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A connected path decomposition of a simple graph G is a path decomposition (X1, . . . , Xl)

such that the subgraph of G induced by X1 ∪ · · · ∪ Xi is connected for each i ∈ {1, . . . , l}. 
The connected pathwidth of G is then the minimum width over all connected path 
decompositions of G . We prove that for each fixed k, the connected pathwidth of any input 
graph can be computed in polynomial-time. This answers an open question raised by Fedor 
V. Fomin during the GRASTA 2017 workshop, since connected pathwidth is equivalent to 
the connected (monotone) node search game.

© 2019 Published by Elsevier B.V.

1. Introduction

Since the famous ‘graph minor’ project by Robertson and Seymour that started with [35], the notions of treewidth and 
pathwidth received growing interest and a vast amount of results has been obtained. The pathwidth, informally speaking, 
allows us to say how closely an arbitrary graph resembles a path. This concept proved to be useful in designing algorithms 
for various graph problems, especially in the case when the pathwidth of an input graph is small (e.g. fixed), in which case 
quite often a variant of the well-known dynamic programming approach that progresses along a path decomposition of the 
input graph turns out to be successful.

Several modifications to pathwidth have been proposed and in this work we are interested in the connected variant 
in which one requires that a path decomposition (X1, . . . , Xl) of a graph G satisfies: the vertices X1 ∪ · · · ∪ Xi induce a 
connected subgraph in G for each i ∈ {1, . . . , l}. This version of the classical pathwidth problem is motivated by several 
pursuit-evasion games, including, but not limited to, edge search, node search or mixed search [28,33,38]. More precisely, com-
puting the minimum number of searchers needed to clean a given graph G in the node search game (i.e., computing the 
node search number of G) is equivalent to computing the connected pathwidth of G . Moreover, a connected path decomposi-
tion can be easily translated into the corresponding node search strategy that cleans G and vice versa. For further references 
that provide more details on correspondences between connected path decomposition and different variants of the search 
games see e.g. [2,16,24,23].
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1.1. Related work

A lot of research has been done in the direction of obtaining FPT algorithms for pathwidth, parametrized by the 
pathwidth k. One of the first polynomial-time algorithms was presented in 1983 by Ellis et al. and had running time 
O (n2k2+4k+2) [18]. Later, these results were improved (e.g., [7,10]) leading to the currently fastest FPT algorithm, working in 
time 2O (k2)n [26]. In these algorithms, in order to produce an optimal solution, an approximate path- or tree-decomposition 
is pre-computed. It is thus of interest to have good approximations for these problems. Numerous works have been pub-
lished in this direction [1,30,34], leading to the currently fastest algorithm for constant-factor approximation for treewidth, 
working in time 2O (k)n [8], that is, single exponential in the treewidth k. The best known approximation ratio of a polyno-
mial time approximation algorithm for pathwidth is O (

√
log(opt) log n) [19].

There exist exact algorithms for computing pathwidth, whose running times are exponential in the order of the input 
graph. Pathwidth can be computed in O ∗(2n)-time (in O ∗(2n) space) or in O ∗(4n)-time with the use of polynomial space, 
using a simple algorithm from [9]. There is also a faster algorithm with running time O ∗(1.9657n) [37], which has been fur-
ther improved very recently to O ∗(1.89n) [29]. See [5,13,14] for some experimental approaches to pathwidth computation.

For pathwidth, it is known due to [36] that the set of minimal forbidden minors (i.e., the obstruction set) is finite for 
each fixed k. However, a significant difference between pathwidth and connected pathwidth is that the latter one is not 
closed under taking minors and hence it is not known if the set of minimal forbidden minors for connected pathwidth is 
finite [4].

We also point out that a number of results have been obtained for connected pathwidth or the closely related connected 
graph (edge) search, including algorithmic and computational ones [2,15,16,21,24,31], monotonicity [25,39], structural prop-
erties [3] or distributed algorithms [11,20,27].

1.2. Motivation

The connectivity constraint for pathwidth is natural and useful in graph searching games [2,20,24]. The connectivity is in 
some cases implied by potential applications (e.g., security constraints may enforce the clean, or safe, area to be connected) 
or it is a necessity, like in distributed or online versions of the problem [6,11,27,32].

Our second motivation comes from connections between pathwidth and connected pathwidth. More specifically, [16]
implies that for any graph G , these parameters differ multiplicatively only by a small constant. This implies that an 
approximation algorithm for connected pathwidth immediately provides an approximation algorithm for pathwidth with 
asymptotically the same approximation ratio. This may potentially lead to obtaining better approximations for pathwidth 
since, informally speaking, the algorithmic search space for connected pathwidth is for some graphs much smaller than that 
for pathwidth. On the other hand, we do not know any algorithm computing the connected pathwidth in time O ∗((2 −ε)n), 
for any ε > 0. Thus, despite this smaller algorithmic search space, it is not clear how these two problems algorithmically 
differ in the context of designing exact algorithms.

During the GRASTA 2017 workshop, Fedor V. Fomin [22] raised an open question, whether we can verify in polynomial 
time, if the connected pathwidth of a given graph is at most k, for a fixed constant k. In this paper we answer this question 
in the affirmative.

1.3. Outline

In the next section we recall the definition of connected pathwidth and related terms used in this work. Section 3
provides a polynomial-time algorithm for determining whether the connected pathwidth of an arbitrary input graph G is 
at most k, where k is a fixed integer. The algorithm is inspired by the algorithms for computing minimum-length path 
decompositions by Dereniowski, Kubiak, and Zwols [17]. We also use the notation from this paper. Then, Section 4 contains 
the analysis of the algorithm (its correctness and running time). We finish with some open problems in Section 5.

2. Definitions

For a simple graph G = (V (G), E(G)) and a set Y ⊆ V (G), the subgraph with vertex set Y and edge set {{u, v} ∈ E(G) 
∣∣

u, v ∈ Y } is denoted by G[Y ] and is called the subgraph induced by Y . For Y ⊆ V (G), we write NG(Y ) to denote the 
neighborhood of Y in G , defined as NG (Y ) = {v ∈ V (G) \ Y

∣∣ ∃u ∈ Y s.t. {u, v} ∈ E(G)}.

Definition 1. A path decomposition of a simple graph G = (V (G), E(G)) is a sequence P = (X1, . . . , Xl), where Xi ⊆ V (G) for 
each i ∈ {1, . . . , l}, and

(i)
⋃l

i=1 Xi = V (G),
(ii) for each {u, v} ∈ E(G) there exists i ∈ {1, . . . , l} such that u, v ∈ Xi ,

(iii) for each i, j, k with 1 ≤ i ≤ j ≤ k ≤ l it holds that Xi ∩ Xk ⊆ X j .
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Fig. 1. An illustration of I-connectivity; empty circles denote vertices from the set I . A partial path decomposition P = (X1, X2) is I-connected, as every 
connected subgraph of G[X1] and G[X1 ∪ X2] contains a vertex from I as required in Definition 2.

The width of a path decomposition P is width(P) = maxi∈{1,...,l} |Xi | − 1. The pathwidth of G , denoted by pw(G), is the 
minimum width over all path decompositions of G .

We say that a path decomposition P = (X1, . . . , Xl) is connected if the subgraph G[X1 ∪ · · · ∪ Xi] is connected for each 
i ∈ {1, . . . , l}. The connected pathwidth of a graph G , denoted by cpw(G), is the minimum width taken over all connected 
path decompositions of G .

Finally, a connected partial path decomposition of a graph G is a connected path decomposition (X1, . . . , Xi) of some 
subgraph H of G , where NG (V (G) \ V (H)) ⊆ Xi . In other words, in the latter condition we require that each vertex of H
that has a neighbor outside H belongs to the last bag Xi . Intuitively, a connected partial path decomposition of G can 
be potentially a prefix of some connected path decomposition of G . Also note that if (X1, . . . , Xl) is a connected path 
decomposition, then for each i ∈ {1, . . . , l}, the sequence (X1, . . . , Xi) is a connected partial path decomposition of G , where 
H = G[X1 ∪ · · · ∪ Xi].

In our analysis we use the following intermediate notion between arbitrary and connected path decompositions.

Definition 2. Given I ⊆ V (G), a (partial) path decomposition P = (X1, . . . , Xl) of G is I-connected if for each i ∈ {1, . . . , l}
each connected component H of G[X1 ∪ · · · ∪ Xi] contains a vertex from I and this vertex belongs to the first bag in which 
H appears in P .

In other words, if P = (X1, . . . , Xl) is a partial path decomposition or a prefix of one, then the subgraph of G induced by 
the union of bags of P may have several connected components and each of them must have a vertex in I . Moreover, if one 
looks at the path decomposition of such a connected component H derived from P , i.e. at the path decomposition obtained 
from (X1 ∩ V (H), . . . , Xl ∩ V (H)) by removing the empty bags, then such a decomposition starts with a bag containing a 
vertex in I . Note that if P is connected then there is only one such connected component. See Fig. 1 for an illustration.

In our analysis, we will assume that the path decompositions we consider have the property that each bag introduces at 
most one new vertex, i.e., for P = (X1, . . . , Xl) it holds |Xi+1 \ X1| ≤ 1 for each i ∈ {1, . . . , l − 1}. This property can be easily 
reestablished whenever needed (a folklore).

3. The algorithm

We will present an algorithm that decides whether, for a connected input graph G and a set I , there exists an 
I-connected path decomposition of width at most k − 1 (thus k is the maximum bag size of the connected path de-
composition to be computed). In the following, G , I and k are hence fixed. Note that we may without loss of generality 
assume that the first bag in a connected path decomposition to be computed has only one vertex.

We start by informally sketching the high-level idea of the algorithm. Then, Sections 3.1 and 3.2 give the algorithm and 
Section 3.3 gives a summary of our method. We use a dynamic programming approach. To that end we introduce a set of 
states, so that each state encodes some partial path decomposition of G . If a transition from one state to another is possible, 
then this certifies that the partial path decomposition corresponding to one state can be extended to (i.e., is a prefix of) 
a partial path decomposition corresponding to the other state. We will verify whether the transition is possible using a 
recursive procedure. The need to ensure consistency of solutions found in recursive calls is the reason why we consider a 
more general problem of finding I-connected path decompositions.

Finally, we will show that each transition can be checked in polynomial time and that it is enough to consider only 
polynomially many states. This eventually leads to an algorithm with a desired complexity.

For any S ⊆ V (G), we say that a subgraph H of G is an S-branch if H is a connected component of G − S and NG (V (H)) =
S . For any S ⊆ V (G), define B(S) to be the set of all S-branches. A set S is called a bottleneck if the number of S-branches 
is at least 2k + 1, as it guarantees us the existence of at least one special branch called an in-branch, which will be defined 
formally in the next section. Observe that each connected component of G − X , for any X ⊆ V (G), is an S-branch for exactly 
one non-empty subset S of X .

Let us mention that S-branches are also known as full components associated with S (see e.g. Bouchitté and Todinca [12]).
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3.1. States

By a potential state we mean a triple 
(

X, {B S}S⊆X , { f B S }S⊆X
)
, consisting of:

• a non-empty set X ⊆ V (G) with |X | ≤ k,
• a subset B S ⊆ B(S) of cardinality at most 2k, chosen for every non-empty S ⊆ X ,
• a function f B S : B(S) → {0, 1}, chosen for every non-empty S ⊆ X . We additionally require that if H, H ′ ∈ B(S) \ B S , 

then f B S (H) = f B S (H ′).

The exact meaning of B S will be explained later on, but let us present some intuition. In Lemma 1 we show that for every 
path decomposition P , the vertices of all but at most 2k S-branches appear in bags of P in a certain, well-structured way. 
The set B S and the function f B S will be used to describe the structure of the remaining, badly behaving S-branches.

Observe that the set X may be chosen in at most nk ways and the number of choices of S is at most 2k . For every S , the 
number of S-branches is at most n, so B S can be chosen in at most n2k ways. The function f B S can be chosen in at most 
2|B S | · 2 ≤ 22k+1 ways. Therefore, the number of potential states is at most nk · 2k · n2k · 22k+1 = O (n3k), i.e., polynomial in n, 
where the asymptotic notation hides the factor that depends on k.

With a potential state s = (X, {B S}S⊆X , { f B S }S⊆X ) we associate the following notions. By bag(s) we denote the set X . By 
cover(s) we denote the set of vertices

X ∪
⋃

S⊆X,S �=∅

⎛
⎝ ⋃

H∈B(S) : f B S (H)=1

V (H)

⎞
⎠ .

By Gs we denote the subgraph of G induced by cover(s). We say that two states w, s are indistinguishable if cover(w) =
cover(s) and bag(w) = bag(s). Otherwise the states are distinguishable. In particular, indistinguishable states can only differ 
by the choice of B S . We note that for such two distinguishable states it may hold that cover(w) = cover(s) but bag(w) �=
bag(s).

Example. In the example in Fig. 1 we can consider two states: s and w with bags bag(s) = X1 and bag(w) = X2. There exists 
one {v1}-branch H1 = G − {v1}, two {v2}-branches: H2 = G[{v1}] and H3 = G[{v3, v4, v5, v6}], one {v6}-branch H4 = G −
{v6} and two {v2, v6}-branches: H5 = G[{v4}] and H6 = G[{v3, v5}]. We notice that the set of {v1, v2}-branches is empty. 
The state s is equal to (X1, {{H1}, {H2, H3}, ∅}, { f1, f2, f∅}) and the state w is (X2, {{H2, H3}, {H4}, {H5, H6}}, { f2, f3, f4}), 
such that f∅ is a function with empty domain, f1(H1) = f2(H3) = f3(H4) = f4(H5) = f4(H6) = 0 and f2(H2) = 1. We notice 
that cover(s) = {v1, v2} and cover(w) = {v1, v2, v6}.

Let v be a vertex from cover(s) which has a neighbor u /∈ cover(s). We argue that v ∈ bag(s). Otherwise, if v /∈ bag(s), 
then both v and u belong to the same S-branch for some S ⊆ bag(s). Thus, they are either both in cover(s), or outside it. 
From this it follows that every vertex v ∈ cover(s), which has a neighbor u /∈ cover(s), must belong to bag(s). Let us denote 
the set of such vertices v by border(s). We have proved:

Observation 1. For each potential state s it holds that border(s) ⊆ bag(s).

We say that a potential state s is a state if each connected component of Gs contains a vertex in I .
We introduce a Boolean table T ab, indexed by all states. For a state s, the value of T ab[s] will be set to true by our 

algorithm if and only if there exists some I-connected partial path decomposition P = (X1, X2, . . . , Xl) of G with H = Gs , 
such that width(P) ≤ k − 1 and Xl = bag(s). We will use a dynamic programming to fill the table T ab. Then, we will 
conclude that G has an I-connected path decomposition of width at most k − 1 if and only if T ab[s] = true for some state 
s with cover(s) = V (G).

Observe that such a final state exists, since for s = (X, {B S}S , { f B S }S ), we have cover(s) = V (G) if and only if f B S (H) = 1
for every S and H . However, the astute reader may notice that in our representation we might have not included some 
I-connected partial path decompositions and it could be possible that we do not find a solution, even though it exists. We 
will show that if cpw(G) ≤ k − 1, then there exists a special type of an I-connected path decomposition of width at most 
k − 1, called a structured path decomposition (defined later), which can be found using our algorithm because, as we will 
argue, our table T ab does not ‘omit’ any structured path decompositions.

3.2. Extension rules

Let us introduce a total ordering ≺ on the set of states. We say that w ≺ s if |cover(w)| < |cover(s)|, or |cover(w)| =
|cover(s)| and |bag(w)| > |bag(s)|. If |cover(w)| = |cover(s)| and |bag(w)| = |bag(s)|, then we resolve such a tie arbitrarily.

We initialize T ab by setting T ab[s] = true for every state s, such that cover(s) = bag(s) = {v}, for some v ∈ I , while for 
the remaining states s we initialize T ab[s] to be f alse. In particular for each s with |cover(s)| = 1 and cover(s) = bag(s) ∈ I , 
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we have T ab[s] = true. In our dynamic programming algorithm, we process states according to the ordering ≺ and fill the 
table T ab using two extension rules: step extension and jump extension.

Step extension for distinguishable states w, s with w ≺ s and |cover(s)| > 1: if T ab[w] = true and
(S1) each connected component of G[bag(s)] contains a vertex from bag(w) ∪ I ,
(S2) border(w) ⊆ bag(s),
(S3) cover(s) = cover(w) ∪ bag(s),
(S4) bag(s) ∩ cover(w) ⊆ bag(w),
then set T ab[s] to true.

Jump extension for distinguishable states w = (X, {B S}S⊆X , { f B S }S ) and s = (X, {B S}S⊆X , {g B S }S ) with w ≺ s and 
|cover(s)| > 1: if T ab[w] = true and there exists a bottleneck set S ′ ⊆ X , such that
(J1) f B S′ (H) = 0 and g B S′ (H) = 1 for every H ∈ B(S ′) \ B S ′ ,
(J2) f B S′ (H) = g B S′ (H) for every H ∈ B S ′ ,
(J3) f B S (H) = g B S (H) for every non-empty S �= S ′ , S ⊆ X , and H ∈ B(S),
(J4) for each H ∈ B(S ′) \ B S ′ there exists an 

((
NG(S ′) ∩ V (H)

) ∪ I
)
-connected path decomposition PH of H of 

width at most k − |X | − 1,
then set T ab[s] to true.

Let us present some intuitions behind these extension rules. In step extension, if w corresponds to some I-connected 
partial path decomposition P = (X1, X2, . . . , Xl = bag(w)), then s corresponds to an I-connected partial path decomposition 
P ′ = (X1, X2, . . . , Xl, Xl+1 = bag(s)) (we extend P by adding a single bag, namely bag(s)). Also note, that each new vertex 
in Xl+1, i.e., one that is not in Xl , is (due to (S1)) connected by a path consisting of vertices from Xl+1 to a vertex in Xl or 
I , as required in I-connected path decompositions.

In jump extension, if the state w corresponds to some I-connected partial path decomposition P = (X1, X2, . . . , Xl), then 
the state s corresponds to an I-connected partial path decomposition P ′ = (X1, X2, . . . , Xl, Xl+1, Xl+2, . . . , Xl+l′), where

•
(⋂l+l′

i=l Xi

)
= Xl = Xl+l′ ,

• P ′′ := (Xl+1 \ Xl, Xl+2 \ Xl, . . . , Xl+l′ \ Xl) is a (not necessarily connected) path decomposition of the graph induced by 
some S ′-branches, for some S ′ ⊆ Xl . These are the S ′-branches H in (J1) and P ′′ is obtained by ‘concatenating’ the path 
decompositions from (J4).

Note that although a path decomposition PH in (J4) may not be connected, we ensure (by definition of I-connectivity) that 
each connected component of the subgraph induced by each prefix of PH has a vertex from NG (S ′) ∩ V (H) or from I . Hence 
it contains a neighbor of S ′ or a vertex from I , ensuring the required I-connectivity of the resulting path decomposition. 
Fig. 1 presents an example of step extension from state s to state w , i.e., these states fulfill the conditions of the step 
extension.

3.3. Summing up

Let us recall how the algorithm works. We introduce a Boolean table T ab, indexed by all states. We initialize T ab by 
setting T ab[s] = true for every state s, such that cover(s) = bag(s) = {v}, for some v ∈ I , while for the remaining states s
we initialize T ab[s] to be f alse.

Then we process the states with respect to the ordering ≺, checking whether a step extension or a jump extension can 
be applied to set T ab[s] = true. We terminate when we find a state corresponding to a feasible solution (i.e., when we set 
T ab[s] = true for some state s with cover(s) = V (G)), or when we have processed all states. In the latter case we report 
that a solution does not exist.

We note that the algorithm will be subsequently switching some entries of T ab from f alse to true, and hence until 
the completion of the algorithm it is understood that the value f alse of a particular entry of T ab does not provide any 
information as to whether a corresponding path decomposition exists.

4. The analysis

Let us start by introducing some more definitions and additional notation. Let P = (X1, X2, . . . , Xl) be a path decom-
position of G . We say that a connected subgraph H of G is contained in an interval [i, j] of P for some 1 ≤ i ≤ j ≤ l, 
if V (H) ∩ Xt �= ∅ if and only if t ∈ {i, . . . , j}. Note that this definition is valid since it follows that for a connected sub-
graph H , the subset of indices t such that V (H) ∩ Xt �= ∅ is indeed an interval. If H is contained in [i, j], then we denote 
these endpoints of the interval as i = α(H, P) and j = β(H, P). If P is clear from the context, we will often write shortly 
α(H) := α(H, P) and β(H) := β(H, P).

For a set S and an I-connected path decomposition P = (X1, X2, . . . , Xl), we say that an S-branch H is an in-branch if 
S ⊆ Xα(H) and S ⊆ Xβ(H) . The lemma below gives us a lower bound on the number of in-branches of S .
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Fig. 2. An illustration of a two-vertex bottleneck set S and the corresponding S-branches.

Lemma 1. For every set S and a path decomposition P = (X1, X2, . . . , Xl), at most 2k S-branches are not in-branches.

Proof. Consider an S-branch H , which is not an in-branch. This means that S � Xα(H) or S � Xβ(H) .
First, consider H , such that S � Xα(H) . Let t be the minimum index such that S ⊆ X1 ∪ X2 ∪· · ·∪ Xt . Let v ∈ S be a vertex 

in Xt \ (X1 ∪ X2 ∪ · · · ∪ Xt−1), it exists by the definition of t . Recall that v is a neighbor of some vertex w of H , so, since P
is a path decomposition, there must be a bag Xi containing both v and w . Since Xt is the first bag, where v appears, we 
observe that i ≥ t and thus β(H) ≥ t .

Suppose now that α(H) > t . Note that since S � Xα(H) , there is some u ∈ S \ Xα(H) . Recall that u is a neighbor of some 
vertex from H . However, since u ∈ X1 ∪ X2 ∪ · · · ∪ Xt and u /∈ Xα(H) , the vertex u does not appear in any bag containing a 
vertex of H , so P cannot be a path decomposition of G . Thus α(H) ≤ t .

Therefore, the bag Xt contains at least one vertex from H . Since S-branches are vertex-disjoint and |Xt | ≤ k, we observe 
that there are at most k S-branches H , such that S � Xα(H) .

Now consider an S-branch H , such that S ⊆ Xα(H) and S � Xβ(H) . Let t′ be the maximum index such that S ⊆ Xt′ ∪ · · · ∪
Xl .

Analogously to the previous case, we observe that α(H) ≤ t′ (by the maximality of t′) and β(H) ≥ t′ , because S � Xβ(H) . 
Thus the bag Xt′ contains at least one vertex from H , which shows that the number of S-branches H , such that S ⊆ Xα(H)

and S � Xβ(H) , is at most k. Therefore the total number of S-branches, that are not in-branches is at most 2k, which 
completes the proof. �

Recall that a non-empty set S is a bottleneck if |B(S)| > 2k. Thus Lemma 1 implies the following:

Corollary 1. If P = (X1, . . . , Xl) is a path decomposition and S is a bottleneck, then the following properties hold:

1. S has at least one in-branch,
2. there is i, such that S ⊆ Xi ,
3. |S| ≤ k. �

These properties justify the following definition.

Definition 3. For a bottleneck S ⊆ V (G), let t1(S, P) (respectively t2(S, P)) be the minimum (respectively maximum) index 
i such that i = α(H, P) (i = β(H, P), respectively) for some S-branch H (respectively H), which is an in-branch.

Note that the definition of an in-branch implies that S ⊆ Xt1(S,P) ∩ Xt2(S,P) . The interval I(S, P) = [t1(S, P), t2(S, P)] is 
called the interval of S . Again, we will often write shortly t1(S), t2(S), and I(S), if P is clear from the context.

For a bottleneck S we can refine the classification of S-branches, which are not in-branches. We say that an S-branch H , 
which is not an in-branch, is

• a pre-branch if α(H) < t1(S),
• a post-branch if α(H) ≥ t1(S) and β(H) > t2(S).

By Bx(S, P) we denote the set of all x-branches for S , where x ∈ {pre, in, post}. Again, if P is clear from the context, we will 
write Bx(S) instead of Bx(S, P). By C(S) we denote the set of all connected components of G − S , that are not S-branches.

Example. The graph G in Fig. 2 illustrates the above concepts. The sequence X1, X2, . . . , X16 forms a connected path decom-
position of G . The only bottleneck set S consists of two vertices denoted by circles. (In this example we take k = 3.) There 
are 13 S-branches: one pre-branch (G[X1 ∪ X2 \ S]), eleven in-branches (G[Xi \ S] for i ∈ {4, 5, . . . , 14}), and one post-branch 
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(G[(X15 ∪ X16) \ S]). The interval of S is equal to I(S, P) = [4, 14] and the component G[X3 \ S] is not an S-branch, because 
some vertices in S do not have a neighbor in this component.

For a subgraph H of G , we say that H waits in an interval [i, j] of P if

V (H) ∩ Xi = V (H) ∩ Xi+1 = · · · = V (H) ∩ X j.

We say that a path decomposition P is S-structured if each subgraph C that is in C(S) or is a post- or a pre-branch of S
waits in I(S, P). The main technical tool in our approach is the following result concerning the structure of I-connected 
path decompositions. The proof of the lemma is provided after giving several technical facts that we need.

Lemma 2. If there exists an I-connected path decomposition P , then there is also an I-connected path decomposition P ′ of width at 
most width(P) such that P ′ is S-structured for every bottleneck S.

We define cmin(S, P) as the minimum index i ∈ I(S, P), for which the size of the set

Xi ∩
⎛
⎝ ⋃

H∈Bpre(S)∪Bpost(S)∪C(S)

V (H)

⎞
⎠

is minimum. Also, set X∗ :=
(⋃

H∈Bpre(S)∪Bpost(S)∪C(S) V (H)
)

∩ Xcmin(S,P) to be this minimum-size set.

Let � be the set of all I-connected path decompositions of G and S be the set of all bottlenecks of G . We will define a 
function F : S × � → �, which for given S ∈ S and P ∈ � transforms P into an S-structured I-connected path decomposi-
tion of width at most width(P). For simplicity of notation, from now on t1 = t1(S, P), t2 = t2(S, P), and cmin = cmin(S, P), 
whenever S and P are clear from the context. Let Bin(S, P) = {H1, . . . , Hlin }, where the in-branches are ordered according 
to their first occurrences in P , that is, α(H1) ≤ · · · ≤ α(Hlin). Let

d =
∑

H∈Bin(S)

(β(H) − α(H) + 1) .

In other words, d is the sum of lengths of intervals in which the in-branches H are contained in the path decomposition 
P = (X1, X2, . . . , Xl).

For each in-branch Hi , i ∈ {1, . . . , lin}, we define the following sequence:

Pi := (
Xα(Hi) ∩ V (Hi), . . . , Xβ(Hi) ∩ V (Hi)

)
.

Since P is an I-connected path decomposition of G , it is straightforward to observe that Pi is a (NG(S) ∩ V (Hi)) ∪
I-connected path decomposition of Hi . We will denote the elements of Pi by

Pi =
(

Xi
1, . . . , Xi

β(Hi)−α(Hi)+1

)
.

Then, let us define a sequence P∗ as follows:

P∗ := ©lin
i=1 Pi,

where © denotes the concatenation of sequences. Observe that the length of P∗ is exactly d. We will denote the elements 
of P∗ by P∗ = (

X∗
1, . . . , X∗

d

)
.

Define B in to be the set of vertices of the in-branches of S , i.e., B in := ⋃
H∈Bin(S,P) V (H). Now, we define a path decom-

position F (S, P) =
(

X ′
1, . . . , X ′

l+d+1

)
as follows (see Fig. 3):

X ′
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi for i ∈ {1, . . . , t1 − 1}; (a)

Xi \ B in for i ∈ {t1, . . . , cmin − 1}; (b)

Xcmin \ B in for i = cmin; (c)

X∗ ∪ X∗
i−cmin

∪ S for i ∈ {cmin + 1, . . . , cmin + d}; (d)

Xcmin \ B in for i = cmin + d + 1; (e)

Xi−d−1 \ B in for i ∈ {cmin + d + 2, . . . , t2 + d + 1}; (f)

Xi−d−1 i ∈ {t2 + d + 2, . . . , l + d + 1}. (g)

(1)

Observe that F (S, P) is obtained from P by a modification of the interval [t1, t2] of P . The prefix (X1, X2, . . . , Xt1−1) and 
the suffix (Xt2+1, Xt2+2, . . . , Xl) of P are just copied into F (S, P) without any changes (see conditions (1)(a) and (1)(g)). All 
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Fig. 3. Illustration of the conversion from P to P ′ = F (S, P) for a bottleneck S . For simplification, S is assumed to only have 8 S-branches and 3
components, which are denoted by letters H and C , respectively, with appropriate indices.

components of G − S , apart from the in-branches, are covered by bags on positions up to cmin, see (1)(b) and (1)(c), and after 
position cmin +d, see (1)(f), and they wait for d +1 steps in the interval [cmin +1, cmin +d +1] of F (S, P) — see (1)(d)–(1)(e). 
The interval [cmin + 1, cmin + d] is used in (1)(d) to cover all in-branches, one by one, in the order of their appearance in 
P . Intuitively, two bags without any vertices of in-branches are present on positions cmin and cmin + d + 1 to ensure that 
for any other bottleneck S ′ , such that I(S, P) � I(S ′, P), we have that cmin(S ′, P) /∈ I(S, P), see (1)(c) and (1)(e). (The 
appropriate details are in the proofs.) Fig. 3 illustrates the conversion from P to P ′ := F (S, P) for a bottleneck S . Notice 
that the interval of S in P ′ is given by t1(S, P ′) = cmin + 1 and t2(S, P ′) = cmin + d, and it is possibly different than [t1, t2]. 
In the next lemma we show that F (S, P) has all necessary properties.

Lemma 3. For any I-connected path decomposition P and a bottleneck S, P ′ = F (S, P) is an I-connected path decomposition with 
width(P ′) ≤ width(P).

Proof. Let us recall the notation: P := (X1, . . . , Xl), P ′ = F (S, P) = (X ′
1, . . . , X

′
l′), t1 = t1(S, P) and t2 = t2(S, P), B in :=⋃

H∈Bin(S,P) V (H). Moreover, define

Bnot-in :=
⎛
⎝ ⋃

H∈Bpre(S,P)∪Bpost(S,P)∪C(S)

V (H)

⎞
⎠ .

Also, recall that X ′
i = Xi, 1 ≤ i < t1 and X ′

i = Xi−d−1, for all t2 + d + 2 ≤ i ≤ l′ .
First, we want to show that P ′ satisfies the conditions in Definition 1.
Let {u, v} be an edge of G . Since P is a path decomposition, u, v ∈ Xi for some i. If i < t1, then u, v ∈ X ′

i = Xi . If i > t2, 
then u, v ∈ X ′

i+d+1 = Xi .

So suppose that u, v ∈ Xi for i ∈ [t1, t2]. Note that this means that u, v ∈ B in ∪ S or u, v ∈ Bnot-in ∪ S . If u, v ∈ Bnot-in ∪ S , 
then we have

(i) u, v ∈ X ′
i , if i ≤ cmin;

(ii) u, v ∈ X ′
i+d+1, otherwise.

Finally, consider the case that, say, u ∈ B in and v ∈ B in ∪ S (if both u, v ∈ S , then we are at the previous case). This 
means that u is a vertex of some in-branch Hs ∈ Bin(S, P), so it appears in some bag of Ps and thus of P∗ . This implies 
that u, v ∈ X ′ for some j ∈ [cmin + 1, cmin + d]. This implies that P ′ satisfies conditions (i) and (ii) from Definition 1.
j
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Now let us verify that the condition (iii) is also satisfied, i.e., for every vertex v and indices i < s < j, such that v ∈ X ′
i ∩ X ′

j
we have v ∈ X ′

s . Clearly the condition is satisfied for every v and j < t1 or i > t2, since these parts of P ′ are just copied from 
P without any modifications. The situation is very similar if i ≤ t2 and j ≥ t1 and v ∈ (

S ∪ Bnot-in
) \ X∗ . If v ∈ X∗ , then v is 

included in all bags X ′
s for s ∈ [cmin, cmin + d + 1], so the condition (iii) follows from the correctness of P . Finally, if v is a 

vertex of some Ha ∈ Bin(S, P), then the condition (iii) follows from the property (iii) that holds for the path decomposition 
Pa .

We now show that width(P ′) ≤ width(P). Let c1 = |X∗| and c2 = max
i=t1,...,t2

∣∣B in ∩ Xi
∣∣, and let k = width(P) + 1 =

max
i=1,...,l

|Xi |. Observe that each X ′
i for i /∈ {t1, . . . , t2 + d + 1} is an exact copy of some X j , so 

∣∣X ′
i

∣∣ ≤ k. Moreover, each X ′
i

for i ∈ {t1, . . . , cmin} ∪ {cmin + d + 1, . . . , t2 + d + 1} was obtained from some X j by removal of vertices of B in, so again we 
have |Xi | ≤ k. Finally, for i ∈ {cmin + 1, . . . , cmin + d} we have

∣∣X ′
i

∣∣ = |S| + ∣∣X∗∣∣ +
∣∣∣X∗

i−cmin

∣∣∣ ≤ |S| + c1 + c2.

However, by the definition of P∗ , we observe that |S| + c1 + c2 ≤ ∣∣X j
∣∣ for some j ∈ {t1, . . . , t2}. Therefore, width(P ′) ≤

width(P).
Finally, recall that P is I-connected. Consider any connected component H of the subgraph G[X ′

1 ∪ · · · ∪ X ′
i] for an 

i ∈ {1, . . . , l′}. We argue that H has a vertex in X ′
α(H,P ′) ∩ I as required in an I-connected path decomposition. Denote 

j′ = α(H, P ′). We consider a few cases following the definition of P ′ in (1)(a)-(1)(g).
Suppose first that j′ < t1 or j′ ≥ t2 + d + 2. Denote j = j′ when j′ < t1 and j = j′ − d − 1 when j′ ≥ t2 + d + 2. Then, 

X ′
1 ∪ · · · ∪ X ′

j′ = X1 ∪ · · · ∪ X j and X ′
j′ = X j . Thus, for such j′ ,

X ′
α(H,P ′) ∩ V (H) = X ′

j′ ∩ V (H) = X j ∩ V (H) = Xα(H,P) ∩ V (H).

Since P is I-connected, Xα(H,P) ∩ V (H) ∩ I �= ∅ which completes the proof for this choice of j′ .
Suppose now that t1 ≤ j′ < t2 + d + 2. Denote for brevity Z = X ′

j′ ∩ V (H). Since each bag of P introduces at most one 
new vertex, Z has one vertex, call it v . Note that v is not adjacent to a vertex in S . Otherwise the fact that S ⊆ X ′

j′ would 
imply that v and also its neighbor in S belong to H , which would contradict |Z | = 1. Also, v /∈ S because S ⊆ X ′

t1−1 and 
v /∈ X ′

t1−1. Thus, informally speaking, we have proved that H is a connected component in G − S that starts in P ′ with the 
vertex v and this vertex is not adjacent to any vertex in S . Note that the path decompositions P and P ′ when restricted to 
H are identical, (Xα(H,P) ∩ V (H), . . . , Xβ(H,P) ∩ V (H)) = (X ′

α(H,P ′) ∩ V (H), . . . , X ′
β(H,P ′) ∩ V (H)). This implies in particular 

that G[X1 ∪ · · · ∪ Xα(H,P)] also has a connected component that consists of only the vertex v . Since, P is I-connected, 
v ∈ I . This implies that H has a vertex in X ′

α(H,P ′) ∩ I , i.e., this set consists of v . �
Observe that every connected component H of G − S is either contained in I(S, P ′) (which means that H is an in-branch) 

or waits in I(S, P ′) (for all other H).

Observation 2. For any P and a bottleneck S , the path decomposition F (S, P) is S-structured.

Now we want to define a series of transformations, which start with an arbitrary I-connected path decomposition P
and transform it into an I-connected path decomposition with no larger width, which is S-structured for every S ∈ S . For 
this, we will apply the F -transformations for all bottlenecks. In order to do this we need some technical lemmas about the 
structure of bottlenecks and their branches.

Lemma 4. Let S and S ′ be two bottlenecks, such that S ′ � S. There exists an S ′-branch H such that 
⋃

H ′∈B(S) V (H ′) ∪ S \ S ′ ⊆ V (H)

and every S ′-branch H ′ , different than H, is a non-branch connected component of G − S.

Proof. Let S, S ′ ∈ S such that S ′ � S . Clearly S intersects some connected component of G − S ′ . Since every S-branch H ′′ is 
connected and S \ S ′ ⊂ NG(V (H ′′)), we observe that two connected components of G − S ′ can not be distinctive, i.e., there 
exists a connected component H of G − S ′ such that 

⋃
H ′∈B(S) V (H ′) ∪ S \ S ′ ⊆ V (H).

To see that H is an S ′-branch, consider a vertex s′ ∈ S ′ . By assumption, S ′ ⊆ S and hence s′ is also a vertex of S . Thus, s′
has a neighbor in every S-branch H ′ , and thus in H . See Fig. 4 for an illustration.

Now consider an S ′-branch H ′′ �= H . If every vertex of S \ S ′ is adjacent to some vertex of H ′′ , then H ′′ is an S-branch, 
a contradiction. Thus, H ′′ is a connected component of G − S , which is not an S-branch. �
Lemma 5. For any two bottlenecks S and S ′ , if S ′ � S, then there exists exactly one connected component H of G − S such that 
S ′ ⊆ S ∪ V (H).

http://mostwiedzy.pl


94 D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 4. An illustration for Lemma 4. S and S ′ are bottlenecks, such that S ′ � S . All S-branches are subgraphs of an S ′-branch H and every S ′-branch, 
different than H , is a connected component of G − S , which is not an S-branch.

Fig. 5. An illustration of two cases in Lemma 5 and Remark 1; S and S ′ are bottlenecks. All S-branches (apart from H , which is a connected component of 
G − S , which may or may be not an S-branch) are subgraphs of C and S ′ ⊆ S ∪ V (H).

Proof. Let S, S ′ ∈ S such that S ′ � S . Clearly S ′ intersects some connected component of G − S . Suppose that S ′ has a 
non-empty intersection with two connected components H and H ′ of G − S . Thus, since every S ′-branch H ′′ is connected 
and NG (V (H ′′)) = S ′ , we observe that H ′′ contains a vertex of S (otherwise H, H ′ would not be two distinct components). 
Since S ′-branches are vertex-disjoint, this implies that the number of such S ′-branches is at most |S|, which is in turn at 
most k by Corollary 1. However, this contradicts the assumption that S ′ is a bottleneck. �

The next remark is a straightforward consequence of Lemma 4 and Lemma 5.

Remark 1. Let S and S ′ be bottlenecks such that S ′ � S and S � S ′ . Let H be the connected component of G − S , such 
that S ′ ⊆ S ∪ V (H). There exists exactly one connected component C of G − S ′ such that 

⋃
H ′∈B(S)\H V (H ′) ∪ S \ S ′ ⊆ V (C). 

Moreover, all S ′-branches but possibly C are subgraphs of H .

See Fig. 5 for the illustration for Lemma 5 and Remark 1.
We say two bottlenecks S and S ′ are well-nested in P if

(i) I(S ′, P) � I(S, P) or
(ii) I(S, P) ⊆ I(S ′, P) or

(iii) I(S, P) ∩ I(S ′, P) = ∅.

Observe that the ordering of S, S ′ in the definition above matters.
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Lemma 6. For any I-connected path decomposition P and bottlenecks S, S ′ , if P is S ′-structured, then S and S ′ are well-nested in 
P . Moreover, if S � S ′ , then either I(S, P) ∩ I(S ′, P) = ∅ or I(S ′, P) ⊆ I(S, P).

Proof. Let P = (X1, . . . , Xl) be an I-connected path decomposition of G and let S, S ′ ∈ S . Suppose P is S ′-structured. Let 
us assume that I(S ′, P) ∩ I(S, P) �= ∅, we will show that either I(S ′, P) � I(S, P) or I(S, P) ⊆ I(S ′, P).

Case A: S ′ � S . By Lemma 4, there exists an S ′-branch H such that for every S-branch H ′ it holds that S \ S ′ ∪ V (H ′) ⊆ V (H), 
and thus [α(H ′), β(H ′)] ⊆ [α(H), β(H)]. Recall that t1(S) = α(H ′

1) and t2(S) = β(H ′
2) for some in-branches H ′

1, H
′
2 ∈ B(S), 

so I(S, P) = [t1(S), t2(S)] ⊆ [α(H), β(H)]. Consider two subcases.

Subcase A1: α(H) ∈ I(S ′, P). Since P is S ′-structured, we observe that H is an in-branch for S ′ , which implies that 
I(S, P) ⊆ [α(H), β(H)] ⊆ I(S ′, P).

Subcase A2: α(H) /∈ I(S ′, P). First, observe that if α(H) > t2(S ′), then t1(S) > t2(S ′) and thus I(S, P) ∩ I(S ′, P) = ∅, 
which contradicts our assumption. Analogously, if β(H) < t1(S ′), we again obtain that I(S, P) ∩ I(S ′, P) = ∅. Therefore 
assume that α(H) < t1(S ′) ≤ β(H). Observe that this implies that H is a pre-branch for S ′ and, since P is S ′-structured, H
waits in I(S ′, P). In particular (S \ S ′) ∩ Xt1(S ′) = (S \ S ′) ∩ Xt1(S ′)+1 = . . . = (S \ S ′) ∩ Xt2(S ′) . Since I(S ′, P) ∩ I(S, P) �= ∅, it 
is necessary that t1(S) ≤ t1(S ′) (otherwise t1(S) > t2(S ′)). Thus, t1(S) ≤ t1(S ′) ≤ t2(S ′) ≤ t2(S) (recall H waits in I(S ′, P)). 
Summing up, if S ′ � S , then either I(S ′, P) � I(S, P) or I(S, P) ⊆ I(S ′, P), which completes the proof for this case.

Case B: S ′ � S . By Lemma 5, there exists exactly one connected component H of G − S such that S ′ ⊆ S ∪ V (H). Since S ′ � S , 
we observe that V (H) ∩ S ′ �= ∅.

If H is an S-branch that is an in-branch in P , then

I(S ′,P) ⊆ [α(H,P),β(H,P)] ⊆ I(S,P).

We observe that I(S ′, P) ⊆ I(S, P) is equivalent to I(S ′, P) � I(S, P) or I(S ′, P) = I(S, P), thus S and S ′ are well-nested 
in P . So assume that H is a connected component of G − S , that is not an in-branch for S (it may still be a pre- or a 
post-branch). We consider now two subcases.

Subcase B1: S � S ′. By Lemma 4, all S-branches possibly except for H are not S ′-branches and all S ′-branches are 
subgraphs of H .

Because P is S ′-structured, every S-branch but possibly H waits in I(S ′, P). In particular, every in-branch H ′′ for S does 
wait in I(S ′, P). Thus, for every such an in-branch H ′′ it holds that I(S ′, P) ⊆ [α(H ′′), β(H ′′)] or I(S ′, P) ∩[α(H ′′), β(H ′′)] =
∅. Note that the second condition implies that I(S ′, P) ∩ I(S, P) = ∅, which contradicts our assumption. Therefore we obtain 
that I(S ′, P) ⊆ [α(H ′′), β(H ′′)] ⊆ I(S, P). Note that this shows the second claim of the lemma.

Subcase B2: S \ S ′ �= ∅. Let C be the connected component of G − S ′ , for which it holds 
⋃

H ′∈B(S)\H V (H ′) ∪ S \ S ′ ⊆ V (C), 
whose existence is guaranteed by Remark 1.

If C is an in-branch for S ′ , we observe that I(S, P) ⊆ [α(C), β(C)] ⊆ I(S ′, P), because P is S ′-structured. On the other 
hand, if C is not an in-branch for S ′ , then all in-branches of S wait in I(S ′, P). This is because all subgraphs but in-branches 
of S ′ wait in I(S ′, P), and every in-branch for S is vertex-disjoint with every in-branch for S ′ , since they are all contained 
in V (C) ∪ S ′ . Thus, since I(S, P) ∩ I(S ′, P) �= ∅, we conclude that I(S ′, P) ⊆ I(S, P), which completes the proof. �

In the next lemma, we show that we can apply a series of F -transformations, one for each bottleneck, so that the 
structure obtained in previous F -transformations is not ‘destroyed’ during the subsequent F -transformations.

Lemma 7. Let S, S ′ be bottlenecks and let P be an S-structured I-connected path decomposition. Let P ′ = F (S ′, P).

1. If I(S ′, P) ⊆ I(S, P), then P ′ is S-structured and I(S ′, P ′) ⊆ I(S, P ′).
2. If t2(S, P) < t1(S ′, P), then P ′ is S-structured and t2(S, P ′) < t1(S ′, P ′).
3. If t2(S ′, P) < t1(S, P), then P ′ is S-structured and t2(S ′, P ′) < t1(S, P ′).

Proof. First, let us prove point 1, i.e. we assume that I(S ′, P) ⊆ I(S, P). If S ′ = S , then the results are obvious, so we 
consider two cases.

Case A: S ′ � S . Observe that by Lemma 6 we obtain that I(S ′, P) ∩ I(S, P) = ∅ or I(S, P) ⊆ I(S ′, P), which leads to the 
equality I(S, P) = I(S ′, P). By Lemma 4, there exists an S ′-branch H , such that 

⋃
H ′∈B(S) V (H ′) ∪ S \ S ′ ⊆ V (H). Because 

I(S, P) = I(S ′, P), we conclude that H is the only in-branch for S ′ . The path decomposition P is S-structured, so every 
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connected component of G − S ′ , different than H , waits in I(S ′, P) = I(S, P). Thus, the transformation F (S ′, P) does not 
make any changes to bags Xt1(S,P), Xt1(S,P)+1, . . . , Xt2(S,P) , i.e., I(S, P ′) = I(S ′, P ′).

Case B: S ′ � S . By Lemma 5, there exists exactly one connected component H of G − S such that S ′ ⊆ S ∪ V (H). The as-
sumption I(S ′, P) ⊆ I(S, P) implies that some vertex of H appears for the first time in P in the interval I(S, P), i.e., H
does not wait in I(S, P). Moreover, it implies that t1(S, P) ≤ α(H)P ≤ β(H, P) ≤ t2(S, P) due to our general assumption 
that each bag introduces at most one new vertex. This implies that H is an in-branch for S . We are going to show now 
that every S ′-branch H ′ , which is an in-branch, is a subgraph of H . If S � S ′ , then we obtain it immediately from Lemma 4, 
so let S \ S ′ �= ∅. Let C be a connected component of G − S ′ , such that 

⋃
H ′∈B(S)\H V (H ′) ∪ S \ S ′ ⊆ V (C), whose exis-

tence is guaranteed by Remark 1. Recall that C might or might not be an S ′-branch, but for sure it is not an in-branch 
for S ′ , because then I(S, P) � I(S ′, P), which is a contradiction. Thus, by Remark 1, every in-branch for S ′ is a subgraph 
of H .

Because every in-branch for S ′ is a subgraph of H , we conclude that I(S ′, P) ⊆ [α(H, P), β(H, P)] and the only changes 
made by the transformation F (S ′, P) concern the vertices of H ∈ Bin(S). Every connected component of G − S , apart from 
in-branches (for S ′), waits in I(S ′, P ′), so F (S ′, P) is S-structured and I(S ′, P ′) ⊆ [α(H, P ′), β(H, P ′)] ⊆ I(S, P ′).

To see that cases 2 and 3 hold as well, notice that the prefix (X1, X2, . . . , Xt1(S ′,P)−1) and suffix (Xt2(S ′,P)+1, Xt2(S ′,P)+2,

. . . , Xl) of P are just copied into P ′ without any changes. �
In the following lemma it is crucial that the path decomposition P is not only S-structured but has been obtained by 

applying the transformation described in (1)(a)-(1)(g) to P0. In particular, the bags added in (1)(c) and (1)(e) will play a 
crucial role in ensuring that the path decomposition returned by F (S ′, P) remains S-structured.

Lemma 8. Let S, S ′ be bottlenecks and let P0 be any I-connected path decomposition. Let P = F (S, P0) and P ′ = F (S ′, P). If 
I(S, P) � I(S ′, P), then P ′ is S-structured and I(S, P ′) ⊆ I(S ′, P ′) or I(S, P ′) ∩ I(S ′, P ′) = ∅.

Proof. Let P = (X1, . . . , Xl) be an I-connected path decomposition of G , let S, S ′ ∈ S and P ′ = F (S ′, P). Moreover, assume 
that P = F (S, P0) for some I-connected path decomposition P0. In particular, this implies that P is S-structured. Finally, 
assume that I(S, P) � I(S ′, P).

Case A: S ′ � S . By Lemma 4 there exists an S ′-branch H such that 
⋃

H ′∈B(S) V (H ′) ∪ S \ S ′ ⊆ V (H). If H is an in-branch 
for S ′ then I(S, P) ⊆ [α(H, P), β(H, P)] � I(S ′, P). However, recall that F -transformation applied to S ′ and P does not 
change the structure of the bags restricted to H (or any other in-branch of S ′). Therefore we conclude that I(S, P ′) ⊆
[α(H, P ′), β(H, P ′)] � I(S ′, P ′) and P ′ is S-structured.

Now assume that H is a pre-branch or a post-branch for S ′ . From the construction of P we have that cmin(S ′,P) /∈
I(S, P). Because every in-branch H ′ for S ′ either waits in I(S, P) or [α(H ′, P), β(H ′, P)] ∩ I(S, P) = ∅, we obtain that 
I(S, P ′) ∩ I(S ′, P ′) = ∅ and P ′ is S-structured.

Case B: S ′ � S and S � S ′. By Lemma 5 there exists exactly one connected component H of G − S such that S ′ ⊆ S ∪ V (H). 
Because V (H) ∩ S ′ �= ∅ we have that I(S ′, P) ⊆ [α(H, P), β(H, P)]. We observe that H cannot be an in-branch for S , 
otherwise I(S ′, P) ⊆ [α(H, P), β(H, P)] ⊆ I(S, P), which contradicts the assumption that I(S, P) � I(S ′, P). Thus, H /∈
Bin(S).

From the facts that P is S-structured and I(S ′, P) ⊆ [α(H, P), β(H, P)], we observe that H waits in I(S, P). By Remark 1
there exists a connected component C of G − S ′ such that 

⋃
H ′∈B(S)\H V (H ′) ∪ S \ S ′ ⊆ V (C). Because H is not an in-branch 

for S , all in-branches of S are subgraphs of C . If C is an in-branch for S ′ then I(S, P) ⊆ [α(C, P), β(C, P)] � I(S ′, P). Be-
cause F -transformation does not change bags inside one in-branch, we have that I(S, P ′) ⊆ [α(C, P ′), β(C, P ′)] � I(S ′, P ′)
and P ′ is S-structured. On the other hand, assume that C is not an in-branch for S ′ . From construction of P we have that 
cmin(S ′,P) /∈ I(S, P) Because every in-branch H ′ for S ′ either waits in I(S, P) or [α(H ′, P), β(H ′, P)] ∩ I(S, P) = ∅, we 
obtain that I(S, P ′) ∩ I(S ′, P ′) = ∅ and P ′ is S-structured.

Case C: S � S ′. From Lemma 4 there exists an S-branch H such that 
⋃

H ′∈B(S ′) V (H ′) ∪ S ′ \ S ⊆ V (H), i.e., I(S ′, P) ⊆
[α(H, P), β(H, P)]. We observe that H cannot be an in-branch for S , otherwise I(S ′, P) ⊆ [α(H, P), β(H, P)] ⊆ I(S, P), 
which contradicts the assumption that I(S, P) � I(S ′, P).

Let then H be a pre-branch or a post-branch for S , which means that H waits in I(S, P) (notice that it is impossible that 
[α(H, P), β(H, P)] ∩ I(S, P) = ∅, because then I(S ′, P) ∩ I(S, P) = ∅). From construction of P we have that cmin(S ′,P) /∈
I(S, P). Because every in-branch H ′ for S ′ either waits in I(S, P) or [α(H ′, P), β(H ′, P)] ∩ I(S, P) = ∅, we obtain that 
I(S, P ′) ∩ I(S ′, P ′) = ∅ and P ′ is S-structured. �
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Now we are ready to prove Lemma 2.

Proof of Lemma 2. Let P be an I-connected path decomposition. Let S = {S1, S2, . . . , Sn′ } be the set of all bottlenecks. We 
define a path decomposition P ′ :=Pn′ in the following recursive way:

P0 = P;
Pi = F (Si,Pi−1), for i ∈ {1, . . . ,n′}.

We are going to prove now that Pq is S j -structured and Si, S j are well-nested in Pq for every 1 ≤ j ≤ q ≤ n′ and 
1 ≤ i ≤ n′ .

Induction on q. If q = 1, then obviously j = 1. By Observation 2, Pq is Sq-structured. Thus, by Lemma 6, Sq and Si are 
well-nested in Pq for every 1 ≤ i ≤ n′ . So assume that q > 1 and the claim holds for q − 1.

Let j ∈ {1, . . . , q − 1}. For every S j we have, by the induction assumption, that Sq, S j are well-nested in Pq−1 and 
Pq−1 is S j-structured. By Lemma 8, if I(S j, Pq−1) � I(Sq, Pq−1), then Pq = F (Sq, Pq−1) is S j-structured. By Lemma 7, if 
I(Sq, Pq−1) ⊆ I(S j, Pq−1) or I(S j, Pq−1) ∩ I(Sq, Pq−1) = ∅, then Pq = F (Sq, Pq−1) is S j -structured.

Because Pq is S j-structured, then from Lemma 6 for any i ∈ {1, . . . , n′} we have that Si, S j are well-nested in Pq .
So P ′ is S-structured for every bottleneck S ∈ S . Note that Lemma 3 ensures that P ′ is an I-connected path decompo-

sition of width at most width(P), which finishes the proof. �
Now we are ready to show the correctness of our algorithm. We will prove it in two steps.

Lemma 9. If G has an I-connected path decomposition of width at most k −1, then T ab[s] = true for some state s such that cover(s) =
V (G).

Proof. Suppose that G has an I-connected path decomposition of width k − 1. By Lemma 2, there exists an I-connected 
path decomposition P = (X1, . . . , Xl) that has width k − 1 and is S-structured for each bottleneck S .

By Lemma 6, the set S of all bottlenecks with relation S ≺ S ′ if and only if I(S, P) ⊆ I(S ′, P) forms a partial order 
(assuming that any ties, i.e. when I(S, P) = I(S ′, P), are resolved arbitrarily). Let S1, . . . , St be the maximal elements with 
respect to this partial order. Note that for i �= j, I(Si, P) ∩ I(S j, P) = ∅ and for any bottleneck S ′ /∈ {S1, . . . , St} we have 
I(S ′, P) ⊆ I(Si, P) for some i ∈ {1, . . . , t}. Assume without loss of generality that the ‘maximal’ bottlenecks are ordered 
according to the left endpoints of their intervals,

t1(S1) ≤ t1(S2) ≤ · · · ≤ t1(St).

We show how to arrive at the desired state s. To that end we argue, by induction on j, that for each

j ∈ J := {1, . . . , l} \
t⋃

i=1

{t1(Si), . . . , t2(Si) − 1}

there exists a state s j such that cover(s j) = G[X1 ∪ · · · ∪ X j], bag(s j) = X j and T ab[s j] = true.
Since the first bag of P consists of a vertex in I , this clearly holds for j = 1 so take j > 1 and assume that the claim is 

true for each j′ ∈ J ∩ {1, . . . , j − 1}. We consider two cases.

Case A: j /∈ I(Si, P) for each i ∈ {1, . . . , t}. Hence we have j − 1 ∈ J . This implies, according to Lemma 1, that for each 
bottleneck S , either there are at most 2k S-branches H such that α(H) ≤ j, or there are at most 2k S-branches such that 
j ≤ β(H). Thus, there exists a state s j such that cover(s j) = G[X1 ∪ · · · ∪ X j] and bag(s j) = X j . The step extension rule and 
T ab[s j−1] = true, which holds by the induction hypothesis, imply T ab[s j] = true as required.

Case B: j ∈ I(Si, P) for some bottleneck Si . By the definition of the set J , j = t2(Si). Hence, the preceding index of j in the 
set J is j′ = t1(Si) − 1. Again, by the definition of I(Si, P), Lemma 1, and the maximality of Si with respect to the partial 
order, we have that for each bottleneck set S either at most 2k S-branches H satisfy α(H) ≤ j′ , or at least |B(Si′ )| − 2k
S-branches H are contained in [1, j′], i.e., satisfy β(H) ≤ j′ , depending whether t2(S) ≤ j′ or t1(S) > j′ . Thus, there exists a 
state s j such that cover(s j) = G[X1 ∪· · ·∪ X j] and bag(s j) = X j . Consider the jump extension rule constructed for S ′ = Si . For 
the set B S ′ in (J1) and (J2) take all S ′-branches that are not in-branches, i.e., those that are covered in [ j′ + 1, j] in P . Note 
that each S-branch of each bottleneck S �= Si such that S ⊆ X j′ waits in the interval I(Si, P) because P is Si -structured, 
which ensures the condition (J3). Condition (J4) holds because the decomposition PH in (J4) exists which is certified by 
the decomposition P , namely PH = (Xα(H) ∩ V (H), . . . , Xβ(H) ∩ V (H)). Thus, T ab[ j′] = true (which holds by the induction 
hypothesis) ensures that T ab[ j] = true.

Finally observe that l ∈ J , cover(sl) = G[X1 ∪ · · · ∪ Xl] = V (G) and T ab[sl] = true. Thus, s = sl is the required state. �
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Lemma 10. For any state s, if T ab[s] = true, then Gs has an I-connected path decomposition of width at most k − 1.

Proof. Proof by induction on the position of s in the ordering ≺. First, let cover(s) = {v} for some v ∈ V (G) (notice that 
such states are smallest, according to ≺). If v ∈ I , then T ab[s] was set true in the initialization step. This is justified by 
considering connected path decomposition consisting of a single bag {v}, which is a proper connected path decomposition 
of the single-vertex graph ({v}, ∅). On the other hand, if v /∈ I , then T ab[s] is never set true, as the extension rules apply 
only to states with |cover(s)| > 1.

Now suppose that |cover(s)| ≥ 2, and the Lemma holds for all states w ≺ s. Since T ab[s] = true, its value must have been 
set by one of the extension rules. Consider two cases.

Case 1: T ab[s] was set by step extension. Consider the state w . If bag(s) � bag(w), then since by (S4), bag(s) ∩ cover(w) ⊆
bag(w), we have that bag(s) � cover(w). Therefore, cover(s) = cover(w) ∪ bag(s) implies that |cover(s)| > |cover(w)|, which 
means that w ≺ s. On the other hand, if bag(s) ⊆ bag(w), we have cover(s) = cover(w) due to (S3). However, since s and 
w , are distinguishable, we have bag(s) � bag(w), so |bag(s)| < |bag(w)| and thus w ≺ s.

So, by the inductive assumption, T ab[w] was set properly and there exists an I-connected path decomposition 
P = (X1, X2, . . . , Xl) of G w that has width at most k − 1, where Xl = bag(w). Let Xl+1 := bag(s) and let P ′ :=
(X1, X2, . . . , Xl, Xl+1).

We claim that P ′ is a path decomposition of Gs . Indeed, 
⋃l+1

i=1 Xi = ⋃l
i=1 Xi ∪ Xl+1 = cover(w) ∪ bag(s) = cover(s). Now, 

consider an edge vu of Gs . If both v, u belong to cover(w), they appear in some Xi for i ≤ l (by the inductive assumption). 
If both v, u belong to bag(s), we are done too. Finally, if v ∈ cover(w) and u ∈ bag(s) \ cover(w), we know from (S2) 
that v ∈ border(w) ⊆ bag(s), so we are again in the previous case. Now suppose for a contradiction that there are some 
1 ≤ i < j ≤ l, such that Xi ∩ Xl+1 � X j . This means that bag(s) = Xl+1 contains a vertex of cover(w) \ bag(w), which is a 
contradiction with (S4).

Moreover, since width(P) ≤ k − 1 and |bag(s)| ≤ k, we have width(P ′) ≤ k − 1. Finally we prove that P ′ is I-connected. 
Consider any connected component H of G[X1 ∪ · · · ∪ Xi] for some i ∈ {1, . . . , l + 1}. If α(H, P ′) ≤ l, then Xα(H,P) ∩ V (H) =
Xα(H,P ′) ∩ V (H) contains a vertex from I because P is I-connected. Otherwise α(H, P ′) = l + 1. Then clearly i = l + 1 and 
H is a connected component of G[Xl+1]. By (S1), H contains a vertex from I . Thus, P ′ is I-connected. This justifies setting 
T ab[s] = true.

Case 2: T ab[s] was set by jump extension. Let w = (X, {B S}S , { f B S }S ), s = (X, {B S}S , {g B
S }S ) and let S ′ ⊆ X be defined as in 

the definition of the jump extension. To simplify the notation, set B′ := B(S ′) \ B S ′ = {H1, H2, . . . , Hm}. Observe that since 
S ′ is a bottleneck, we have |B(S ′)| ≥ 2k + 1, thus there is at least one H ∈ B′ . Since V (H) � cover(w) and V (H) ⊆ cover(s)
by (J1) and (J3), we have |cover(w)| < |cover(s)| and thus w ≺ s. So, by the inductive assumption, T ab[w] was set properly 
to be true and there exists an I-connected path decomposition P = (X1, X2, . . . , Xl) of G w with width at most k − 1, 
where Xl = X = bag(w). By (J4), for every H ∈ B′ there is a path decomposition PH = (X H

1 , X H
2 , . . . , X H

l(H)
) of width at most 

k − |X | − 1, such that X H
1 contains a neighbor of S ′ or a vertex in I , i.e., PH is 

(
NG(S ′) ∩ V (H)

) ∪ I-connected.
We claim that

P ′ = P ◦
⎛
⎝

m∏
i=1

l(Hi)∏
j=1

(
Xl ∪ X Hi

j

)⎞
⎠ ◦ Xl,

where both ◦ and 
∏

denote concatenation of appropriate sequences, is an I-connected path decomposition of Gs of width 
at most k − 1.

First, observe that cover(s) = cover(w) ∪ ⋃
H∈B′ V (H) due to (J2) and (J3). By the definition of P and decompositions 

PH for H ∈ B′ , we observe that P ′ covers exactly cover(s).
Now consider an edge vu of Gs . If both vertices v, u belong to cover(w), or to V (H) for some H ∈ B′ , then, by the 

definition of P and PH , both v and u appear in some bag of the decomposition P ′ . If v ∈ cover(w) and u ∈ V (H) for some 
H ∈ B′ , then we know that v ∈ border(w) and therefore v ∈ Xl , so both vertices appear in every bag containing u. Finally, 
we observe that there are no edges joining vertices from different S ′-branches.

The third condition of the definition of path decomposition follows directly from the definition of P and PH and the 
fact that subgraphs H are S ′-branches.

Observe that |Xi | ≤ k for i ≤ l (by the definition of P), and since |X H
j | ≤ k −|X | for every H and j, we have |X ∪ X H

j | ≤ k, 
so width(P ′) ≤ k − 1.

Denote P ′ = (X1, . . . , Xl, Xl+1, . . . , Xl′). Consider any connected component H of G[X1 ∪ · · · ∪ Xi] for some i ∈ {1, . . . , l′}. 
If i ≤ l, then H has a vertex from Xα(H,P ′) ∩I = Xα(H,P) ∩I as required. So, let i > l. If H is contained in some subgraph in 
B′ , then by (J4), 

(
NG(S ′) ∩ V (H)

) ∪ I-connected and hence H has a vertex from Xα(H,P ′) ∩ I . If H is not contained in any 
subgraph from B′ , then again by (J4), H has a vertex in Xl . But then, by I-connectivity of P , H has a vertex in Xα(H,P ′) ∩I . 
Thus, P ′ is I-connected.

This completes the proof. �
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Combining Lemmas 9 and 10, we obtain the following corollary.

Corollary 2. The algorithm is correct, i.e., the value of T ab[s] is true for some state s with cover(s) = V (G) if and only if cpw(G) ≤
k − 1. �

Now let us estimate the computational complexity of our algorithm.

Lemma 11. For every fixed k ≥ 1, a graph G with n vertices, and I ⊆ V , there is an algorithm deciding in time f (k) · nO (k2) whether 
G has an I-connected path decomposition of width at most k − 1, where f is a function depending on k only.

Proof. We do induction on k. First, observe that for a connected graph G , cpw(G) = 0 if and only if G is a single-vertex 
graph. Moreover, cpw(G) = 1 if and only if G is a caterpillar, and optimal connected path decompositions of caterpillars 
have very simple structure, so we can verify in polynomial time whether there is an I-connected one.

So assume that k ≥ 2 and that the claim holds for k − 1. For given G and I , we run the dynamic programming algorithm 
that we described in Section 3. The correctness of the algorithm follows from Corollary 2. Now let us estimate its computa-
tional complexity. Recall that the total number of states is O (n3k), so the total number of pairs of states is O (n6k). For each 
pair of states we check if one of the two extension rules can be applied.

Observe that for each state s, we can compute cover(s), bag(s) and border(s) in polynomial time. Thus checking if the 
step extension can be applied can also be done in polynomial time.

Now consider the possible jump extension from a state w to a state s. Verifying the first three conditions can be clearly 
done in polynomial time. We check in (J4) if the appropriate path decomposition PH of each S ′-branch H exists by calling 
the algorithm recursively with the initial set 

(
NG(S ′) ∩ V (H)

) ∪ I . By the inductive assumption, this can be done in total 
time bounded by nO (1) · f ′(k − 1)nc·(k−1)2

, for some function f ′ and a constant c′ . This gives total time complexity

nO (1) · n6k · f ′(k − 1) · nc′(k−1)2 = f (k) · nO (k2)

for some function f . �
Now, the main result of the paper follows easily from Lemma 11.

Theorem 1. For every fixed k ≥ 1, there is an algorithm deciding in time f (k) · nO (k2) whether cpw(G) ≤ k − 1, for some function f
depending on k only, i.e., in time polynomial in n.

Proof. For every vertex s∗ ∈ V , we run the dynamic programming algorithm for I = {s∗}, i.e., we exhaustively guess a vertex 
in the first bag of some fixed solution. By Lemma 11, the total running time is as claimed. �

Let us point out that we did not try to optimize the dependence of the degree of the polynomial function in Theorem 1
on k, as we were only interested in finding a polynomial algorithm.

5. Open problems

As pointed out, both pathwidth and connected pathwidth are asymptotically the same for an arbitrary graph G , namely 
cpw(G)/pw(G) ≤ 2 + o(1). However, there are several open questions regarding the complexity of exact algorithms for 
connected pathwidth. One such immediate question that is a natural next step in the context of our work is whether 
connected pathwidth is FPT with respect to this parameter. We conjecture that this is indeed the case.

Conjecture 1. Determining whether a given graph with n vertices has connected pathwidth at most k can be done in time f (k) ·nO (1) , 
for some function f , i.e., the problem is FPT with respect to k.

Also, it is not known if connected pathwidth can be computed faster than in time O ∗(2n) for an arbitrary n-vertex graph 
(recall that this is possible for pathwidth).

Finally, let us point out that the notion of connected pathwidth appeared in the context of pursuit-evasion games called 
node search, edge search or mixed search. A challenging and long-standing open question related to those games is whether 
their connected variants belong to NP. See [2] for more details regarding this question.
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