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A B S T R A C T   

Due to detrimental effects of atmospheric particulate matter (PM), its accurate monitoring is of paramount 
importance, especially in densely populated urban areas. However, precise measurement of PM levels requires 
expensive and sophisticated equipment. Although low-cost alternatives are gaining popularity, their reliability is 
questionable, attributed to sensitivity to environmental conditions, inherent instability, and manufacturing 
imperfections. The objectives of this paper include (i) introduction of an innovative approach to field calibration 
for low-cost PM sensors using artificial intelligence methods, (ii) implementation of the calibration procedure 
involving optimized artificial neural network (ANN) and combined multiplicative and additive correction of the 
low-cost sensor readings, (iii) demonstrating the efficacy of the presented technique using a custom-designed 
portable PM monitoring platform and reference data acquired from public measurement stations. The results 
obtained through comprehensive experiments conducted using the aforementioned low-cost sensor and reference 
data demonstrate remarkable accuracy for the calibrated sensor, with correlation coefficients of 0.86 for PM1 and 
PM2.5, and 0.76 PM10 (particles categorized as having diameter equal to or less than 1 μm, 2.5 μm, and 10 μm, 
respectively), along with low RMSE values of only 3.1, 4.1, and 4.9 µg/m3.   

1. Introduction 

Researchers and healthcare experts widely agree on the detrimental 
impact of air pollution on human health and morbidity. Recent studies 
indicate that nearly nine million deaths occur globally each year due to 
ambient air pollution [1,2]. According to the European Environmental 
Agency (EEA) [3], atmospheric pollution stands out as the foremost 
environmental health risk factor in Europe. This exerts a substantial 
impact on the health of the European population, especially in urban 
areas, by causing chronic diseases and premature deaths [4]. Particulate 
matter (PM) is one of the common types of pollution characterized by 
the presence of tiny particles (or droplets) originating from various 
sources such as vehicle emissions, industrial processes, construction 
activities, and natural sources like wildfires and dust storms. Most of the 
existent studies on PM-related pollutants primarily focus on fine PM2.5 
particles with a diameter smaller than 2.5 μm. These are considered the 
most detrimental because, upon inhalation, they can penetrate deeply 
into the lungs [5]. Numerous studies consistently associate PM2.5 with 
elevated occurrence of cardiovascular illnesses [6,7], various types of 

cancerous diseases [8,9], and preterm births [10]. It has been assessed 
that in 2020, 96 % of the urban population in the European Union (EU) 
was exposed to fine particulate matter (PM2.5) concentrations above the 
World Health Organization (WHO) recommended level of 5 Âµg per 
cubic meter (µg/m3) of air [3]. The latest estimates from EEA in 2020 
indicate that the elevated PM2.5 levels led to over 235,000 premature 
deaths in Europe [3]. Furthermore, it has been assessed that the expo-
sure to PM2.5 has been a cause of nearly 176,000 years of life with 
disability due to chronic obstructive pulmonary disease in 30 European 
countries [3]. The research studies indicate the two main sources of 
PM2.5 [11]: residential combustion (contributing to approximately 45 % 
of PM2.5 mass) and traffic-related emissions (around 30 % of PM2.5 
mass). The origins of the remaining quarter of PM2.5 mass include 
mineral dust from construction works, and high-temperature processes, 
with steel processing as a main contributor [11]. 

Nowadays, accurate monitoring of PM2.5 is carried out at fixed lo-
cations using government-authorized reference stations. Most 
acknowledged measurement methods are filter-based gravimetric tech-
niques. Therein, particles are gathered on filters, stabilized, and 
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subsequently their mass is measured in the accredited environmental 
laboratories by weighing the filters prior to and post-sampling. The 
filter-based approach offers accuracy and precision, but the measure-
ments are costly, time-consuming, and offer limited spatiotemporal in-
formation, which makes it impossible to fully grasp ambient PM2.5 
concentrations [12,13]. Therefore, costly governmental stations typi-
cally act as a reference for calibrating data acquired by inexpensive 
mobile sensors. 

Low-cost sensors (LCS) show great promise as tools for evaluating 
exposure to air pollution with increased spatial resolution [14,15,76]. 
The utilization of portable and more economical sensors offers signifi-
cant potential benefits, which include the possibility of employing a 
greater number of sensors to enhance spatial coverage, simple usage and 
maintenance, decreased energy demand, and ease of relocation ac-
cording to researcher’s needs. LCSs are utilized standalone or supple-
ment the existing governmental air quality monitoring facilities [16]. 
They may be incorporated in densely allocated stationary networks 
[17], mobile networks mounted on vehicles [18,19,79], or in the form of 
wearable devices [20–22]. Interesting studies on evaluating the quality 
of low-cost air quality sensors can be found in [73–75]. 

Most low-cost devices for PM monitoring rely on optical measure-
ment techniques. Unfortunately, optical particle sensors exhibit 
numerous drawbacks, such as inferior accuracy, poor reliability and 
repeatability of measurements, as well as the need for calibration 
[23–26,77,78]. While the equipment of the reference facilities measures 
mass concentrations directly, the optical methods render merely an es-
timate of the mass. In general, the fundamental operating principle of 
the economical particulate matter sensors designed for commercial ap-
plications relies on light scattering which is fast but inaccurate [27]. 
Therefore, the researchers need to account for the observed considerable 
disparities between PM mass estimates performed using LCS and refer-
ence stations [28]. One of the reasons for these discrepancies is the fact 
that the elevated relative humidity can cause hygroscopic particle 
growth, thereby leading to an overestimation of a dry mass [29–31]. A 
possible mitigation involves accurate assessment of particle hydration 
and its incorporation in the calibration process, but also desiccation of 
particles while measuring. Yet another challenge is a consequence of 
inability of LCSs to detect particles featuring diameters below a certain 
threshold value, the reason being the utilized wavelength of the laser 
light, typically around 0.3 µm. Unfortunately, the peak in the size dis-
tribution of pollution particles is predominantly observed for particles 
below 0.3 µm. Furthermore, studies carried out in laboratory-controlled 
environments suggest significant variation in the accuracy of pollutant 
concentrations among optical sensors [32]. Consequently, it is indis-
pensable to carry out a proper calibration prior to any responsible usage 
of data obtained from LCSs. 

The boost in the sensor market instigated a surge in the development 
of calibration methods. Arguably the simplest techniques involve linear 
regression, where only the sensor data is employed as the input variable 
[33–35]. A somewhat more intricate approach constitutes multivariate 
linear regression, in which additional input variables like temperature, 
and humidity are incorporated for LCS calibration [36–39]. Another 
option offers gain-offset model [40–42], a subclass of linear regression 
models, which assesses the difference between the actual pollutant level 
and the one measured by LCS in terms of both additive and multipli-
cative bias. Nevertheless, such simple methods show significant limita-
tions, as they are incapable of accounting for sensors’ nonlinearities 
[43]. A considerable potential in addressing nonlinearities exhibit ma-
chine learning (ML) techniques [44–46]. Among most popular methods, 
random forests [47,48], gradient boosting algorithms [49,50] or support 
vector regression [51,52] should be mentioned. Nevertheless, recently, 
the employment of various types of neural networks (NNs) for calibra-
tion purposes of LCS-collected PM data has been steadily gaining in 
popularity. A multitude of calibration frameworks has been devised, 
which employ, e.g., Feedforward Neural Networks (FNN) [53], Recur-
rent Neural Networks (RNN) [54,55], Long Short-Term Memory Neural 

Networks (LTSM NNs) [56,57], convolutional neural networks (CNN) 
[58,59], as well as multi-layer perceptrons [72]. 

This study presents an inventive methodology for reliably correcting 
low-cost PM sensors. The proposed methodology combines multiplica-
tive and additive corrections of the PM readings rendered by the low- 
cost sensor with the coefficients predicted using an artificial neural 
network (ANN) surrogate. Calibration inputs encompass environmental 
parameters such as temperature and humidity. Optimization of ANN 
hyper-parameters and calibration factors, specifically hidden layer size 
and affine scaling coefficients, is carried out to bolster the generalization 
capability of the surrogate. The proposed calibration technique has been 
comprehensively validated by applying it to a portable measurement 
platform developed at Gdansk University of Technology, Poland. The 
PM sensors on the platform are field calibrated using reference data 
acquired from several public monitoring stations in the city of Gdansk. 
The results demonstrate excellent accuracy in sensor correction, with 
achieved correlation coefficients of 0.86 for PM1 and PM2.5, and 0.76 for 
PM10, respectively. Additionally, the RMSE values are only 3.1, 4.1, and 
4.9 µg/m3. This high level of precision establishes the calibrated sensor 
as a cost-effective solution for monitoring particulate matter pollution in 
urban areas. 

The originality and the technical contributions of this work can be 
summarized as follows: (i) development of an innovative low-cost sensor 
technique which combines multiplicative and additive response 
correction with optimizable coefficient controlling the balance between 
the two, (ii) development of ANN-based calibration model with opti-
mized architecture, and the complete calibration framework utilizing 
the aforementioned algorithmic tools, (iii) demonstrating the relevance 
of the presented calibration scheme for PM of three different types and 
high efficacy of the calibration process leading to correlation coefficients 
with the reference data close to 0.9 (for PM1 and PM2.5) and close to 0.8 
for PM10. 

The remaining part of the manuscript is organized as follows. Section 
2 introduces the portable low-cost particulate matter monitoring plat-
form. Section 3 elaborates on acquisition of the reference data. The 
proposed calibration methodology is introduced in Section 4. Section 5 
describes experimental setup, gathers the results and provides their 
discussion. Finally, Section 6 concludes the work. 

2. Low-Cost particulate matter sensor. Design and properties 

This section outlines the specifics of a portable system designed for 
monitoring particulate matter (PM) using low-cost PM sensors. It in-
cludes a description of the hardware design, embedded software, and 
the sensors integrated into the system. The calibration procedure for the 
PM sensor will be discussed in detail in Section 4. 

2.1. Portable monitoring system. Hardware design 

A low-cost SPS30 sensor from Sensirion [60] has been chosen to 
measure the concentration of particulate matter. It is a miniature (41 ×
41 × 12 mm) optical sensor measuring PM particles in the range of 
0–1000 µg/m3, distinguishing several PM categories: PM1, PM2.5, PM4, 
and PM10. The accuracy of this sensor, according to the manufacturer’s 
data, is ± 10 µg/m3 for PM1 and PM2.5 and ± 25 µg/m3 for PM4 and 
PM10. The sensor operates based on the principle of measuring scattered 
laser light on airborne pollutant particles within a fan-controlled 
airflow. While this concept appears straightforward, its practical 
implementation is intricate. Optical measurements effectively count and 
size particles, but accurately converting this data into concentration, 
expressed as weight per unit volume, necessitates complex processing 
algorithms. These algorithms consider factors such as particle shape and 
color, leading to limited accuracy. In outdoor settings, where environ-
mental conditions like temperature, pressure, and humidity fluctuate, 
the sensor’s accuracy may deviate from the manufacturer’s declared 
specifications. The SPS30 sensor boasts a lifespan of ten years under 
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continuous operation, with a startup time of 30 s. Equipped with a built- 
in fan to facilitate air transportation, the sensor requires a weekly fan 
cleaning cycle for optimal performance. Fig. 1 illustrates both the 
external and internal views of the SPS30 sensor. 

The PM sensor is powered by a 5 V power supply. The current con-
sumption according to the catalog data is 45–65 mA for the measure-
ment mode, 330 μA for the idle mode, and less than 50 μA for the sleep 
mode. Reading data from the sensor and controlling the sensor can be 
done via the Universal Asynchronous Receiver-Transmitter (UART) and 
Inter-Integrated Circuit (I2C) interfaces (user configurable); for the 
purposes of this project, the UART interface was used to communicate 
with the sensor. 

The environmental conditions in which the PM sensor operates are 
monitored by a miniature, high-accuracy BME280 temperature, pres-
sure, and humidity sensors from Bosch Sensortec [61]. One of the 
BME280 sensors was mounted on the edge of the housing to measure 
ambient conditions as closely as possible. The sensor is equipped with an 
I2C interface and is connected directly to the embedded computer 
board. Another BME280 sensor is mounted inside the enclosure, near the 
computer board and PM sensor and it is dedicated to measure the in-
ternal temperature and humidity, as they differ from the outside con-
ditions due to heating generated by the processing hardware. 

The autonomous embedded computer system has been provided to 
support the measurement procedure of the low-cost PM sensor used in 
the system. The main part of the computer system is a Linux-based all-in- 
one robotics computer Bealgebone® Blue [62] integrated on a small (87 
x 55 mm) printed circuit board. The Beaglebone® computer contains an 
ARM®-based microprocessor along with many peripheral devices such 
as: Wi-Fi, Bluetooth modules, Li-Po battery charging monitor with a 2- 
cell balancer, multiple UART, Serial Peripheral Interface (SPI), I2C 
and General-Purpose Input/Output (GPIO) ports. The microprocessor 
mounted on Beaglebone board is OSD3358 System-in-Package inte-
grated circuit from Octavo Systems [63] build around AM3358 proces-
sor from Texas Instruments [64]. It consists of an ARM Cortex-A8 
processor clocked at 1 GHz, 32 KB L1 cache, 256 KB L2 cache, 64 KB 
RAM and 176 KB ROM, PRU-ICSS coprocessor (programmable real-time 
units), 3D graphics accelerator, encryption accelerator and many on- 
chip peripheral elements (serial and parallel interfaces, memory in-
terfaces, real-time clock, watchdog, etc.). The block diagram of the 
Beaglebone computer has been shown in Fig. 2. 

A Li-Po battery consisting of two cells with a total output voltage of 
7.4 V and a capacity of 4400mAh is connected to the computer board, 
ensuring autonomous operation of the system for at least 24 h. However, 
an external power supply should be used anyway. By default, the Bea-
gleBone® Blue computer is equipped with a Wi-Fi wireless network 
module, but to ensure long-distance communication, a cellular network 
modem u-GSM shield from itbrainpower.net [65] with an installed BG96 
module from Quectel [66] on a small PCB of approximate dimensions of 
45 × 27 mm was added to the system. The modem supports communi-
cation compatible with Long-Term Evolution (LTE), Frequency-Division 
Duplexing (FDD), Time-Division Duplexing (TDD) and Enhanced Gen-
eral Packet Radio Service (EGPRS) 800/900/1800/1900 MHz wireless 

broadband communication standards for mobile devices. In addition to 
communication, the BG96 modem also supports the following satellite 
navigation systems: Galileo, Global Positioning System (GPS), Global 
Navigation Satellite System (GLONASS) and BeiDou/Compass. These 
are used to provide the geographical coordinates of the location during 
each measurement. The 1nce operator [67] was chosen to provide 
communication, which provides low-bandwidth communication dedi-
cated to IoT devices in 165 countries in Europe, Asia, North America, 
South America and Oceania for a one-time initial fee, enabling operation 
in 2G, 3G, 4G/LTE-M and NB-IoT networks (depending on the country) 
for 10 years. The internals of the measurement platform have been 
shown in Fig. 3. 

The computer, modem, environmental parameter sensor, PM sensor 
module, GSM antenna, battery, and other components were affixed to a 
base mounting plate constructed using a 3D printer. This base plate was 
then enclosed within a housing (see Fig. 4), also created through 3D 
printing, featuring dedicated mounting brackets. The housing design 
facilitates easy removal of the base plate for potential repairs or di-
agnostics. Engineered to withstand various weather conditions, the 
casing was crafted from PET-G material, ensuring durability and 
resilience. 

2.2. Portable monitoring system. Software 

The Beaglebone computer was equipped with the Ubuntu Linux 
version 18.04 LTS operating system. To facilitate hardware interfacing 
with the PM sensor, environmental sensor, and modem, dedicated 
drivers were developed in C and Python. The primary PM measurement 
software was coded in Python, utilizing multi-threaded functions with 

Fig. 1. Low-cost PM sensor SPS30 from Sensirion [60]: (a) top view, (b) sen-
sor’s internals. 

Fig. 2. Block diagram of the Beaglebone Blue embedded computer board. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 3. Internals of the system with Beaglebone Blue embedded computer and 
PM sensor SPS30. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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mutexes serving as an inter-process synchronization mechanism. Within 
the main software module, Python class instances representing software 
objects were instantiated and linked to the hardware modules of the PM 
sensor, temperature sensor, and GPS unit, as illustrated in Fig. 5. 

These objects were endowed with methods enabling their utilization, 
with mutexes employed to safeguard against concurrent access attempts 
to hardware resources and their corresponding drivers. The primary 
software routine orchestrates the following tasks on a regular basis: (i) 
preparing the PM sensor for measurement, (ii) conducting PM, tem-
perature, pressure, and humidity measurements every hour while 
retrieving geographical coordinates from the GPS system, and (iii) 
transmitting the measurement results to a cloud data collection platform 
via a GSM modem. Simultaneously, the PM sensor undergoes a cleaning 
procedure mandated by the device manufacturer every 24 h. A simpli-
fied depiction of these activities is provided in Fig. 6. 

3. Reference data acquisition. Public monitoring stations 

The low-cost PM sensor-based particulate matter measurement de-
vices, as detailed in Section 2, were deployed directly at the monitoring 

stations operated by the ARMAG foundation [68], responsible for air 
quality surveillance in Gdansk, Poland. Gdansk, with a population of 
approximately 0.5 million people, ranks as the sixth-largest city in 
Poland. The ARMAG Foundation manages a network of air-conditioned 
containers strategically positioned across the city, each equipped with 
professionally calibrated and serviced measuring instruments. At these 
stations, the specific sensors employed are GRIMM 180 analysers, as 
depicted in Fig. 7. These analysers serve as the reference data source for 
the field calibration of the low-cost sensors. 

Air pollution measurements, along with various environmental pa-
rameters such as temperature, humidity, wind speed, and sunlight, are 

Fig. 4. Assembled system with weatherproof enclosure: (a) - project, (b) - real picture.  

Fig. 5. Simplified structure of hardware-software interaction and software 
objects with relevant classes and methods. 

Fig. 6. The flow diagram of software operation to perform measurements and 
sensor maintenance. Note that the operations are performed in loops therefore 
there are no termination conditions indicated. 
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conducted hourly at each reference station. The results of these mea-
surements are published daily on the foundation’s website, accessible to 
the public free of charge. 

To gather reference data for this publication, specialized software 
was created. This software runs on a server hosted at the Gdansk Uni-
versity of Technology. It regularly reads the website and saves the 
collected reference data into a CSV file. 

The tested measurement devices, as described in Section 2, were 
installed near the reference stations. They were placed either on the roof 
or adjacent to the containers, depending on the configuration of the local 
station. This setup allowed for direct comparison between the mea-
surement results of the tested devices and those of the reference devices 
operated by the ARMAG foundation. An illustration of the installation of 
one of the tested devices at a reference station is provided in Fig. 8. The 
measurements conducted by the tested devices followed the same hourly 
intervals as the reference stations, and the results were transmitted via 
GSM modems to a cloud-based data collection platform. Subsequently, 
the data from the cloud was downloaded into a CSV file for further 
analysis. 

Fig. 9 illustrates the locations of the measurement sites where the 
ARMAG network reference stations are situated, alongside the portable 
monitoring platforms installed as described in Section 2. The measure-
ment campaign spanned two months, between March and May 2023. 
The reference and measurement data collected during this period were 
utilized to develop the calibration model detailed in subsequent sections 
(Section 4 and 5). 

4. Field calibration of Low-Cost PM sensor by Machine learning 
and affine response scaling 

This section introduces the proposed machine-learning-based cali-
bration procedure for correcting low-cost PM sensor. The operation of 
our algorithm will be illustrated using the portable monitoring platform 
outlined in Section 2, using the reference data acquired as detailed in 
Section 3. A description of the calibration strategy is preceded by a 
rigorous formulation of the sensor correction problem in Section 4.1, 
followed by a definition of a mixed multiplicative and additive response 
correction in Section 4.2. The artificial neural network (ANN) calibra-
tion model is elucidated in Section 4.3 along with a description of the 
hyper-parameter optimization process. The complete operating flow of 
PM measurement using calibrated low-cost sensor is covered in Section 
4.4. 

4.1. Low-Cost PM sensor calibration. Notation and terminology. Problem 
statement 

Fig. 10 illustrates data produced by the reference stations and the 
low-cost sensor of Section 2. As for the reference, we are only interested 
in the measured level of particulate matter (PM), here denoted as PMr.x, 
where, later, x will be substituted by a specific PM type (1, 2.5, or 10). 
On the other hand, the low-cost sensor provides the PM readings PMs.x, 
and a set of environmental parameters, namely, internal and external 
temperature and humidity, as well as atmospheric pressure. As eluci-
dated in Section 2, internal and external conditions are different due to 
the heating effects associated with the electronic circuitry within the 
measurement platform. As the sensor operation is affected by the tem-
perature and humidity, utilizing both sets of parameters (i.e., internal 
and external) as calibration variables may enhance the calibration 
process reliability. Fig. 10(c) gathers notation utilized to denote the 
reference and low-cost sensor PM as well as the environmental variables. 

The total number of data samples acquired for the purpose of sensor 
calibration is N, and the dataset is split into the training part (Nb sam-
ples), and the testing part (Nt samples). The testing part encapsulated 
about twenty percent of the total number of samples. The specific 
number of samples are as follows (cf. Section 5.1 for more details): N =
3756, 5846, and 6410 for PM1, PM2.5, and PM10, respectively; Nt = 672 
for PM1, and 1008 for PM2.5 and PM10; finally, Nb = N – Nt. These 
numbers are obtained after removing corrupted data from the low-cost 
sensor. The details concerning data division will be discussed in the 
verification section (Section 5). The training set was exclusively utilized 
to identify the calibration model, whereas the testing set was exclusively 
used for validation purposes. For the purpose of formulating the cali-
bration problem, we denote the reference training samples as PMr.x

(b.j), j 
= 1, …, Nb. The low-cost sensor training samples are denoted as PMs.x

(b. 

j), j = 1, …, Nb, and v(b.j), j = 1, …, Nb (environmental data). The testing 
data will be denoted as PMr.x

(t.j), j = 1, …, Nt, PMs.x
(t.j), j = 1, …, Nt, and 

v(t.j), j = 1, …, Nt, respectively. 
In the following, the low-cost sensor calibration model will be 

denoted as C(PMs.x,v;p), where p is an aggregated vector of model pa-
rameters (e.g., hyper-parameters of the neural network, cf. Section 4.3). 
The calibration model output represents the corrected low-cost sensor 
measurement. Parameter vector p is identified to fit the calibration 
model to the reference data over the entire training set. The fitting 
process is carried out to minimize the MSE error, i.e., we have 

Fig. 7. Equipment for reference PM measurement (Gimm 180 analyser) 
installed in the reference Station 3 of ARMAG foundation. 

Fig. 8. One of the reference stations of ARMAG foundation (Station 2) with 
tested device installed on the mast on top of the container. 
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Fig. 9. Location of the reference stations in the city of Gdansk. Stations 1 through 5 will be referred to as AM1, AM2, AM3, AM7, and AM8 later in the paper, 
according to the ARMAG’s nomenclature. 

Fig. 10. Description of data produced by the reference stations and the low-cost portable monitoring platform of Section 2: (a) PMx reading from the reference 
station; (b) PMx reading from the low-cost sensor under calibration. The sensor also produces auxiliary outputs: external and internal temperature (To and Ti, 
respectively), external and internal humidity (Ho and Hi, respectively), and atmospheric pressure (P); (c) symbols of data produced by the reference station and low- 
cost sensor. 
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p* = argmin
p

1
Nb

∑Nb

j=1

(
PM(b.j)

r.x − C
(
PM(b.j)

s.x , v(b.j),p
) )2 (1)  

where p* is the optimum set of calibration model parameters to be 
found. 

The corrected low-cost sensor output will be denoted as 

PMcorr.x = C(PMs.x, v, p*) (2)  

Reliability of the calibration process will be validated using the corre-
lation coefficient between the reference and corrected low-cost sensor, 
and the RMSE error, both computed for the testing data. 

In particular, we have  

r =

∑Nt
j=1

(
PM(t.j)

corr.x − PMcorr.x
)(

PM(t.j)
r.x − PMr.x

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nt

j=1

(
PM(t.j)

corr.x − PMcorr.x
)2∑Nt

j=1

(
PM(t.j)

r.x − PMr.x
)2

√ (3)  

where 

PMr.x =
1
Nt

∑Nt

j=1
PM(t.j)

r.x PMcorr.x =
1
Nt

∑Nt

j=1
PM(t.j)

corr.x (4)  

and 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Nt

j=1

(
PM(t.j)

corr.x − PM(t.j)
r.x

)2

Nt

√
√
√
√ (5)  

4.2. Mixed multiplicative and additive response correction of Low-Cost 
sensor 

The calibration approach adopted in this study for the low-cost 
sensor involves a combination of additive and multiplicative response 
corrections, akin to affine scaling. This scheme introduces additional 
degrees of freedom, which could enhance the reliability of the calibra-
tion process. 

The basic low-cost sensor correction scheme is arranged as follows: 

PMcorr.x = Am(PMs.x + Aa) (6)  

where PMcorr.x is the corrected sensor reading. Using (6), the calibration 
function C(PMs.x,v,p) takes a more specific form of 

C(PMs.x, v, p) = Am(PMs.x, v, p)(PMs.x + Aa(PMs.x, v, p)) (7) 

Using the above notation, the regression problem (1) takes the form 
of 

p* = argmin
p

1
Nb

‖PMr − C(p)‖2 (8)  

where 

PMr =

⎡

⎢
⎢
⎣

PM(b.1)
r.x

⋮
PM(b.Nb)

r.x

⎤

⎥
⎥
⎦ (9) 

and 

C(p) =

⎡

⎢
⎢
⎣

C(PM(b.1)
s.x , v(1),p)

⋮
C(PM(b.Nb)

s.x , v(Nb),p)

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

Am(PM(b.1)
s.x , v(1), p)

[
PM(b.1)

s.x + Aa(PM(b.1)
s.x , v(1), p)

]

⋮
Am(PM(b.Nb)

s.x , v(Nb),p)
[
PM(b.Nb)

s.x + Aa(PM(b.Nb)
s.x , v(Nb), p)

]

⎤

⎥
⎥
⎦ (10) 

It should be noted that solution to (8) is not unique because various 
combinations of multiplicative and additive correction coefficients may 
lead to the same outcome. Here, a uniqueness is enforced by introducing 
a calibration hyper-parameter 0 ≤ α ≤ 1, which controls the distribution 
of weights between the additive and multiplicative coefficients. The 
correction coefficients computed over the training data are then given as 

Aa(PM(b.j)
s.x , v(b.j),p) = α

[
PM(b.j)

r.x − PM(b.j)
s.x

]
(11) 

and 

Am(PM(b.j)
s.x , v(b.j), p) =

PM(b.j)
r.x

PM(b.j)
s.x + α(PM(b.j)

r.x − PM(b.j)
s.x )

(12) 

The parameter α will be optimized together with the calibration 
model hyper-parameters to ensure the best possible correction quality. 
Also, because the typical variations of the low-cost sensor readings are 
lower than those of the reference, the recommended value of α is lower 
than unity, which would translate into scaling coefficient Am being 
higher than one. To the best knowledge of the authors, a combination of 
multiplicative and additive correction in the form similar to that 
described in this section was not employed so far in any studies available 
in the literature. 

4.3. Calibration model implementation using artificial neural networks 

The calibration model of choice in this study is artificial neural 
network (ANN). As we need a relatively simple regression model, a 
feedforward ANN, specifically, a multi-layer perceptron (MLP) [69,70], 
will be employed. Initial experiments indicate that utilization of three 
fully connected hidden layers ensure sufficient flexibility, while being 
sufficiently immune against overtraining. 

However, the number of neurons in those layers are treated as hyper- 
parameters, adjusted during model training, as elucidated below. The 
coefficient α discussed in Section 4.2 is an additional hyper-parameter. 

4.3.1. Network architecture 
Fig. 11 shows the overall architecture of the MLP model employed in 

this study along with its training setup. The model inputs are environ-
mental parameters (temperature, humidity, atmospheric pressure) 
gathered in vector v, as well as the PM reading from the low-cost sensor 
PMs.x. Using this data, the calibration model predicts the affine scaling 
coefficients Aa and Am. Simplicity of the network architecture is inten-
tional and allows us to smoothen the noise inherent to PM measurement 
data (pertaining to both the reference and low-cost sensor readings). 
Furthermore, the model training time is short (a few seconds), which 
enables evaluation of many different architectural variations, specif-
ically, adjustment of hyper-parameters mentioned in the previous 
paragraph. 

4.3.2. Model identification 
Fig. 12 shows the flow diagram of calibration model identification 

including adjustment of the hyper-parameters. For simplicity, we have 
three parameters, namely, NL, ML, and α, gathered in a vector H = [NL 
ML α]T. The network architecture, i.e., the number of neurons in the ith 
layer NLi, i = 1, 2, 3, is determined by NL and ML as follows: 

[NL1 NL2 NL3] =

[

IN(MLNL) NL IN

(
NL

ML

)]

(13)  

where IN(.) is the rounding function (i.e., IN(x) is the nearest integer to 
x). Due to fast training of the MLP model, hyper-parameters H are found 
through exhaustive search within a discrete parameters space defined as 
all combinations of the sets NL ∈ {6, 8, 10, 12, 15, 20}, ML ∈ {2, 1, 0.5}, 
and α ∈ {0.6, 0.7, 0.8, 0.9, 1.0}. This space corresponds to eighteen 
different ANN architectures and, independently, five combinations of 
the affine correction coefficients. For each value of the vector H, the 
neural network is trained twenty times, and the best-performing model 
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is selected. This is necessary because of random data division (into 
training and testing samples) carried out within the training cycle, 
which leads to different results for each run. 

4.4. Operating flow of particulate matter detection by means of calibrated 
sensor 

The operating flow of the sensor calibration process has been shown 
in Fig. 13. The first step of the process is to obtain predicted correction 
coefficients Am and Aa from the MLP calibration model, using the raw 
PMx reading from the low-cost sensor and the values of environmental 

parameters (vector v). These coefficients are then applied to compute 
the calibrated sensor output using affine transformation (6). 

5. Results and discussion 

In this section, we demonstrate the operation and performance of the 
proposed calibration scheme, which is applied to the portable moni-
toring platform outlined in Section 2. The reference data is acquired 
from the public stations briefly discussed in Section 3. The content of 
this section is structured as follows. In Section 5.1, we overview the 
reference and low-cost data, as well as its division into training and 

Fig. 11. Artificial neural network surrogate used as the calibration model: (a) basic model architecture, here, a multi-layer perceptron (MLP) with three fully- 
connected hidden layers; the number of neurons NL1, NL2, and NL3 are treated as hyper-parameters; detailed description of the network inputs (i.e., environ-
mental parameters and low-cost sensor PM readings) can be found in Fig. 10(c); (b) MLP training setup. 

Fig. 12. Identification of the calibration model with concurrent adjustment of the hyper-parameters H = [NL ML α]T. The ANN model is trained using the Levenberg- 
Marquardt algorithm for all combinations of hyper-parameters to identify the best MLP configuration and the scaling coefficient α. For each value of H, the MLP is 
trained twenty times, and the best-performing model is selected. 
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testing sets. Section 5.2 outlines the experimental setup. Among others, 
it enlists the various calibration scenarios considered for the purpose of 
comparative analysis. We also investigate the effects of incorporating 
mixed multiplicative and additive correction versus additive-only 
scheme, as well as quantify the impact of optimizing the MLP calibra-
tion model architecture. The same section gathers the numerical results 
and provides their visualization. Section 5.3 offers a summary of find-
ings and discusses the performance of the presented calibration strategy. 

6. Reference and Low-Cost sensor data 

The proposed calibration procedure is validated using the reference 
data acquired from the public measurement stations allocation in the 
city of Gdansk, Poland, and outlined in Section 3. The data has been 
gathered hourly over the period of almost two months, from the 
beginning of March 2023 through beginning of May 2023. The portable 
platforms outlined in Section 2 have been allocated in the proximity of 
the respective stations, and the measurements were takes at the same 
times. Most of this data (about 80 %) has been used for training, whereas 
about 20 % served for testing purposes. The testing data was allocated in 
one-week-long time intervals (four weeks for PM1, and six weeks in total 
for PM2.5, and PM10). The details concerning data acquisition are as 
follows:  

• Reference data was acquired in the period from March 9 to May 9, 
2023, from five reference stations allocated in the city of Gdansk, 
Poland (cf. Section 3);  

• PM1 data was only provided by stations AM1, AM3, and AM7, 
whereas PM2.5 and PM10 measurements were carried out by all five 
stations;  

• Low-cost sensor data was gathered from cost-efficient platforms 
outlined in Section 2, allocated in close proximity of the respective 
reference stations;  

• Data recorded every hour;  
• Overall number of samples almost 4,000 for PM1, and around 6,600 

for PM2.5 and PM10 (corrupted samples were removed). 

The training data constituted approximately eighty percent of the 

dataset and was utilized to establish the calibration models. Training 
data was taken from results concatenated for all monitoring stations 
(and respective portable measurement platforms). The testing data was 
assigned as follows:  

• Testing data corresponds to several one-week periods (four for PM1, 
and six for PM2.5 and PM10), as specified below;  

• The number of testing data points is Nt = 4 × 168 = 672 (for PM1), 
and Nt = 6 × 168 = 1008 (for PM2.5 and PM10);  

• Specific allocation of testing samples  
- PM1: March 26 - April 2 (AM1), March 17–24 (AM3), March16-23 

(AM7), April 6–13 (AM7);  
- PM2.5: April 17–23 (AM1), April 11–18 (AM2), March 11–18 (AM3) 

April 14–21 (AM3), March 19–26 (AM7), March 9–16 (AM8).  
- PM10: March 26 – April 2 (AM1), April 27 – May 3 (AM1), March 29 – 

April 5 (AM2), March 9–16 (AM3), April 10–17 (AM3), April 9–16 
(AM7). 

Fig. 14 shows reference and low-cost sensor readings concatenated 
for all measurement locations with testing periods marked grey. 

6.1. Results 

This part of the paper provides the results of field-calibration of the 
low-cost PMx sensor integrated into the portable monitoring platform 
outline in Section 2. The three types of particulate matter pollution 
(PM1, PM2.5, and PM10) are treated separately. 

For each of these, several calibration setups are considered, different 
by which of the hyper-parameters contained in the vector H = [NL ML 
α]T are optimized. For the first three scenarios, we keep α = 1, which 
corresponds to sensor correction being purely additive (multiplicative 
coefficient Am = 0). At the same time, either none of the MLP size pa-
rameters (NL, ML), only NL, or both are optimized. The fourth and the 
fifth scenario assume variable α, and either restricted or full MLP ar-
chitecture optimization. The details of hyper-parameter adjustment can 
be found in Section 4.3.2. The details of the considered calibration 
process configurations can be found in Table 1. 

The setups pertinent to PM1, PM2.5, and PM10 are marked as A, B, and 
C, respectively. For each setup, the MLP model was trained fifty times, 
and the best run in terms of the loss function value was utilized as the 
ultimate calibration model. The multiple training runs are necessary due 
to the presence of stochastic components (random internal training/ 
testing data division). 

The numerical results from all scenarios have been gathered in 
Table 2, presenting the correlation coefficient and modeling error 
(RMSE) for both training and testing data. Clearly, the figures for the 
testing data are of primary interest. The definitions of the correlation 
coefficient and RMSE have been provided in Section 4.1 (equations (3) 
and (5), respectively). Figs. 15, 16, and 17 show the reference and 
calibrated low-cost sensor PM1, PM2.5, and PM10 readings for the 
selected subsets of the training and testing data, along with the scatter 
plots, respectively. In each case, we visualize the last setup for each PM 
type (A.5, B.5, and C.5), which incorporates optimization of all three 
hyper-parameters NL, ML, and α. 

6.2. Discussion 

The primary objective of the numerical experiments carried out in 
this section was to assess the efficiency of the proposed calibration 
strategy. In particular, we are interested in evaluating the reliability of 
the PMx readings provided by the corrected low-cost sensor in com-
parison to the reference data. Furthermore, we investigate the relevance 
of the affine scaling (i.e., a combination of the multiplicative and ad-
ditive correction), as well as the effects of adjusting the calibration 
model architecture (i.e., optimization of the hyper-parameters NL and 
ML). One should also recall that the calibration process is challenging as 

Fig. 13. Operating flow of the low-cost sensor calibration procedure proposed 
in this article. The PMx and environmental parameter readings (vector v) are 
used as the input of the calibration MLP model. The latter produces multipli-
cative and additive correction coefficients, which are applied to obtain the 
calibrated sensor output PMcorr.x. 
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the disparities between the reference and uncorrected low-cost sensor 
data is significant, whereas the dynamic range of PMx readings is high, 
from close to zero to almost sixty µg/m3. Finally, PMx levels often 
fluctuate substantially within short timeframes (cf. Fig. 14). 

The results gathered in Table 2 demonstrate that the proposed 

calibration approach exhibits remarkable performance both in terms of 
the correlation coefficient and the RMSE values. For PM1 and PM2.5, the 
correlation coefficient reached the values of about 0.86, whereas for 
PM10, it is about 0.76. These numbers are impressive, especially having 
in mind considerable misalignment between the uncorrected low-cost 
sensor and reference measurements, for which the correlation co-
efficients are 0.40, 0.44, and 0.17, respectively. 

It should be emphasized that the reliability of the low-cost sensor is 
particularly poor for PM10, yet our calibration technique allows 
elevating it to usable levels. These improvements can be observed in 
Figs. 15, 16, and 17. In particular, the scatter plots for the calibrated 
sensor are concentrated much closer to the identify function than those 
for corresponding to the raw sensor. In terms of RMSE, the values for the 
calibrated sensor are as low as about 3.1, 4.1, and 4.9 μg/m3 for PM1, 
PM2.5, and PM10, respectively. The values for uncorrected sensor are 5.3, 
5.6, and 9.6 μg/m3. Again, noticeable improvement can be observed due 
to the proposed calibration. Finally, the average relative error of the 
calibrated low-cost sensor is about 20, 18, and 26 percent for PM1, 
PM2.5, and PM10, respectively. 

As can be observed, the matching between the reference and cor-
rected low-cost sensor data is better for the training set. This is expected 
as the calibration model is exclusively trained using the training data, 
and the training process attempts to improve the alignment between the 
reference and low-cost sensor readings over this set. The testing set is not 
used in this process whatsoever. It is therefore expected that the dis-
crepancies for the testing set will be higher. Although the calibration 
process accounts for the overall behavior and properties of the low-cost 
sensor, it is obviously not capable of accounting for local fluctuations 
present in the sensor data for testing locations. Here, a critical part is to 
ensure that the calibration model is relatively simple so that its 
approximation capability is limited, otherwise (e.g., in the case of 
interpolating models), approximation capability would by far surpass 
generalization capability, thereby leading to inferior results over the 

Fig. 14. Reference and low-cost sensor data utilized to calibrate the sensor of Section 2. The plots show concatenated data from all reference stations and the 
corresponding portable platforms. Grey areas correspond to the testing data. The remaining samples are used for calibration model training: (a) PM1, (b) PM2.5, 
(c) PM10. 

Table 1 
Calibration model input configurations considered in verification experiments.  

PM 
type 

Calibration 
setup 

Calibration hyper-parameters 

Affine scaling 
coefficient α$ 

NL
# ML

& 

PM1 A.1 1 (fixed) 10 (fixed) 1 (fixed) 
A.2 1 (fixed) Optimized 1 (fixed) 
A.3 1 (fixed) Optimized Optimized 
A.4 Optimized Optimized 1 (fixed) 
A.5 Optimized Optimized Optimized  

PM2.5 B.1 1 (fixed) 10 (fixed) 1 (fixed) 
B.2 1 (fixed) Optimized 1 (fixed) 
B.3 1 (fixed) Optimized Optimized 
B.4 Optimized Optimized 1 (fixed) 
B.5 Optimized Optimized Optimized  

PM10 C.1 1 (fixed) 10 (fixed) 1 (fixed) 
C.2 1 (fixed) Optimized 1 (fixed) 
C.3 1 (fixed) Optimized Optimized 
C.4 Optimized Optimized 1 (fixed) 
C.5 Optimized Optimized Optimized  

$ Fixed α = 1 corresponds to additive sensor correction (for α = 1, multipli-
cative coefficient Am = 1). 

# Fixed NL = 10 corresponds to MLP model architecture of the form [10 10 10] 
(all hidden layers having ten neurons each). 

& Fixed ML = 1 corresponds to MLP model architecture having the same 
number of neurons NL in each hidden layer. 
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testing set. In this work it is prevented by using a simple ANN archi-
tecture as elucidated in Section 4. 

Another point of interest are the effects of incorporating mixed 

multiplicative and additive correction (cf. Section 4.2), as well as opti-
mization of the MLP calibration model hyper-parameters. As indicated 
in Table 2, affine sensor correction (variable scaling coefficient α) brings 

Table 2 
Sensor calibration performance: correlation coefficients and RMSE.  

PM 
type 

Calibration 
setup 

Training data Testing data Calibration model 
architecture 

Correlation 
coefficient r 

RMSE [μg/ 
m3] 

Relative error 
[%] 

Correlation 
coefficient r 

RMSE [μg/ 
m3] 

Relative error 
[%] 

α MLP 
architecture 

PM1 A.1 0.86 2.57 19.3 0.817 3.64 23.9 1 [10 10 10] 
A.2 0.91 2.06 14.9 0.820 3.76 21.5 1 [12 12 12] 
A.3 0.90 2.18 16.1 0.828 3.67 21.2 1 [16 8 4] 
A.4 0.90 2.13 15.1 0.839 3.56 20.9 0.6 [10 10 10] 
A.5 0.91 2.11 15.1 0.859 3.13 20.1 0.8 [40 20 10] 

PM2.5 B.1 0.88 2.61 16.6 0.814 4.69 23.9 1 [10 10 10] 
B.2 0.83 3.04 18.5 0.843 4.31 22.5 1 [8 8 8] 
B.3 0.84 2.95 18.2 0.850 4.21 22.1 1 [12 6 3] 
B.4 0.82 3.19 18.8 0.856 4.13 19.6 0.8 [8 8 8] 
B.5 0.92 2.10 14.9 0.860 4.08 18.2 0.7 [6 12 24] 

PM10 C.1 0.70 5.73 22.9 0.721 5.37 31.5 1 [10 10 10] 
C.2 0.79 4.79 23.0 0.743 4.98 28.4 1 [8 8 8] 
C.3 0.87 3.80 17.8 0.755 5.02 28.1 1 [30 15 8] 
C.4 0.88 3.64 17.6 0.756 5.01 26.5 0.6 [15 15 15] 
C.5 0.87 3.83 20.8 0.762 4.92 26.2 0.8 [30 15 8]  

Fig. 15. Sensor calibration performance for PM1 using setup A.5 (cf. Table 1): (a) selected subsets of the training data (reference – red, uncorrected sensor – green, 
corrected sensor – blue); (b) selected subsets of the testing data (reference – red, uncorrected sensor – green, corrected sensor – blue); (c) scatter plots for the training 
data (left: uncorrected – gray, corrected – black) and the testing data (right). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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certain advantages as compared to traditional additive correction (α 
fixed at the value of unity). On the average, it leads to about 0.04 
improvement of the correlation coefficient for PM1 (setup A.5 versus 
A.3), and up to 0.02 improvement for PM2.5 and PM10. At the same time, 
similar benefits are observed due to optimization of the MLP model 
hyper-parameters NL and ML, which contribute to about 0.03 to 0.04 
improvement of the correlation coefficient for all PM types. Both factors 
also contribute to a reduction of the RMSE values with their collective 
effect being as high as about 0.5 μg/m3. 

For the sake of supplementary validation, the calibration process has 
been repeated with the white Gaussian noise added to the low-cost 
sensor readings. The calibration process was repeated for PM1, PM2.5, 
and PM10 using the calibration setups A.5, B.5, and C.5. In each case, 
four noise levels were applied (different by the maximum noise ampli-
tude): 1 μm/m3, 2 μm/m3, 5 μm/m3, and 10 μm/m3. The results have 
been gathered in Table 3. It should be emphasized that the noise levels of 
5 μm/m3 and 10 μm/m3 are huge and by far exceeding the typical RMSE 
values obtained for the respective PMx types and calibration setups for 
noise-free data. As a matter of fact, even the noise level of 2 μm/m3 is 
significant, i.e., comparable with the average error values. The analysis 
of data included in Table 3 indicates that incorporating noise obviously 
has detrimental effects on both approximation and generalization 
capability of the calibration model. However, the effects are more pro-
nounced for the training data, which is due to the fact that the presence 

of noise disturbs (systematic) relationships between the reference and 
the low-cost sensor readings. At the same time, worsening of the cor-
relation coefficient and RMSE for the testing data, while still noticeable, 
is less pronounced than for the training samples. This effect is a result of 
poorer alignment between the reference and the calibrated sensor across 
the testing set (as compared to the training data), which means that the 
presence of noise is not as harmful here. On the other hand, this cor-
roborates the robustness of the presented calibration strategy and its 
relative immunity to noise. 

Overall, the calibration technique proposed in this study has been 
demonstrated to exhibit remarkable efficiency. The reliability of the 
corrected low-cost sensor is excellent, especially when compared to its 
raw version. The proposed mixed multiplicative and additive correction 
allows us to elevate the correlation coefficient with the reference data to 
practically acceptable level even for the most challenging case of PM10, 
where the initial correlation coefficient was as low as 0.17 (increased to 
0.76 upon calibration). On the practical side, the calibration process can 
be executed offline, i.e., applied to the PMx measurements acquired from 
the portable platform before presenting the results to the user. Another 
approach would be to implement the calibration scheme within the 
platform using its built-in computational resources, as outlined in Sec-
tion 2. 

For the purpose of supplementary validation, the calibration 
approach proposed in this study has been compared to several bench-

Fig. 16. Sensor calibration performance for PM2.5 using setup B.5 (cf. Table 1): (a) selected subsets of the training data (reference – red, uncorrected sensor – green, 
corrected sensor – blue); (b) selected subsets of the testing data (reference – red, uncorrected sensor – green, corrected sensor – blue); (c) scatter plots for the training 
data (left: uncorrected – gray, corrected – black) and the testing data (right). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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Fig. 17. Sensor calibration performance for PM10 using setup C.5 (cf. Table 1): (a) selected subsets of the training data (reference – red, uncorrected sensor – green, 
corrected sensor – blue); (b) selected subsets of the testing data (reference – red, uncorrected sensor – green, corrected sensor – blue); (c) scatter plots for the training 
data (left: uncorrected – gray, corrected – black) and the testing data (right). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 

Table 3 
Sensor calibration including white Gaussian noise added to low-cost sensor readings.  

PM type Calibration setup Noise amplitude [μg/m3] Training data Testing data 

Correlation coefficient r RMSE [μg/m3] Correlation coefficient r RMSE [μg/m3] 

PM1 A.5 0 (noise-free) 0.91 2.11 0.86 3.13 
1 0.90 2.15 0.83 3.69 
2 0.88 2.20 0.81 3.86 
5 0.85 2.45 0.80 3.95 
10 0.68 3.87 0.78 4.03  

PM2.5 B.5 0 (noise-free) 0.92 2.10 0.86 4.08 
1 0.91 2.19 0.84 4.61 
2 0.87 2.37 0.82 4.79 
5 0.82 2.71 0.80 5.04 
10 0.73 3.86 0.78 5.20  

PM10 C.5 0 (noise-free) 0.87 3.83 0.76 4.92 
1 0.84 4.20 0.73 5.31 
2 0.83 4.32 0.71 5.49 
5 0.81 4.59 0.69 5.81 
10 0.75 5.17 0.66 5.87  
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mark methods, including linear regression, support vector regression 
(SVR), Random Forest Regression, ANN-based calibration, and calibra-
tion implemented using a convolutional neural network (CNN) [71]. In 
all cases, the respective calibration models were set up to directly pre-
dict the model output (as opposed to predicting correction coefficients 
as in the method considered in Section 3). The linear regression is a 
model of the form 

S(v,PMs.x) = α0 +α1To +α2Ti +α3Ho +α4Hi +α5P+ α6PMs.x (14) 

i.e., it uses all environmental parameters measured by the portable 
monitoring platform as well as the PMs.x readings from the low-cost 
sensor. The model coefficients are established using conventional 
least-square regression based on the training data. The SVR model em-
ploys Gaussian kernels, and its hyper-parameters are optimized using 
expected improvement as the acquisition function [80]. Random forest 
regression utilizes least-square boosting as the ensemble aggregation 
methods, as well as the hyper-parameter optimization. The ANN uses the 
same architecture as described in Section 4 (three fully-connected hid-
den layers). We consider three variations different in terms of the 
number of neurons (10, 15, and 20 for versions ANN_1, ANN_2, and 
ANN_3, respectively). The ANN model is trained using the back-
propagation Levenberg-Marquardt algorithm with random data divi-
sion. The CNN architecture uses filters of the size 4 × 1 × 1, three 
convolution layers of spatial sizes 32, 16, and 8, followed by a fully 
connected layer of the size 64 neurons (CNN_1), layers of sizes 64, 32, 16 
(CNN_2), and 128, 64, and 32 (CNN_3). Furthermore, batch normali-
zation and ReLU layers are included between the convolution layers. 
CNN is trained using the ADAM’s algorithm with a mini batch size of 
1000 [71]. 

Table 4 gathers the numerical results for all considered benchmark 
techniques and all three PM types. As it can be noticed, the proposed 
calibration approach performs significantly better than the benchmark, 

especially the best configurations (A.5, B.5, and C.5), both in terms of 
the correlation coefficient and RMSE. Only CNN in some of its variants 
has been shown to be close to our method, yet slightly inferior. Also, 
Random Forest calibration works well on the testing data, but its 
generalization capability is not as good as that of the proposed frame-
work. This indicates that utilization of affine correction with optimized 
balance factor α is superior to direct prediction of the calibrated sensor. 

7. Conclusion 

This article introduces a streamlined field calibration scheme 
designed for low-cost particulate matter (PM) sensors. The proposed 
methodology relies on a combination of mixed multiplicative and ad-
ditive correction applied to the readings of the low-cost sensor. The 
balance between these correction mechanisms is governed by an opti-
mizable hyper-parameter within the procedure. Correction coefficients 
are predicted through a feedforward neural network, specifically a 
multilayer perceptron (MLP), utilizing environmental parameters 
(temperature, humidity, atmospheric pressure) measured by the sensor. 
The architecture of the MLP is also optimized to enhance the model’s 
generalization capability. To validate and showcase the effectiveness of 
our calibration strategy, it was implemented on a portable monitoring 
platform developed at Gdansk University of Technology, Poland. This 
platform integrates PMx and environmental sensors, along with elec-
tronic circuitry for implementing measurement protocols and wireless 
data transmission. Numerical experiments were conducted using refer-
ence data obtained from public monitoring stations situated in the city of 
Gdansk. 

The results obtained for three types of particulate matter, namely 
PM1, PM2.5, and PM10, underscore the exceptional performance of our 
calibration methodology. On one hand, the achieved correlation co-
efficients with the reference data are notably high, reaching 0.86 for 

Table 4 
Results of comparative studies.  

PM type Calibration model Training data Testing data 

Correlation coefficient r RMSE [μg/m3] Relative error [%] Correlation coefficient r RMSE [μg/m3] Relative error [%] 

PM1 Linear regression 0.78 3.3 24.5 0.74 4.5 28.2 
SVR 0.83 1.8 11.9 0.70 4.9 24.2 
Random Forest 0.98 1.0 5.9 0.78 4.1 23.4 
ANN_1# 0.93 1.8 12.6 0.50 6.3 33.9 
ANN_2# 0.83 2.8 20.6 0.62 5.5 28.5 
ANN_3# 0.84 2.8 17.8 0.58 5.8 25.3 
CNN_1$ 0.88 2.4 19.0 0.78 4.2 23.9 
CNN_2$ 0.89 2.3 18.1 0.78 4.1 24.1 
CNN_3$ 0.90 2.2 17.2 0.82 3.7 22.1 

PM2.5 Linear regression 0.76 3.6 21.6 0.78 5.1 22.6 
SVR 0.88 2.6 13.1 0.82 4.7 28.5 
Random Forest 0.97 1.2 6.5 0.79 5.0 29.3 
ANN_1# 0.89 2.5 15.2 0.74 5.6 29.2 
ANN_2# 0.89 2.5 15.1 0.65 6.5 33.0 
ANN_3# 0.95 1.7 10.3 0.47 7.9 34.0 
CNN_1$ 0.81 3.2 18.8 0.85 4.1 25.2 
CNN_2$ 0.83 3.0 17.9 0.86 4.1 24.7 
CNN_3$ 0.85 2.8 16.8 0.84 4.2 24.9 

PM10 Linear regression 0.54 7.1 34.6 0.64 6.1 39.1 
SVR 0.78 4.9 18.1 0.67 5.9 37.7 
Random Forest 0.93 2.6 12.2 0.64 6.1 40.13 
ANN_1# 0.74 5.3 25.1 0.62 6.3 40.2 
ANN_2# 0.85 4.0 18.6 0.60 6.5 40.7 
ANN_3# 0.90 3.2 13.9 0.61 6.4 39.5 
CNN_1$ 0.70 5.7 27.7 0.68 5.8 39.4 
CNN_2$ 0.73 5.4 25.2 0.68 5.7 39.6 
CNN_3$ 0.77 5.0 23.7 0.67 5.9 39.9  

# Three ANN architectures utilized, all with three fully connected hidden layers, and the following number of neurons per layer: 10 (ANN_1), 15 (ANN_2), 20 
(ANN_3). 

$ Three CNN architectures utilized, all with filters of the size 4 × 1 × 1, three convolution layers of spatial sizes 32, 16, and 8, followed by a fully-connected layer of 
the size 64 neurons (CNN_1), layers of sizes 64, 32, 16 (CNN_2), and 128, 64, and 32 (CNN_3), as well as batch normalization and ReLU layers in between the 
convolution layers. CNN is trained using the ADAM’s algorithm with a mini batch size of 1000 [71]. 
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PM1 and PM2.5, and 0.76 for PM10. This marks an improvement over the 
uncorrected sensor, where the corresponding correlation coefficients 
were 0.40, 0.44, and 0.17. On the other hand, the attained error levels 
(RMSE) are merely about 3.1, 4.1, and 4.9 µg/m3, emphasizing the 
practical utility and reliability of the calibrated low-cost sensor. Exten-
sive comparative experiments further validate the importance of 
incorporating affine scaling, showing an improvement of up to 0.04 in 
the correlation coefficient compared to an additive-correction-only 
scheme. Simultaneously, the optimization of the multilayer perceptron 
(MLP) calibration model architecture has demonstrated a similar 
contribution to enhancing reliability, with an improvement of up to 0.03 
in terms of the correlation coefficient. Although the proposed calibration 
scheme is generic, it seems that the fundamental limitation is related to 
the size of the training dataset. If the available number of training 
samples becomes extremely large, identification of the calibration 
model may become problematic (and, definitely more time consuming). 
Also, the MLP architecture might need to become more complex, which 
translates into more intricate optimization process of its 
hyperparameters. 

Future efforts will concentrate on enhancing the efficiency of the 
calibration process. One avenue for exploration involves incorporating 
additional inputs into the calibration model, such as estimated time 
derivatives of environmental parameters and time series data of prior 
PMx readings from the low-cost sensor. Another option is the develop-
ment of supplementary correction mechanisms designed to globally 
improve the correlation between reference and sensor data. Further-
more, the consideration of more advanced machine learning tools, 
including convolutional neural networks, will be explored. Another 
objective of the future work will be investigation of the effects of 
changing external conditions due to different seasons (winter, summer, 
etc.) on the calibration process. This will require acquisition of more 
extensive reference and low-cost sensor data, which is one of the goals of 
the future measurement campaign. Yet another research direction is 
investigating potential cross-sensitivity of the low-cost sensor to 
different PM types, which may be explored as a potential way of 
improving calibration process efficacy by incorporating the readings of 
other PM types as the calibration inputs. Finally, the incorporation of 
statistical models will be considered as well, such as support vector 
regression, Gaussian process regression, etc. 
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