algorithm runs.2Standard deviation of the optimized 
footprint area averaged over ten algorithm runs.3Violation of inequality constraint, defined as g1=max{fεF: 
max{|S11(x,f)|,|S41(x,f)|}}+20 dB averaged over ten algorithm runs.4Standard deviation of the constraint violation g1, 
averaged over ten algorithm runs.5Violation of equality constraint, defined as h1=|S31(x,f0)|- |S21(x,f0)| dB averaged over 
ten algorithm runs.6Standard deviation of the constraint violation h1, averaged over ten algorithm runs.7Cost expressed 
in terms of equivalent number of EM analyses. Numbers in bracket correspond to the running time in hours

Table 7. Circuit II: optimization results.

 

Optimization algorithm

Performance figure

Circuit size A 
[mm2] 1 Sth(A) [mm2] 2

Inequality constraint Equality constraint CPU 
cost7Violation g1 [dB] 3 Sth(g1) [dB] 4 Violation h1 [dB] 5 Sth(h1) [dB] 6

Algorithm I 378.0 59.3 4.5 4.3 0.2 0.2 63 
[2.8 h]

Algorithm II 543.1 86.8 –1.0 1.6 0.1 0.1 1,000 
[44.4 h]

Algorithm III 528.3 77.2 2.1 1.8 0.3 0.2 1,000 
[44.4 h]

Algorithm IV 500.9 25.6 12.3 4.8 6.6 4.4 417.4 
[18.5 h]

Machine learning with 
response features (this 
work)

354.3 8.0 0.4 0.2 0.04 0.03 154 
[6.8 h]

Table 6. Circuit I: optimization results. 1Optimized footprint area of the circuit averaged over ten algorithm 
runs.2Standard deviation of the optimized footprint area averaged over ten algorithm runs.3Violation of 
inequality constraint, defined as g1=max{fεF: max{|S11(x,f)|,|S41(x,f)|}}+20 dB averaged over ten algorithm 
runs.4Standard deviation of the constraint violation g1, averaged over ten algorithm runs.5Violation of equality 
constraint, defined as h1=|S31(x,f0)|- |S21(x,f0)| dB averaged over ten algorithm runs.6Standard deviation of the 
constraint violation h1, averaged over ten algorithm runs.7Cost expressed in terms of equivalent number of EM 
analyses. Numbers in bracket correspond to the running time in hours.
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Fig. 9. S-parameters of Circuit I at the optimum designs obtained using our size reduction framework (top), 
circuit size versus iteration index (middle), and design constraint violations versus iteration index (bottom), 
shown for the chosen algorithm executions: (a) run 1, (b) run 2. The iteration counter starts after constructing 
the initial surrogate model. Vertical and horizontal lines indicate the intended operating frequency range (here, 
from 0.95 GHz to 1.05 GHz), and the acceptance level for |S11| and |S41| (here, − 20 dB).
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Fig. 10. S-parameters of Circuit II at the optimum designs obtained using our size reduction framework (top), 
circuit size versus iteration index (middle), and design constraint violations versus iteration index (bottom), 
shown for the chosen algorithm executions: (a) run 1, (b) run 2. The iteration counter starts after constructing 
the initial surrogate model. Vertical and horizontal lines indicate the intended operating frequency range (here, 
from 1.45 GHz to 1.55 GHz), and the acceptance level for |S11| and |S41| (here, − 20 dB).
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area exceeds fifteen and ten% for Circuit I and II, respectively. This observation indicates the presence of multiple 
local optima for the considered test problems. Given that the results are heavily dependent on the initial design, 
the use of global optimizers becomes essential. Moreover, while the average circuit size produced by gradient 
search is small, the constraint control is subpar, especially for the inequality condition, with an average violation 
of about four decibels.

Figure 9. S-parameters of Circuit I at the optimum designs obtained using our size reduction framework (top), 
circuit size versus iteration index (middle), and design constraint violations versus iteration index (bottom), 
shown for the chosen algorithm executions: (a) run 1, (b) run 2. The iteration counter starts after constructing 
the initial surrogate model. Vertical and horizontal lines indicate the intended operating frequency range (here, 
from 0.95 GHz to 1.05 GHz), and the acceptance level for |S11| and |S41| (here, − 20 dB).

Algorithms II (particle swarm optimizer) and III (differential evolution) perform even worse. On the one 
hand, the average circuit sizes are considerable larger than for the remaining methods, just as are their standard 
deviation. On the other hand, the constraint control is mediocre, although not as bad as for Algorithm I. This 
level of performance is—in a large part—a result of the assigned computational budget (only 1,000 objective 
function calls). Arguably, increasing the budget to five or ten thousands of objective function evaluations would 
improve the results of Algorithms II and III significantly. Unfortunately, this is impractical or even prohibitive 
due to a typical algorithm run taking several weeks to conclude.

The operation of Algorithm IV (ML working with the complete circuit responses) is similarly poor. Although 
the surrogate model accuracy threshold Emax of 10% seems reasonable, the actual predictions (especially 
concerning design constraints) are impeded by high nonlinearity of the circuit frequency characteristics. 
Consequently, the resulting constraint violations are the highest among the considered algorithms, while the 
obtained circuit sizes are the smallest. Meanwhile, the average number of data points needed to secure the error 
level of Emax is over 350, and it is the major contribution to the overall CPU expenses of the search process. It is 
evident that improving the design quality would require setting up considerably lower accuracy threshold (e.g., 
two or three%), which, however, would also lead to significantly higher CPU expenses.

The algorithm proposed in this work performs better than the benchmark methods. Its most important 
property is that it delivers truly minimum-size designs with excellent constraint control. The average violation 
of the inequality constraint is a fraction of decibel, whereas the violation of the equality constraint is essentially 
zero. This places the designs produced by the algorithm on the feasible region boundary. At the same time, 
the achieved footprint areas are competitive (it should be stressed that smaller sizes found by Algorithms I 
and IV are strongly infeasible), whereas repeatability of solutions is good: the footprint area standard deviation 
amounts to only two and five% on the average for Circuit I and II, respectively. It should be recalled that design 
feasibility refers to a situation where all design constraints are satisfied. For inequality constraints, the reflection 
and port isolation (|S11| and |S41|, respectively) do not exceed − 20 dB within the frequency range of interest. 
The equality constraints are satisfied if the power split ratio is precisely equal to the target value (here, 0 dB, i.e., 
equal power division). Rendering the exact required value of the power split is impossible, so no design can be 
formally feasible. However, power split errors at the level of 0.1 dB (or about 1% in relative terms, i.e., in terms of 
relative deviation from 50/50 power division) are considered feasible for practical purposes. For the inequality 
constraint, when the target level is set at − 20 dB, violations of up to 1 dB are also acceptable. Keeping this in 
mind, “strong infeasibility” is understood by excessive violation of constraints, which in the case of the inequality 
constraint is more than 1–2 dB, and in the case of the equality constraint, it is more than 0.2–0.3 dB. The latter 
is because the power split ratio should be more precise than the impedance matching and port isolation levels.

A separate note should be made concerning standard deviations of both the achieved circuit size and 
constraint violations for the proposed and the benchmark algorithms. High standard deviation for Algorithms 
I, II, and III are related to two factors. For Algorithm I, the primary reason is that this method is a local one; 
consequently, it identified the local optimum which is typically nearest to the starting points (the latter being 
randomly selected). Most of these local optima are different from each other and many are of inferior quality. For 
Algorithms II and III, the principal issue is relatively limited computational budget, meaning that the algorithms 
were unable to properly converge. At the same time, this budget (1,000 EM simulations) is significant from 
practical perspective. Thus, the results indicate that direct population-based size reduction is not an attractive 
option. Algorithm IV performs better with this respect; however, its standard deviations are generally higher 
than for the proposed algorithm. Here, the underlying reason is limited accuracy of the surrogate model leading 
to limited-accuracy predictions of the circuit characteristics during the machine learning search process. On the 
other hand, the proposed approach constructs the model in a pre-screened parameter space region and leverages 
the properties of the response features, both leading to considerably better reliability. The latter translates into 
improved consistency of the results and lower standard deviation values.

In regard to computational efficiency, our methodology is evidently more time-consuming than local search; 
however, the differences are not substantial (seven hours versus three hours for Circuit I, and seven hours 
versus five hours for Circuit II). It is important to note that our technique provides global search capability. 
In comparison to global design procedures, our algorithm demonstrates an average optimization cost that is 
over six and about nine times faster than PSO/DE for Circuit I and II, respectively, and approximately three 
times faster than the machine learning procedure for both circuits. Therefore, the computational advantages are 
undeniable.

Given the comments formulated above, one can conclude that the suggested procedure exhibits properties 
that are attractive from the perspective of practical global optimization of microwave passives. It does not only 
offer quasi-global search capability, but as a result of incorporating the response features and the pre-screening 
stage, the computational efficiency is better than that of representative nature-inspired and machine learning 
methods.
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It should also be emphasized that it is not possible to compare the circuit size before and after optimization. 
This is because the optimization process is global and there is no initial design that the optimized design might 
be compared to. In particular, the search process starts from randomized pre-screening used to acquire data 
for initial surrogate model construction. This data contains a mixture of feasible and infeasible designs (mostly 
infeasible), and it is not possible to find any reasonable point of reference. Only during the optimization process, 
the feasibility of designs is gradually improved and so is the size reduction. Consequently, we may only compare 
the circuit sizes obtained by different algorithms (the proposed one and the benchmark).

Conclusion
This paper proposed an innovative technique for explicit miniaturization of microwave passive components. 
Our method involves the response feature approach to perform a design space pre-screening, and to facilitate 
a rendition of dependable surrogate model. The latter is employed to identify the position of the optimum 
design. The search process in embedded in a machine learning framework that uses kriging interpolation as a 
surrogate modelling technique, particle swarm optimizer to generate the sequence of designs approximating the 
minimum-size design, and predicted merit function improvement as the infill criterion. The design constraints 
are controlled implicitly by means of penalty functions. Numerical experiments conducted using two compact 
microstrip couplers demonstrate competitive performance of our procedure w.r.t. the design quality, repeatability 
of solutions, and computational efficiency. In particular, our algorithm enables generation of small-size designs 
with improved control of constraint violations, and good consistency: the standard deviation of the circuit 
footprint area is lower than 5% of its mean value. The CPU cost associated with circuit optimization is slightly 
above 100 EM simulations (150 and 110 for the first and the second verification circuit), which is significantly 
less than for the benchmark methods.

A comparison with a machine-learning framework that processes complete circuit characteristics corroborates 
the benefits of incorporating response features, both w.r.t. the improved surrogate model accuracy but also 
computational efficiency of the search process. It should be mentioned that the employment of this technology 
is also a source of potential limitations of the method. On the one hand, the very definition and extraction of 
characteristic points is problem dependent. On the other hand, for larger parameter spaces, the likelihood of 
generating random observables with extractable feature points is diminished, which would lead to increasing 
the cost of the size reduction process, contributed to in a large part by the pre-screening step. Notwithstanding, 
this issue would not be pronounced if the parameter space is reasonably defined, e.g., using the designer’s insight 
established at the stage of developing the circuit geometry. This means, among others, that the parameter bounds 
are set up to focus the optimization process on designs that are likely to be of decent quality, and to eliminate 
parameter combinations that evidently (i.e., according to the designer’s experience) have no chance to fulfill the 
assumed specifications imposed on electrical characteristics (e.g., physically too small). For the specific test cases 
considered in this work, the design spaces were quite extensive with respect to the parameter ranges, yet, the 
algorithm managed to identify the minimum-size designs in a consistent manner.

In conclusion, the size-reduction framework introduced in this study emerges as a possible alternative 
to state-of-the-art methods, particularly when the CPU budget assigned to the optimization process is a key 
consideration. Aside from the necessity to individually define feature points in a problem-dependent manner, 
the algorithm is undemanding to implement and configure, requiring no tailoring of control parameters.

One of the objectives of the future work is to investigate the properties and performance of the proposed 
algorithm for high-dimensional parameter spaces (n > 10). Another topic of interest will be extending the range 
of applicability of the presented framework to other types of microwave components (e.g., filters, power dividers, 
multi-band structures). As the algorithm itself is generic, the main challenge will be appropriate definition and 
extraction of the response features, which must be carried out individually for each type of circuit.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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