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A B S T R A C T

This paper proposes a novel approach for intelligent fault diagnosis for stroke Diesel marine engines, which are commonly used in on-road and marine 
transportation. The safety and reliability of a ship's work rely strongly on the performance of such an engine; therefore, early detection of any type of failure that 
affects the engine is of crucial importance. Automatic diagnostic systems are of special importance because they can operate continuously in real time, thereby 
providing efficient monitoring of the engine's performance. We introduce a fully automatic machine learning-based system for engine fault detection. For this 
purpose, we monitor various signals that are emitted by the engine, and we use them as an input for a pattern classification algorithm. This action is realized by an 
ensemble of Extreme Learning Machines that work in a decomposition mode. Because we address 14 different faults and a correct operation mode, we must handle 
a 15-class problem. We tackle this task by binarization in one-vs-one mode, where each Extreme Learning Machine is trained on a pair of classes. Next, Error-
Correcting Output Codes are used to reconstruct the original multi-class task. The results from experiments that were conducted on a real-life dataset demonstrate 
that the proposed approach delivers superior classification accuracy and a low response time in comparison with a number of state-of-the-art methods and thus is a 
suitable choice for a real-life implementation on board a ship.

1. Introduction

In maritime environments, 4-stroke Diesel engines are commonly
used in on-road and marine transportation. For this reason, these types
of engines are a major source of toxic emissions into the atmosphere.
The harmful compounds that are emitted from Diesel engines are
carbon and nitrogen oxides and unburned hydrocarbons. The dete-
rioration of the technical state of Diesel engines will decrease their
efficiency. As a result, there is higher fuel consumption and increased
emissions of harmful compounds into the atmosphere. For this reason,
in addition to research on improving the structures of Diesel engines, it
is important to perform research on diagnostic methods for these
devices. Technical diagnostics of Diesel engines is especially crucial in
marine engine maintenance and operations. Based on a simple
calculation, it can be estimated that a ships engine with 20 MW output
power consumes almost 100 tons of fuel and emits into the atmosphere
approximately 6 tons of nitric oxide (NOx) per day. The technical
diagnosis of marine engines is an important and relatively difficult task
for the marine engine operators. The reason is that the diagnostic
signals are changed not only from changing the technical condition of

the engine but from the changes in the load and/or speed of the engine.
The presented conditions tend to create automated diagnostic tools

that are aimed at assisting the detection of marine equipment
malfunctions. The simplest solutions for supporting the diagnostic
decisions are systems of automatic signaling when the permissible
operating engine parameters exceed their boundaries. Such systems
allow for the prevention of sudden damage that could lead to a
stoppage of the engine, but only during the engines relatively heavy
load operation. The presented method is the most popular during on-
board operations and maintenance. Some extensions of the mentioned
method are diagnostic systems that have been proposed by ship engine
manufacturers, such as the CoCoS Engine Diagnostic System of MAN
or DICARE of Caterpillar (Woodyard, 2009). Both systems allow the
monitoring of engine parameters, along with reporting and simple
trend analysis. In each of the mentioned diagnostic systems, the
decision is made by the engine room operator based on his/her
knowledge and experience. It should be noted that insufficient or
incorrect diagnosis of the engines technical conditions could lead to
environmental risk and stoppage of the ship. In such cases, there is, in
addition, no possibility of controlling the level of toxic emissions into
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The main contributions of this paper are as follows:

• A novel approach for monitoring marine 4-stroke diesel engines
based on a set of diagnostic signals.

• Design of effective and intelligent fault-detection system using
machine learning techniques.

• Ensemble of binary Extreme Learning Machines in one-vs-one mode
utilizing Error Correcting Output Codes.

• Extensive experimental results on a real-life dataset collected by the
authors, which prove the high quality of the proposed ensemble-
based fault detection in terms of an excellent accuracy and low
response times and which allow for the potential to have an on-
board implementation in marine vehicles.

The remainder of this manuscript is organized as follows. The next
section describes in detail the problem of engine failure description, the
proposed diagnostic signals and the considered types of engine failures.
Section 3 describes the details of the proposed intelligent fault-
detection system based on an ensemble of randomized neural net-
works, while Section 4 presents the details of the experimental study
that was performed and the obtained results along with their thorough
analysis. The final section presents the paper's conclusions.

2. Problem of engine failure description

In this section, we present a detailed description of the used engine
model, the measured diagnostic signals and the considered types of
possible faults to be detected.

2.1. Laboratory research

This study was conducted on a marine, 3-cylinder, 4- stroke, direct
injection diesel engine with an inter-cooler system. The engine was
loaded with a generator that was electrically connected to the water
resistance and supercharged by a VTR 160 Brown-Boveri turbocharger.
During the tests, the engine was fueled by diesel oil with known
properties and operated at a constant speed, equal to 750 rpm. The
fueling system of the engine consists of mechanically controlled Bosh
type fuel pumps connected to injectors with multi-hole type nozzles.
This type of engine is commonly used as a power generator or main
propulsion system with a variable pitch propeller (Carlton, 2012). A
total of 56 parameters of the laboratory stand, including the engine
load and speed, the parameters of the turbocharger, the systems of
cooling, fueling, and lubricating and the air exchange were measured.
The composition of exhaust gas was also recorded using an electro-
chemical gas analyzer with an infrared carbon dioxide sensor. The
pressure, temperature and humidity of the air were also recorded by
the laboratory equipment. All of the mentioned results were recorded
with a 1-s sampling time. The injection and combustion pressure in all
of the cylinders of the engine were also recorded. The scheme of the
laboratory stand is presented in Fig. 1, while the most important
engine parameters are presented in Table 1.

The laboratory tests consisted of the engine operation with the
following faults:

• the throttling of the exhaust gas duct (two adjustments),

• the throttling of the air inlet duct (two adjustments),

• the shift of the fuel pump cam on the camshaft, which causes a delay
in the fuel injection,

• the leakage of the air inlet valve,

• the leakage of the exhaust gas valve (two adjustments),

• the decrease in the opening pressure of the fuel injector,

• the increase in the opening pressure of the fuel injector,

• the chocked fuel injector,

• the discalibrated fuel injector,

• the leakage of the fuel injection pump (two adjustments).

The test procedure, the parameters of the measuring devices and the
analysis of results are presented, i.e., in Kowalski (2014, 2015a, b).

2.2. Classification problem description

Any fault of the internal combustion engine causes changes in the
organization of the combustion process in the engine cylinders and
causes changes in the composition of the exhaust gases. Usually, the
change in the fuel fraction in the combustible fuel mixture causes a
change in the carbon monoxide (CO) and carbon dioxide (CO2)
emissions in the exhaust gas from the engine. The engine faults that
are located in the air/exhaust gas exchange system result in changes in
the amount of air supplied to the engine cylinders. The resulting effect
could be a change in the oxygen (O2) content of the exhaust gas of the
engine. Furthermore, changes in temperature, pressure and time of the
combustion in the cylinder results in changes in the (NOx) content of
the exhaust gas. The content of NOx in the exhaust gas is also
dependent on the humidity, temperature and pressure of the charging
air. This description is very generalized and simplified; however, it
presents the desirability of the use of the mentioned exhaust gas
components as carriers of the diagnostic signals. It should be noted
that the presented carriers of the diagnostic signals do not allow the

the atmosphere and reducing the fuel consumption. A solution to this 
problem is the installation of additional sensors in the functional 
systems of the engine. One of such solutions is a diagnostic system that 
is based on fast deterioration of the engine crankshaft (Yang et al., 
2001; Renaudin et al., 2010; Dereszewski, 2014) analysis of the boost 
pressure (Wu and Huang, 2011), combustion pressure (Pawletko, 
2015) or acoustic emission (Pontoppidan et al., 2005). To prevent 
negative effects on the environment, the International Maritime 
Organization introduced Annex VI to the Marpol 73/78 Convention. 
This Annex forces ship owners to limit NOx emissions from ship 
engines. According to the mentioned regulation, every on-board engine 
that is above 130 kW that is introduced to operation is obligated to 
have a valid certificate that confirms the acceptable emissions of NOx. 
If ship engines are subjected some alterations during the operation 
period, they will have to extend the certificate. Prolonging the 
certificate consists of checking sets of parameters and the structural 
parts of the engine that influence the NOx emission. Any changes in the 
design or adjustment of the engine beyond the framework established 
during the certification entails the need for direct measurement of the 
NOx emission. Therefore, ship owners are encouraged to install 
systems for the direct measurement of the composition of the exhaust 
gases on-board. Installation of the systems to exhaust gas analysis on-
board can utilize the results of the measurements for the diagnosis of 
marine Diesel engines. For this reason, the aim of the presented work is 
diagnostic signal identification in exhaust gas identification of marine 
4-stroke Diesel engines. Achieving the objective requires conducting an 
active experiment that consists of registration of the influence of 
selected marine engine failures on the composition of the exhaust 
gas. The obtained results were used for the selection of the diagnostic 
signals that allow for the technical diagnosis of the engine. To verify the 
results, a set of computer experiments was conducted that involved the 
classification of the results by a neural network ensemble (Woźniak, 
2014) that utilized the Extreme Learning Machine (Ding et al., 2015) 
principles and worked in the decomposition mode. We propose to use a 
one-vs-one approach, where the discussed multi-class problem is 
divided into a number of simpler pairwise tasks, and each base 
classifier is trained on a simplified problem. Error-Correcting Output 
Codes (Dietterich and Bakiri, 1995) are then used to reconstruct the 
original multi-class decision from a set of binary outputs. In this way, 
we can achieve improved recognition accuracy by exploiting local 
specializations of the classifiers in the ensemble.
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detection of the engine faults that occur in the individual cylinders. The
detection of the engine condition requires the identification of the
engine cylinder in which the fault occurred. For this reason, the
diagnostic signals must also come from the respective engine cylinders.
An available and widely used diagnostic signal is the temperature of the
exhaust gas from the engine cylinders. Accordingly, the following
carriers of the diagnostic signals were selected: the mass fraction of
NOx in the exhaust gas, the corrected-to-standard atmospheric condi-
tions,1 the mass fractions of CO and CO2T in the exhaust gas of the
engine and the exhaust gas temperature behind all of the cylinders of
the engine.

3. Classification model

In this section, we describe the details of the proposed machine
learning-based fault-detection system.

3.1. Extreme learning machines

Extreme Learning Machines (ELMs) (Ding et al., 2015) are
random-based single-layer feedforward neural networks that are
trained in a randomized manner to reduce their computational
complexity. Over the past two decades, there have been a number of
significant developments in the field of neural network training

algorithms (Jain et al., 2014). However, most of these approaches
have suffered from the extended computational time that is required
for effective execution and the large number of parameters to be set.
ELMs are among the emerging trends in neural network learning that
aim at alleviating the training complexities with the usage of randomly
drawn weights for the neurons in the hidden layer. One must note here
that despite the emerging popularity of ELMs-based approaches, this
concept can in fact be traced further down in the literature to the
proposals of Randomized Neural Networks (Schmidt et al., 1992) and
Random Vector Functional Link (Pao et al., 1994). Let us now present
the concept of ELMs. We assume that we have n labeled objects in a d-
dimensional feature space and a set of M class labels at our disposal. A
single-layer feedforward neural network with N hidden neurons could
be described by the following equation:

∑ f by B w x= ( · + ),
i

N

i i i
=1 (1)

where f () represents the activation function, x is the considered object,
wi stands for input weights associated with i-th hidden neuron, bi is its
bias and Bi are weights assigned to output neurons.

When considering all of n training points, we use this equation in a
matrix form:

Y HB= , (2)

where H is the matrix that stores outputs of the hidden layer for each
input object:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

f b f b f b
f b f b f b

f b f b f b

H

w x w x w x
w x w x w x

w x w x w x

=

( · + ) ( · + ) ⋯ ( · + )
( · + ) ( · + ) ⋯ ( · + )

⋮ ⋮ ⋱ ⋮
( · + ) ( · + ) ⋯ ( · + )

,

N N

N N

n n N n N

1 1 1 2 1 2 1

1 2 1 2 2 2 2

1 1 2 2 (3)

and B B B B= ( , , … )N
T

1 2 and Y y y y= ( , , … )n
T

1 2 . To calculate weights
assigned to outputs B, we must compute the Moore–Penrose general-
ized inverse of the matrix H, which will be denoted as H−1.

ELMs algorithm consist of three main steps:

1. Randomly generating the bias matrix b b bb = ( , , … )N
T

1 2 and weight
matrix W w w w= ( , , … )N

T
1 2 .

2. Calculating H using Eq. (3).
3. Calculating output weights B H Y= −1 .

Fig. 1. The scheme of the laboratory stand (Kowalski, 2014).

Table 1
Parameters of the laboratory engine.

Parameter Value Unit

Max. electric power 250 kW
Rotational speed 750 rpm
Cylinder number 3
Cylinder diameter 250 mm
Stroke 300 mm
Compression ratio 12.7
Injector nozzle
Holes number 9
Holes diameter 0.325 mm
Opening pressure 25 MPa

1 ISO 8178 standardReciprocating internal combustion engines.
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H H H H≅ ( )T T−1 −1 (4)

where HT is a transposed matrix H. This approach allows us to add a
ridge parameter

λ
1 to the diagonal of H H( )T , which is known as the

ridge-regression regularization approach (Buteneers et al., 2013).
Applying it leads to obtaining a more stable solution.

After regularization, we can calculate the matrix of the output
weights in step 3 of the ELMs training according to

⎛
⎝⎜

⎞
⎠⎟λ

B I H H H Y= + ,T T
−1

(5)

where I is an identity matrix of equal size to H.
A main advantage of ELMs is their low computational complexity,

ease of implementation, minimum hardware demands, and high speed
of response. These properties make them a highly suitable tool for real-
time autonomous fault diagnosis systems.

3.2. Decomposition-based ensemble architecture

ELMs have proven themselves to be one of the most efficient
contemporary classifiers. However, we must remember that due to
their random initialization, ELMs might be observed as unstable
classifiers. Regularization reduces their variance, but there is no
guarantee that the outputted model will display the highest possible
performance on a given dataset. Therefore, the ensemble learning
paradigm (Woźniak, 2014) has started to attract the attention of the
ELMs community in recent years (Ayerdi and Graña, 2014; Cao et al.,
2015).

The majority of ELMs ensemble architectures proposed in the
literature attempt to take advantage of the random weight generation
property of these neural networks and utilize it as a method of ensuring
diversity among the committee members. Then, a voting procedure is
applied to combine the individual outputs into a final compound
prediction (Cao et al., 2012).

One can discuss the efficacy of such an approach with respect to the
ability to both maintain diversity and provide mutually complementary
classifiers for the pool. Methods based on varying the input (Jackowski
et al., 2014) or output (Galar et al., 2015) spaces were reported to
deliver highly efficient performance in varying multi-class scenarios,
and thus, they could furnish attractive solutions to training ELM
ensembles.

In our design of an intelligent fault diagnosis system, we must be
aware of the scale of the problem that we are working with. There are a
total of 15 different engine states that must be detected, which leads to
15 different classes to be distinguished. This problem is a complex
classification problem, especially because some of the faults could have
similar characteristics but have highly differing effects on the engines
performance. Therefore, we require a compound and intelligent system
that will be able to provide very high classification accuracy in scenarios
with many classes and many potentially similar classes.

We propose to address this issue by using the divide-and-conquer
approach known as multi-class decomposition (Lorena et al., 2008).
This approach works on the basis of creating a set of sub-problems
from the original multi-class task, where each problem is characterized
by a reduced number of classes. The most popular approach used in
this domain is binary decomposition, where the input dataset is
transformed into a number of binary problems. In this way, we obtain
a significantly simplified classification task, where each base learner is
responsible for dichotomization between two classes only. This ap-

proach reduces the classifiers complexity and was proven to lead to
significantly improved performance when compared with a multi-class
version of the same classifier. In binary decomposition, two approaches
have received the largest amount of attention: one-vs-one (OVO) and
one-vs-all (OVA) (Galar et al., 2011).

In OVO (Liu et al., 2008), a multi-class problem of m classes is
divided into m m( − 1)/2 binary problems. They are formed by exhaus-
tive pairwise selection of all possible two class combinations.
Therefore, instances of the pair of classes are used to train each
classifier (while ignoring the other classes). This approach leads to
simplified classification boundaries and can counter some of the
problems that are embedded in the nature of multi-class data, such
as labeling noise or overlapping of categories.

In OVA (Rifkin and Klautau, 2004), a multi-class problem of m
classes is divided into m binary problems. They are formed by selecting
one class as the positive group and aggregating the remaining classes as
a single negative category. This approach leads to significantly smaller
ensembles than in the OVO case, but it introduces an additional
difficulty in the form of an artificial class imbalance. For m classes,
each base classifier will have to face a m1: − 1 imbalance ratio, which
could be harmful to its performance. Recent studies show that the OVA
approach is inferior to OVO in many real-life problems (Galar et al.,
2011).

Because we address a 15-class problem, the intuitive choice is to
choose the OVO strategy. This choice can be justified as follows:

• ELMs can address multi-class classification, but they do not display
any robustness to potential class overlapping (similarities in differ-
ent error characteristics) and could highly benefit from simplifica-
tion of the learned problem.

• We require the highest possible classification accuracy because even
small errors in the ship engines that go undetected or wrongly
recognized could lead to significant costs.

• A high number of base classifiers in OVO (105 classifiers for a 15-
class task) is not a problem because ELMs are characterized by very
low computational complexity and an ensemble of such a size can be
efficiently implemented in any portable computational device or
embedded as a hardware implementation of the engine itself.

• OVA cannot be efficiently applied because it will impair base
classifiers by introducing a 1:14 imbalance ratio into each pairwise
problem.

Having selected the decomposition methodology, we require a
classifier combination strategy to reconstruct the multi-class problem
from the individual binary outputs. Among the plethora of available
solutions, we propose to use Error-Correcting Output Codes (ECOC)
(Allwein et al., 2000).

An ECOC combiner can be used together with the OVO solution to
efficiently choose the final class to be predicted while offering an
efficient way to reduce the errors that could occur at the individual
classifier level. To predict a label for a new example, the outputs of the
classifiers are introduced in a code-word by mapping the positive class
to +1 and the negative class to −1. Then, the code-word is compared
with each row of the code-matrix (each class is represented by a row),
and the most similar row is given as the output. An example of the
code-matrices of OVO for a 4-class task is shown in Eq. (6), and the
pseudocode of generating such a coding matrix for the OVO strategies
is presented in Algorithm 1:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
M =

+ 1 + 1 + 1 0 0 0
− 1 0 0 + 1 + 1 0
0 − 1 0 − 1 0 + 1
0 0 − 1 0 − 1 − 1

ovo

(6)

Algorithm 1. Generating coding matrix for OVO strategies.

One must note that due to the random nature of the ELMs, we 
might find a high variance in their behavior. To counter this drawback, 
regularization can be used, which has been reported as having a crucial 
effect on the quality of the ELMs.

To regularize the ELMs, we use an orthogonal projection to obtain 
the Moore–Penrose pseudoinverse of H:
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Require: m – number of classes
1: M ←ovo zero matrix with m m( − 1)/2 columns and m rows
2: k ← 1n−1
3: k ← 0n

4: for i=1 to m do
5: k k m i← + −n n

6: if k m m≤ *( − 1)/2n−1 then
7: for j k= n−1 to kn do
8: M i j[ , ] ← 1ovo

9: end for
10: for k i= + 1 to m do
11: M k k k i[ , + − − 1] ← − 1ovo n−1

12: end for
13: end if
14: k k← + 1n n−1
15: end for

There are a number of decoding strategies, and each is character-
ized by varying the trade-off between the efficacy and the computa-
tional time. ECOCs are highly suitable for inclusion in the proposed
intelligent fault-detection system due to their high efficiency, increased
robustness to classifier-level mistakes and possibility of using decoding
strategies with low computational complexity, which allows them to
operate in real time. To fulfill these requirements, we propose to use
Hamming decoding (Dietterich and Bakiri, 1995).

We present a summary of the proposed intelligent fault-detection
system in pseudocode form as Algorithm 2 for the training process and
as Algorithm 3 for the classification stage.

Algorithm 2. Training OVO extreme learning ensemble.

Require: m – number of classes,
   = { , ,…, }m1 2 – training set, where  i stands

for its subset groups examples from class i only,
Π Ψ Ψ Ψ Ψ Ψ= , ,…, , , …m m m1,2 1,3 1, 2,3 −1, – set of binary base

classifiers, where Ψi j, returns 1 when class i is recognized and

−1 when class j is returned
1: Π ← ∅
2: for i=1 to m − 1 do
3: for j i= + 1 to m do
4: Randomly generate bias matrix b and weight matrix W for

 ∪i j

5: Calculate output matrix H using Eq. (3) for  ∪i j

6: Calculate H−1 using Eq. (4)
7: Calculate matrix of output weights B using Eq. (5)
8: Π← add Ψi j,

9: end for
10: end for

Algorithm 3. Classification stage using Hamming decoding for OVO
strategies.

Require: x – observation
1: D← zero matrix with m m( − 1)/2 columns and m rows
2: k ← 1n−1
3: k ← 0n
4: for i=1 to m do
5: k k m i← + −n n

6: if k m m≤ *( − 1)/2n−1 then
7: for j k= n−1 to kn do
8: if Ψ = 1i j, then

9: D i j[ , ] ← 1
10: end if
11: end for
12: for k i= + 1 to m do
13: if Ψ = 1k kn k i, + − −11 then

14: D k kn k i[ , − 1 + − − 1] ← − 1
15: end if
16: end for
17: end if
18: k k← + 1n n−1
19: end for
20: recognized class

⎛
⎝⎜

⎞
⎠⎟M i j D i j← arg max ∑ | ( , ) − ( , ) |i m j

m m
ovo∈{1, …, } =1

( −1)/2

4. Experimental study

To evaluate the actual potential of the proposed diagnostic system,
we conducted a detailed experimental study on a real-life dataset of
engine fault observations collected by the authors.

We designed the experiments to obtain answers to the following
questions:

• Is it possible to obtain a high accuracy rate of marine engine
diagnosis using the proposed set of features, which originated from
engine measurements?

• Does the OVO-based ensemble of ELMs allow us to efficiently tackle
this complex multi-class problem and offer a significant improve-
ment over a number of state-of-the-art solutions in machine
learning-based fault diagnosis?

• Is the proposed system suitable for real-life implementation on
boats and is it characterized by a complexity that allows it to operate
under online and real-time conditions?

The following subsections will present details that regard the used
data and methods as well as the obtained results, along with a
discussion.

4.1. Data

For the purpose of this experiment, we have collected a real-life
dataset. It consisted of 798 observations (separate engine readings)
described by 15 features, according to the framework described in
Section 2. We address a 15-class problem, where one of the classes is
the correct state of the engine and the 14 remaining classes represent
various possible failures. The distribution of objects among these
classes was roughly balanced.

4.2. Set-up

To place the quality of the proposed OVO ELMs system into
context, we propose to compare it to a number of state-of-the-art
machine learning classifiers. These include single-model solutions
based on decision trees, neural networks and kernel classifiers as well
as multiple classifier systems. The details of algorithms together with
their description and range of parameters evaluated are presented in
Table 2.

The following experimental framework was used during the com-
putational experiments:

• For the performance metric in this multi-class problem, we use the
average accuracy; it assigns identical weights to all of the classes,
thus assuming their equal importance to the problem. It is computed
as follows:

∑
m

AvgAcc = 1 TPR ,
i

m

i
=1 (7)

where TPRi stands for true positive rate on i-th class.

• We use a 5×2 CV combined F-test (Alpaydin, 1999) for simulta-
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neous training/testing and pairwise statistical analysis. It repeats
five times a two-fold cross-validation. The combined F-test is
conducted by a comparison of all versus all. As a test score, the
probability of rejecting the null hypothesis is adopted, i.e., that the
classifiers have the same error rates. As an alternative hypothesis, it
is conjectured that the tested classifiers have different error rates. A
small difference in the error rate implies that the different algo-
rithms construct two similar classifiers with similar error rates; thus,
the hypothesis should not be rejected. For a large difference, the
classifiers have different error rates, and the hypothesis should be
rejected.

• We fix the significance level α = 0.05 for the statistical testing.

• All of the classifiers hyperparameters were optimized using the
internal 3-fold CV on the training set.

All of the experiments were conducted in the R environment2 on a
machine that was equipped with a four core Intel Core i7-4700MQ
Haswell @ 2.40 GHz processor and 8.00 GB of RAM.

4.3. Results and discussion

The performances of the fault diagnosis system with different base
classifiers are given in the form of a boxplot in Fig. 2. The results of the
pairwise combined 5×2 CV F-test and the obtained p-values are
depicted in Table 3, while Table 4 presents the average training and
testing times for the examined methods.

Let us now take a look into the obtained results.
When analyzing the performance of single model classifiers (C5.0,

k-NN, RIPPER and ELM), it can be observed that they are not suitable
to be used as a basis for a marine engine fault-detection system. All of
them achieve an accuracy of below 80%, which cannot be accepted in
such a demanding industrial application. Assuming that more than
every fifth possible fault will be ignored and misdiagnosed imposes
high potential costs (in terms of human safety, engine damage and time
needed to localize the actual fault), which are prohibitive from a
practical point of view. The poor performance of these methods can be
explained by a high number of classes to be considered, which leads to
a highly complex decision boundary and a possible occurrence of class
overlapping that furthers hampers the recognition process.

The lack of SVMs in the previous group can be explained by the fact
that they cannot be de facto treated as single models. Because they are
binary in nature, when applying them to multi-class problems, one
must conduct a decomposition. In this study, we have compared the
effectiveness of the SVMs in the OVA and OVO scenarios. The OVA
approach returns a similar performance to the single models, which
proves our previous claims that this model is not suitable for the
problem under consideration. Because of the high number of classes,
the introduced imbalance ratio results in each base model being biased
toward the negative class, which in turn results in reduced classification
accuracy.

When comparing the OVO solutions using SVM, C5.0, k-NN and
RIPPER, we can observe a significant gain in the classification
performance compared with using their multi-class equivalents.
Among these methods, k-NN is characterized by the smallest improve-
ment, despite being the best-performing single model. This finding
shows that the minimal-distance approach does not gain very much
from the multi-class decomposition as in the remaining algorithms.
C5.0 and RIPPER are the two best-performing classifiers in OVO, with

Table 2
Details of classifiers used in the experimental study.

Abbr. Description Hyperparameters

C5.0 Efficient decision tree
induction algorithm

Confidence ∈{0.10, 0.25, 0.35}

min. instances per leaf=2
Pruned=TRUE

k-NN k nearest neighbors
classifier

k ∈ {1, 3,…,9, 11}

Distance=Euclidean
RIPPER Repeated Incremental

Pruning to Produce Error
Reduction

Folds ∈{2, 3, 4, 5}

rule-based classifier Optimizations ∈{2, 3, 4, 5}
ELM Extreme Learning Machine No. of hidden neurons

∈{10, 15,…,45, 50}
randomized neural
network described in
Section 3.1

Activation function=sigmoid

λ ∈ {2, 4,…,8, 10}
SVM-OVA Support Vector Machine

using RBF kernel
μ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

with OVA decomposition
and ECOC combiner

γlog ( ) ∈ {−7, −6,…,3, 4}10

SVM-OVO Support Vector Machine
using RBF kernel

μ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

with OVO decomposition
and ECOC combiner

γlog ( ) ∈ {−7, −6,…,3, 4}10

C5.0-OVO C5.0 with OVO
decomposition and ECOC
combiner

Same as in C5.0

k-NN-OVO k-nn with OVO
decomposition and ECOC
combiner

Same as in k-NN

RIPPER-
OVO

RIPPER with OVO
decomposition and ECOC
combiner

Same as in RIPPER

BAGG Bagging with C5.0 as base
classifier

No. of base classifiers
∈{10, 20,…,90, 100}

BOST AdaBoost.M2 with C5.0 as
base classifier

No. of iterations ∈{5, 10,…,45, 50}

RANF Random Forest ensemble No. of base classifiers
∈{40, 80,…,260, 300}

ROTF Rotation Forest ensemble Feature extraction=PCA
No. of base classifiers
∈{10, 20,…,90, 100}

VELM Voting ensemble of ELMs No. of base classifiers
∈{10, 20,…,90, 100}

ELM-OVO Proposed ELMs ensemble Same as in ELM
with OVO decomposition
and ECOC combiner

Fig. 2. Boxplot of average accuracy (%) metric obtained examined classifiers used in the
proposed intelligent marine engine fault detection system.

2 http://www.r-project.org/
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C5.0 achieving slightly better recognition rates.
Multi-class ensembles can deliver very good quality and, in all

cases, are similar to that of C5.0 enhanced with OVO. They achieve this
result despite working with the native multi-class task. Because all of
them are based on input space partitioning, we can deduce that this
arrangement leads to the creation of base classifiers with individual
domains of competence that can capture the complexities of the faced
engine diagnosis task. Interestingly, Bagging (Breiman, 1996) returns
the best performance from these four models, while usually Boosting
(Schapire and Freund, 2012), Random Forest (Breiman, 2001) or
Rotation Forest (Rodriguez et al., October 2006) are believed to be the
most efficient methods. This finding can be explained by the relatively
small dimensionality of the analyzed problem and the fact that all of
the features appear to be relevant. Therefore, both forest models, by
utilizing random feature reduction, in fact harm their performance.
This finding shows that for the considered task, the entire feature set
should be used to properly capture the class properties, while the
partitioning of training objects is highly beneficial.

A voting ensemble of ELMs delivers highly unsatisfactory perfor-
mance, which is much below the standard ensembles or canonical
classifiers enhanced with OVO. This finding shows that relying on the
role of random initialization as a good way to ensure both the diversity
and individual quality fails in the considered engine monitoring
problem. In the given case, we can only intuitively guess that either
the feature space, parameter or object space randomization does not
provide sufficient diversity for the ensembles to work well. However, it
is worthwhile to note that the variance in the obtained accuracy is
greatly reduced compared to the single ELM.

Finally, the proposed ensemble architecture that utilizes both the
ELMs and OVO strategy delivers excellent performance. With error
rates of approximately 2%, the proposed system is highly suitable for
implementation in real-life scenarios, to provide highly reliable engine
state monitoring. This approach took advantage of the decomposition
approach because each base ELM was trained on a significantly
reduced problem. This input reduction leads to, at the same time,
diversification of the base learners and simplification of each individual
learning process. The Hamming-based ECOC allowed us to efficiently
reconstruct the original multi-class task from the binary outputs.
Similar to with VELM, the variance of this model is significantly

smaller than in the case of a single ELM. This finding shows that OVO
can contribute highly to the ELMs performance when addressing
complex multi-class scenarios. The combined F-test (see Table 3)
proves that the proposed ELM-OVO solution outperforms all of the
other methods in a statistically significant manner.

Because our aim is to develop an online fault diagnosis system, it is
required to work in real time. Therefore, in addition to the accuracy, we
must also investigate the time complexities of the methods. While from
a practical point of view the testing time is of crucial value (because it
shows how fast the system can react to changes in the engines state),
we also include the training times for completeness. From the results
presented in Table 4, it can be observed that the k-NN method cannot
be used in this application. Despite having no training phase (this
method is a so-called lazy classifier (Aha, 1997)), its average response
time per sample is prohibitory. In the case of a rapid accident, a system
based on such a learner would report it a few minutes later, which is
unacceptable. The remaining classifiers offer acceptable response
times. When accounting for the training times, we can see that the
VELM ensemble stands out from the others. This finding is due to its
sequential structure, where we must train a high number of ELMs one
after another.

We can see that the proposed fault diagnosis system based on ELM-
OVO offers a very good response time, roughly one second, which is
fully suitable for the considered real-life application. Its training time is
slightly higher than that of the other ensemble methods because it
always needs to train 105 classifiers (one per each pair of classes).
However, when comparing the training times of the single ELM and
ELM-OVO, it can be observed that OVO leads to a significant reduction
in the training time per model, due to the simpler decision space that
each of them handles. While the obtained training time is satisfactory,
one must remember that it is not a crucial factor in the fault diagnosis
system design. In practice, each such ensemble will be trained before
being applied to the engine, and thus, we are interested in only the
response time. If an adaptive fault diagnosis system design is wanted,
then online ELMs (Shao and Er, 2016) can be used because they are
characterized by very fast re-training from new examples. This scenario
will be developed in our future research, but at the current time, it can
be observed as an additional advantage toward using ELMs in this
application.

5. Conclusions

The aim of the presented work was the identification of diagnostic
signals in the composition of exhaust gas from marine 4-stroke Diesel
engines. To achieve the presented aim, an active experiment was
performed that consists of measurements conducted during a labora-
tory engine operation with simulated malfunctions. The cause-and-
effect analysis allows us to separate the following diagnostic signals: the
NOx, CO, CO2 and O2 fractions in the exhaust gas and the temperatures
of the exhaust gas behind each of the engine cylinders. Verification of
the selected signals was prepared by using classification tools based on
one-vs-one ensembles of ELMs. The obtained results allow us to
formulate the following conclusions:

• The composition of the exhaust gas emitted from the marine 4-
stroke diesel engine is the carrier of the diagnostic signals of
malfunctions located in the engine cylinders and the air-exhaust
gas exchange system.

• The values of the presented signals are sufficient for clear identifica-
tion of the simulated malfunctions.

• The proposed decomposition-based ELM ensemble can tackle
efficiently the complex 15-class problem, offering high recognition
accuracy and low classification time, which allows for the rapid
detection of failures.

• Due to its low complexity, fast response and high accuracy, the
proposed ensemble-based intelligent fault diagnostic system is

Hypothesis p-value Hypothesis p-value

ELM-OVO vs C5.0 >0.000001 ELM-OVO vs C5.0-OVO >0.010950
ELM-OVO vs k-NN >0.000001 ELM-OVO vs k-NN-OVO >0.000961
ELM-OVO vs RIPPER >0.000001 ELM-OVO vs RIPPER-OVO >0.008526
ELM-OVO vs ELM >0.000001 ELM-OVO vs BAGG >0.036057
ELM-OVO vs SVM-OVA >0.000001 ELM-OVO vs BOST >0.021196
ELM-OVO vs SVM-OVO >0.002456 ELM-OVO vs RANF >0.027545
ELM-OVO vs VELM >0.001992 ELM-OVO vs ROTF >0.025293

Table 4
Averaged training and testing (per sample) times (s) for different examined classifiers
used in the intelligent fault detection system.

Classifier Training Testing Classifier Training Testing

C5.0 7.46 0.05 C5.0-OVO 27.98 0.54
k-NN 0.00 34.53 k-NN-OVO 0.00 67.43
RIPPER 12.94 0.07 RIPPER-OVO 40.54 0.41
ELM 27.23 0.18 BAGG 104.56 0.37
SVM-OVA 380.34 1.87 BOST 378.92 1.19
SVM-OVO 436.12 2.02 RANF 118.32 0.42
VELM 2081.45 3.65 ROTF 284.32 1.03
ELM-OVO 314.98 1.01

Table 3
Results of the combined 5×2 CV F-test for comparison between the proposed OVO-ELM 
and reference methods. Symbol ‘=’ stands for classifiers without significant differences, 
‘>’ for situation in which the proposed method is superior and ‘<’ vice versa.
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suitable for real-life implementation on board of marine vehicles.

Our future research will investigate this marine engine monitoring 
problem from the data stream perspective (Woźniak, 2011) and will
propose online systems that can update themselves during their 
exploitation and react to shifts and drifts in the diagnostic signals.
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