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Abstract 

We carry out further study of the constitutive laws for Cosserat plates developed by Altenbach and Eremeyev. In 

particular, we examine the problem of choice of the micropolar material coefficients. Requiring that the 

constitutive matrix is positive definite, we establish some bounds on values of micropolar constants. The 

constitutive relations for Cosserat plates have been implemented into formulation of shell finite elements 

developed within the framework of the statically and kinematically exact, nonlinear six-parameter shell theory. 

By the linear parametric-sensitivity analysis we study the influence of the micropolar material constants on the 

response of shell structure with orthogonal intersections of branches. Such structures can naturally be analyzed 

using the six-parameter shell theory. Having established the most influential coefficients, we show how these 

values affect the behavior of the structure in the nonlinear range of deformations. 

1. Introduction

The idea of oriented medium is a mature subject. The paper by Cosserat brothers [1] established a 

landmark in developing the concept of the continuum with the microstructure. Forgotten in its times the 

Cosserat’s work has been rediscovered anew in the fifties of the 20th century. For the historical outline one may 

refer to, for example, the books by Eringen [2] or Nowacki [3] or the paper by Altenbach et al. [4]. Despite its 

age, the Cosserat continuum still receives much attention in the literature. For example, Pietraszkiewicz and 

Eremeyev [5] discussed different strain measures that can be defined within the framework of Cosserat medium, 

Altenbach and Eremeyev  [6] developed theory of Cosserat plates, Ramezani and Naghdabadi [7] generalized the 

notion of hypo-elasticity for the micropolar media. 

This paper is a follow-up of our previous paper [8] where we studied the conditions of equivalence (and 

its implications) between the constitutive relations for micropolar plates obtained in [6] and those formulated for 

the statically and kinematically exact, nonlinear, six-parameter shell theory used, among others, in  [9][10][11] 

[13] [12][14][15]. It was shown that both models are equivalent for some values of the constitutive parameters.

Assuming the equivalence, we derived the formula for the constitutive coefficient tα from the shell constitutive 

relation. It was shown that, under assumption of equivalence, tα  may be expressed as the function of Poisson’s 

ratio   alone i.e. 
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Our numerical results presented in [1] enabled us to introduce the notion of tα -locking within the FEM 

analysis. The tα -locking is responsible for too stiff response due to large values of tα . 

In this paper we continue to analyze the Altenbach and Eremeyev plate model. Their constitutive 

relations are implemented into the framework of our CAM elements (see [10] for details). While our previous 

paper [1] has been concerned with the linear analysis, here we focus on the geometrically nonlinear analysis. 

Yet, one needs first to select properly the values of material coefficients. It is well-known however, see for 

instance [2], [17], [18], [19] and the literature cited there, that this is a problematic issue, especially for accuracy 

of experimental measurements. To properly select values of the micropolar material constants we examine the 

structure of constitutive matrix and study its conditioning by analyzing its eigenvalues. We present some bounds 

on the values of micropolar material coefficients that should be imposed to make the constitutive matrix positive 

definite. With the help of linear parametric-sensitivity analysis, we study the influence of some material 

parameters on the overall response of the structure in the linear analysis. As an example we study the thin-

walled, simply supported channel beam, regarded as the union of plates, yet with orthogonal intersections. Based 

on the results we proceed with the geometrically nonlinear analysis and examine the response of the structure 

with different values of some material coefficients. 

 

2. Problem statement 

This section serves only as the statement of the problem and does not provide any new results. It 

comprises the most important theoretical assumptions that lead to the results from the previous paper [8]. 

2.1. Altenbach and Eremeyev model of Cosserat plate  

The elastic strain energy density for a solid plate may be written as (cf. [6] eq. 11, see also [16])  
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Here symbol ||  denotes tangent component of some tensor X  i.e.  

 0

|| N −X X t X , 0

|| N + X X t x , 0

N=x t X  (3) 

The constitutive coefficients iα  and iβ  are given by 
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 31
2 12
β βh λh= − , (9) 

 31
3 12

(2 )β γh μ+λ h= − , (10) 

 4β γh= . (11) 

In writing the relations (4) through (11) it is assumed that μ  in relations 45 in [6] should read in fact 

1

2
μ μ κ − , compare for instance [20] and [21]. The constants iα  and iβ  are expressed by six material 

parameters: two engineering constants E , ν , the coupling number N , the characteristic length for bending 
bl , 

the characteristic length for torsion 
tl  and the non-dimensional micropolar ratio Ψ . These latter 4 constants 

read:  
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Through (2) the following constitutive relations for force tensor and the moment tensor are arrived at 
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with 0 0

N N= − 1A t t . After some manipulations (see Appendix in [1]) equations (16) and (17) may be rewritten 

in component form, suitable for numerical implementation 
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2.2. Six-parameter shell theory  

 Although the constitutive relations of the six-parameter shell theory are not used directly in the present 

study, let us briefly address them to proceed further with the notion of equivalence. 

 The constitutive relation  
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used in the papers [9][10][11][13][12][14][15] follows from expression for elastic energy density assumed as a 

particular case of (2) (see for example [16]) 
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where we define 
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Here (21) h  is the shell thickness in the reference configuration.  

In (19) and (20)  sα  denotes the correction factor for transverse shear stress resultants. This coefficient 

received much attention in the literature. It usually takes on values between  
2

12
π  (cf. [22]) and 1  (for instance 

Lewiński [23] arrived at the value 14
17

). 

The second coefficient, namely tα , is the correction factor for the stress couples within the general, 

dynamically and kinematically exact, six-field theory of elastic shells. In [24] the values of both sα  and tα  have 

been established for that theory. Using the complementary energy density derived from the transverse shear 

stresses acting only on the shell cross section and assuming appropriate quadratic and cubic distributions of the 

stresses across the thickness, the consistent constitutive equations for the transverse shear stress resultants and 

stress couples with s  and t  as the respective correction factors have been arrived at respectively as  

 5
6sα = , 7

10tα =  (22) 

The obtained values do not depend on the shell material symmetry, geometry of the base surface, the shell 

thickness, or any kind of kinematic and/or dynamic constraints.  

 In [25] it is shown that under some conditions for micropolar material constants in 3D material law and 

for the curvature energy, upon through-the-thickness integration of expression for elastic energy, there appears 

constants 2α  that plays the same role as t  of the present six-field theory. It is argued in [25] that for 2 0α   the 

curvature energy would also depend on the non-symmetric part of the curvature tensor. As a consequence, the 
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resulting 2D limit energy in Γ  convergence would depend on imposed boundary conditions specified, for 

Cosserat rotation vector. 

2.3. Equivalence  

As it has been shown in paper [8] the constitutive relations (18) and (19) are equivalent if 

 2

2
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2
α N=  =  and 
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1
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−
=

−
 (23) 

Note that under (23)1 and with (12)1 we have 
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Specifying now relation (2.14)2 from paper [17] i.e. 
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which together with (24) identifies cμ  as 
2

κ
.  

Further, rewriting the relation (10) with simultaneous use of (13) yields the relation  
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Additionally, after some manipulations the following relations have been obtained in [1] 
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Substituting formulae (28) and (28) one can show that the terms underlined in (18) disappear yielding exactly the 

material law (19). 

 

3. Conditioning of constitutive matrix 

The issue of conditioning of constitutive matrix has been addressed in [6] (eq. 15). Here we carry out a 

more detailed study. 

It is known, see for instance [26], that n n  real symmetric matrix is positive definite if all its 

eigenvalues are positive. In case of (18) the respective formulae for eigenvalues nλ  and eigenvectors nv  are  
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Here the order of eigenvalues does not reflect the growth of their values.  

Since N  is the real positive constant, to make eigenvalues (29)-(33) positive it is necessary that  

 0 1N   (41) 

Under the usual assumption that 0 0.5   from (39) one gets  

 2 0bl   (42) 

which confirms the physical meaning of 0bl  . 

Equations (36) and (37) furnish the condition  
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Additionally we obtain 
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From the equation (35) it may be inferred that 
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Solving the inequality (46) for 2

tl , we obtain the condition 
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With (44) and (47) we obtain bounds on 2

tl , 
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Solving (46) for 2

bl  we obtain restriction (additional to (42)) on values of 2

bl , 

 
2 2

2 12

48

t

b

h l
l

+
  (49) 

The precise estimation of the upper bound of 2

bl  remains an open question in this study. Eringen [2] (see Section 

5.13) argues that the micropolar effects will be observable when characteristic length will be of the order of plate 

thickness. Based on their analysis Altenbach and Eremeyev [6] have shown that the micropolar effects are 

inessential if 0.5 bh l . In view of these suggestions we assume that the maximum value of 
bl  will be taken as 

equal to the shell thickness h . Thus we arrive at estimation 
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 In [27] it has been shown that values of the micropolar ratio Ψ  are bounded by 
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0
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From (51) it follows therefore that the denominator in the equation (38) may take on zero value when 0Ψ =  

which is impossible. Therefore, in the present approach, the inequality (51) should be modified to 
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In reference [17] it has been shown among others that for the case of conformal bending (see [17] for 

details) that  
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in the case of 3D problems. Obviously the criterion (53) in such a case can not depend on the characteristic 

dimension, h , of 2D mechanical problems i.e. plates, shells. Here, in (49) h  comes in to play naturally.  

With restrictions (41) and (52) and with typical values of the Poisson ratio 0 0.5   the denominator 

of (38) is always positive. Hence, the numerator of  (38) should be negative to keep (38) positive. This reasoning 

furnishes the following inequality 

 ( )2 2 2 2(2 ( 3 )) 12 ( 1 )( 2 )( 1 ) 0tf Eh h Ψ N l N Ψ = + − + + − + − + − +   (54) 

The inequality (54) is linear in Ψ . Let us rewrite (54) in the form 

 0f AΨ B= −   (55) 

In (55) we have introduced two constants defined as follows 

 2 2 2 2 2 2 2 2 2 2 2(2 12 3 12 12 12 )t t t tA Eh h l h N l N l h N l N  = + − − − + +  (56) 

 2 224 ( 1 )( 1 )tB Ehl N = − + − +  (57) 

Equating (55) to zero and solving for Ψ  we obtain the formula 
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0 2 2 2 2 2 2 2 2 2 2 2
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2 12 3 12 12 12

t

t t t t
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h l h N l N l h N l N



  

− + − +
=

+ − − − + +
 (58) 

Equation (58) establishes the upper bound for values of Ψ  within the restriction (51). 

Based on the above considerations, we propose the following algorithm for parametric analysis based on the 

micropolar constants, which furnishes positive definite constitutive matrix. Given E ,  , h  and bl  (or tl ) do:  

1. Find bounds for tl  from inequalities (48) (or find bounds for bl  through (50)) 

2. Given N  and tl  as established above, find the maximum value of Ψ  using (58) 

 

4. Parametric study and numerical example 

As an example of shell structure we choose the simply supported channel beam loaded with uniformly 

distributed load, see [28] and for example [12] (cf. Figure. 1). This shell structure is composed of plates, but at 

the same time it contains orthogonal intersections. Geometry is described by 36L =  in, 2a =  in, 6b =  in, 

0.05h =  in. The load is 100p =  lb/in while the material constants are 710E =  lb/in and 0.333v = . In the 

nonlinear analysis the evolution of load is controlled by the scalar parameter λ . As in our previous paper [1] in 

computations we exploit symmetry of the structure. We use 16-node CAM elements (see [10], [12]) with full 

integration of element matrices and with mesh built of 4 elements for each flange, 8 elements for web and 24 

elements for half of the beam. 

The study breaks down into three parts. The first part is concerned with the analysis of some selected 

eigenvalues. Using the restrictions derived above, the functions of 1λ , 8λ , 7λ  and 10λ  are plotted against their 

arguments to show that the eigenvalues are positive indeed. 

The second part aims at answering the question of influence of variations of the material parameters on 

variations of some control parameters: elastic energy of the structure and non-zero generalized displacements of 

the point (a). 
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The third part of the analysis utilizes the results and conclusions from the first part and is devoted to the 

geometrically nonlinear analysis. 

 

Figure. 1. Simply supported channel beam, geometry and load 

 

4.1. Study on values of 
pλ   

For the purposes of the subsequent analyses we populate a set 0Z  whose elements are material constants 

  (0) (0) (0) (0) (0), , , , ,b tE N l l Ψ=Z  (59) 

Utilizing the relations 26 and 33 from the paper [1] i.e. 

 2

2
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−
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2 v
Ψ

+
=   (60) 

and 
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−
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bl v
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we arrive at 

  7 1
(0) 2

10 ;0.333; 2;0.016135013;0.024993752;0.857265324=Z  (62) 

In (59), E  and   are held fixed. The remaining values are computed assuming the equivalence 

between the model from [6] and the six-field nonlinear shell theory. Throughout the remaining part of the text 

we name all the results based on values presented in (62) as the ‘equivalent model”. 

 With E ,   and h  given, the restrictions on micropolar values are as follows. The lower and upper 

bounds of bl  follow from (50) 

 
3 0.05 3

0.00722 0.05
12 12

b

h
l h= =   =  (63) 

The characteristic length for torsion is then restricted by (48). Using the upper bound bl h= , for the 

characteristic length for bending we obtain 

 
2 22 2 2 2481 0.05 1 0.333 48 0.05 0.05
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The characteristic length for bending with given 
tl  is restricted by inequalities (50), 
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2 20.05 12 0.024993752

0.01443 0.05
48

bl
+ 

=    (65) 

With 1
(0) 2

2N N= = , 0.024993752tl =  and through the relation (58) we find that 0 1.20012Ψ =  which is 

smaller than the maximum admissible value 1.5Ψ = . It may now be verified that all the values presented in (62) 

satisfy their respective limits.  

Figure 2 portrays the dependence of 1λ  on N . From equation (29) it follows that 1λ  approaches infinity 

as we have 

 1
1

lim
N

λ
→

→  (66) 

 

Figure 2. Values of λ1 versus N 

 

From the equation (36) follows the relation 8λ  versus tl  shown in Figure 3. By making use of inequality 

(64) Figure 3 depicts the admissible values of tl  as obtained from the equation (36).  
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Figure 3. Values of λ8 versus lt 

 

The equation (35) represents a surface 7 ( , )b tλ f l l= . Figure 4 shows changes of 7λ  versus bl  and tl . 

The dashed line in this figure which marks the transition from negative to positive values of 7λ , is found from 

the right-hand side of inequality (48). 

 

Figure 4. Values of 7λ  versus tl  and bl  

 

Using (38), the surface 10λ  is plotted against tl  and 0Ψ <Ψ  in Figure 5 for 1

2
2N = . It is seen that all 

the values are positive and attain the maximum for small Ψ  and large tl . 
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Figure 5. Values of λ10 versus lt and Ψ, N = 0.1 

 

4.2. Linear parametric-sensitivity analysis 

In this section we perform the linear sensitivity analysis. As the control variables to study we select the 

total energy of the structure totE , the horizontal translation of the point (a) 
( )au , the vertical translation of the 

point (a) 
( )aw  and the rotation 

2( )a  about y  axis at (a).  Values of the above control parameters as computed 

using the values from (62) are as follows 

 
( ) ( ) 2( )[ , , , ] [1135.85;0.19929;0.19032; 0.12013]tot a a aE u w  = −  (67) 

Varying the values from (62) within their respective limits, changes of  the control variables  have been obtained 

by dividing the computed values by their reference values from (67). For instance, by setting  

 0.021tl =  (68) 

we have arrived at the following values 

 ( ) ( ) 2( )[ , , , ] [1263.29;0.200784;0.191668; 0.121708]tot a a aE u w  = −  (69) 

where the overbar indicates that values in (69) are different from those in (67). Next, by dividing the ‘barred’ 

quantities (68) and (69) by appropriate reference values (62) and (67) we have obtained the required normalized 

change of values of 
( ) ( ) 2( ), , ,tot a a aE u w  . Figure 6 shows the obtained results. The curves are arranged in a way to 

portray the influence of material parameters 
(0)N , 

(0)bl , 
(0)tl , 

(0)Ψ  on each control parameter. Thereby we are 

able to detect which of the material parameters plays the dominant role. The curves show significant influence of 

changes of Ψ  and tl  on the solutions, while the variations of bl  yield incomparably smaller variations of the 

control parameters.    
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Figure 6. Results of linear sensitivity analysis 

 

4.3. Non-linear analysis 

In this section, based on the results of the linear parametric-sensitivity analysis presented above, we 

discuss the influence of selected micropolar constitutive coefficient on the behavior of the structure in the 

geometrically non-linear range of deformations. We consider five cases of material parameters. The first one is 

described by the set (62) and is designated in the text as the ‘equivalent model’. In the second and third cases we 

choose min 0.021tl =  and max 0.0289875tl =  of tl  studied in the sensitivity analysis with the remaining values as 

in (62). Similarly, in the fourth and fifth cases we choose min 0.1Ψ =  and max 1.2Ψ = . All the cases describe in 

fact different materials. We compare the results not only in terms of overall structural deformation, described by 

the load-displacement path, but also in terms of computational costs. In the latter case we select the number of 

iterations required to satisfy convergence criteria. All the examples have been calculated on the same PC with 

the same arc-length parameters.  
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Figure 7 depicts the comparison of load-deformation path of  translation u  of the point (a). For 

min 0.021tl =  the curve has some turns shown in detail in Figure 8. It is seen that for this value of min

tl  the path 

performs multiple turns and is difficult to follow. In the same range of λ  and tl  the remaining curves have 

almost linear character. This is shown in Tab. 1, where results of the linear analysis are shown.  The results show 

that in this range the differences are almost indistinguishable. In brackets we report the relative error with respect 

to values obtained in the equivalent model 

 
( ) ( )

( )
100%

equivalent

equivalent

error
−

=   (70) 

Table 1. Results of linear numerical calculations, non-zero generalized displacements of point (a) 

  
totE  

( )au  
( )aw  

2( )a  

0.857265324Ψ =  

min 0.021tl =  1263.29 

(11.22%) 

0.200784 

(0.75%) 

0.191668 

(0.71%) 

–0.121708 

(1.31%) 

max 0.0289875tl =  1057.22 

(–6.92%) 

0.197649 

(–0.82%) 

0.187425 

(–1.52%) 

–0.18114 

(50.78%) 

0.024993752tl =  

min 0.1Ψ =  1211.10 

(6.62%) 

0.197016 

(–1.14%) 

0.186312 

(–2.11%) 

–0.19252 

(60.25%) 

max 1.2Ψ =  1016.00 

(–10.55%) 

0.199686 

(0.20%) 

0.196157 

(3.06%) 

–0.20689 

(72.22%) 

 Equivalent model 

(reference) 

1135.85 0.199288 0.190324 –0.120134 

 

 

Tab. 1 shows that the micropolar material parameters influence significantly the total energy of the 

structure and the rotation 
2( )a . It indicates that there may appear some deformation patterns involving different 

deformation waves. This fact is discussed later in this paper. 

The costs of the solutions measured by the number of iterations are presented in Figure 9 for the 

equivalent model and in Figure 10. For min 0.021tl =  the number of iterations varies rapidly with the maximum 

number of iterations equal to 16, while in the remaining cases the number of iterations is almost constant. 
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Figure 7. Results of non-linear analysis, changes of lt 

 

 

Figure 8. Results of non-linear analysis, changes of tl , details 

 

Figure 9. Number of iterations in the equivalent model 
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Figure 10. Number of iterations for min

tl  (left) and max

tl  (right) 

 

The influence of min 0.1Ψ =  and max 1.2Ψ =  on the values of translation u  of the point (a) is portrayed 

in Figure 11, while some details are shown in Figure 12. In this case the most complicated response appears if 

max 1.2Ψ = .  

To throw some light on possible deformed configurations, Fig. 14 portrays deformed the meshes 

obtained for values of the control translation 
( )au  close to 0.034  using different values of tl . To amplify 

differences the meshes are scaled by the factor 5 . It is seen that when tl  approaches its lower bound  0.02040  

local forms of stability loss appear on the lower flange. In case of two remaining values of tl  studied here such 

effects do not appear. This explains the complicated nature of the load-deformation path from Figure 8. 

Figure 15 depicts somewhat different responses. Here 
( )au  is close to 0.35  and the response of the 

structure is compared for different values of Ψ . The range of deformation is large enough to compare it with the 

undeformed mesh without additional magnifications. The graphs show that with the growth of Ψ  the response of 

the structure changes considerably. When 0.1Ψ =  the beam deforms without deformation of the cross-section. 

With the growth of Ψ , however, the beam exhibits deformations involving significant deformations of the cross-

section with simultaneous propagation of deformation waves. 
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Figure 11. Results of non-linear analysis, changes of Ψ  

 

Figure 12. Results of non-linear analysis, changes of Ψ , details 

 

Figure 13. Number of iterations for min 0.1Ψ =  (left) and max 1.2Ψ =  (right) 
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Fig. 14. Deformed meshes for different values of tl   

 

 

Figure 15. Deformed meshes for different values of Ψ  

 

5. Conclusions 

 

In this paper we have estimated the bounds for values of the micropolar material constants within the model 

of Cosserat plates of Altenbach and Eremeyev [6]. We have shown that an inappropriate selection of the 

micropolar constants may yield a non-positive definite constitutive matrix, so these constants should obey some 

limitations that we have derived. We have proposed some algorithm to establish these bounds.  

However, the present study does not provide any suggestions for to explicit values of limits of the material 

constants. In our methodology these can be established only for a given shell structure with given thickness h , 

Young’s modulus E  and Poisson ratio  . In particular the upper limit of characteristic length for bending bl  

cannot be established. We also assume that E  and   have the same character for both Cauchy and Cosserat 

continuum.  

For shell structure in the form of channel section we have performed linear parametric-sensitivity analysis 

and established dominant parameters in sense of their influence on changes of some control variables. We have 

also assessed how some material parameters affect the nonlinear response of the structure. Our results show that 

within the linear analysis differences in values of the displacements and the total energy of the structure are 

insignificant, regardless of the material parameters used. However, in the nonlinear analysis the differences are 
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clearly pronounced. This observation may serve as some guidance for the experimental studies on micropolar 

constants, namely that such experiment should be performed in the nonlinear range of shell deformation. 
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