
Theoretical Computer Science 794 (2019) 85–100
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Finding small-width connected path decompositions in

polynomial time

Dariusz Dereniowski a,∗, Dorota Osula a,∗, Paweł Rzążewski b,∗
a Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
b Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 October 2017
Received in revised form 12 March 2019
Accepted 26 March 2019
Available online 1 April 2019

Keywords:
Connected graph searching
Connected pathwidth
Graph searching
Pathwidth

A connected path decomposition of a simple graph G is a path decomposition (X1, . . . , Xl)

such that the subgraph of G induced by X1 ∪ · · · ∪ Xi is connected for each i ∈ {1, . . . , l}.
The connected pathwidth of G is then the minimum width over all connected path
decompositions of G . We prove that for each fixed k, the connected pathwidth of any input
graph can be computed in polynomial-time. This answers an open question raised by Fedor
V. Fomin during the GRASTA 2017 workshop, since connected pathwidth is equivalent to
the connected (monotone) node search game.

© 2019 Published by Elsevier B.V.

1. Introduction

Since the famous ‘graph minor’ project by Robertson and Seymour that started with [35], the notions of treewidth and
pathwidth received growing interest and a vast amount of results has been obtained. The pathwidth, informally speaking,
allows us to say how closely an arbitrary graph resembles a path. This concept proved to be useful in designing algorithms
for various graph problems, especially in the case when the pathwidth of an input graph is small (e.g. fixed), in which case
quite often a variant of the well-known dynamic programming approach that progresses along a path decomposition of the
input graph turns out to be successful.

Several modifications to pathwidth have been proposed and in this work we are interested in the connected variant
in which one requires that a path decomposition (X1, . . . , Xl) of a graph G satisfies: the vertices X1 ∪ · · · ∪ Xi induce a
connected subgraph in G for each i ∈ {1, . . . , l}. This version of the classical pathwidth problem is motivated by several
pursuit-evasion games, including, but not limited to, edge search, node search or mixed search [28,33,38]. More precisely, com-
puting the minimum number of searchers needed to clean a given graph G in the node search game (i.e., computing the
node search number of G) is equivalent to computing the connected pathwidth of G . Moreover, a connected path decomposi-
tion can be easily translated into the corresponding node search strategy that cleans G and vice versa. For further references
that provide more details on correspondences between connected path decomposition and different variants of the search
games see e.g. [2,16,24,23].

* Corresponding authors.
E-mail addresses: deren@eti.pg.edu.pl (D. Dereniowski), dorurban@student.pg.edu.pl (D. Osula), p.rzazewski@mini.pw.edu.pl (P. Rzążewski).
https://doi.org/10.1016/j.tcs.2019.03.039
0304-3975/© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.tcs.2019.03.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:deren@eti.pg.edu.pl
mailto:dorurban@student.pg.edu.pl
mailto:p.rzazewski@mini.pw.edu.pl
https://doi.org/10.1016/j.tcs.2019.03.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2019.03.039&domain=pdf

86 D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

1.1. Related work

A lot of research has been done in the direction of obtaining FPT algorithms for pathwidth, parametrized by the
pathwidth k. One of the first polynomial-time algorithms was presented in 1983 by Ellis et al. and had running time
O (n2k2+4k+2) [18]. Later, these results were improved (e.g., [7,10]) leading to the currently fastest FPT algorithm, working in
time 2O (k2)n [26]. In these algorithms, in order to produce an optimal solution, an approximate path- or tree-decomposition
is pre-computed. It is thus of interest to have good approximations for these problems. Numerous works have been pub-
lished in this direction [1,30,34], leading to the currently fastest algorithm for constant-factor approximation for treewidth,
working in time 2O (k)n [8], that is, single exponential in the treewidth k. The best known approximation ratio of a polyno-
mial time approximation algorithm for pathwidth is O (

√
log(opt) log n) [19].

There exist exact algorithms for computing pathwidth, whose running times are exponential in the order of the input
graph. Pathwidth can be computed in O ∗(2n)-time (in O ∗(2n) space) or in O ∗(4n)-time with the use of polynomial space,
using a simple algorithm from [9]. There is also a faster algorithm with running time O ∗(1.9657n) [37], which has been fur-
ther improved very recently to O ∗(1.89n) [29]. See [5,13,14] for some experimental approaches to pathwidth computation.

For pathwidth, it is known due to [36] that the set of minimal forbidden minors (i.e., the obstruction set) is finite for
each fixed k. However, a significant difference between pathwidth and connected pathwidth is that the latter one is not
closed under taking minors and hence it is not known if the set of minimal forbidden minors for connected pathwidth is
finite [4].

We also point out that a number of results have been obtained for connected pathwidth or the closely related connected
graph (edge) search, including algorithmic and computational ones [2,15,16,21,24,31], monotonicity [25,39], structural prop-
erties [3] or distributed algorithms [11,20,27].

1.2. Motivation

The connectivity constraint for pathwidth is natural and useful in graph searching games [2,20,24]. The connectivity is in
some cases implied by potential applications (e.g., security constraints may enforce the clean, or safe, area to be connected)
or it is a necessity, like in distributed or online versions of the problem [6,11,27,32].

Our second motivation comes from connections between pathwidth and connected pathwidth. More specifically, [16]
implies that for any graph G , these parameters differ multiplicatively only by a small constant. This implies that an
approximation algorithm for connected pathwidth immediately provides an approximation algorithm for pathwidth with
asymptotically the same approximation ratio. This may potentially lead to obtaining better approximations for pathwidth
since, informally speaking, the algorithmic search space for connected pathwidth is for some graphs much smaller than that
for pathwidth. On the other hand, we do not know any algorithm computing the connected pathwidth in time O ∗((2 −ε)n),
for any ε > 0. Thus, despite this smaller algorithmic search space, it is not clear how these two problems algorithmically
differ in the context of designing exact algorithms.

During the GRASTA 2017 workshop, Fedor V. Fomin [22] raised an open question, whether we can verify in polynomial
time, if the connected pathwidth of a given graph is at most k, for a fixed constant k. In this paper we answer this question
in the affirmative.

1.3. Outline

In the next section we recall the definition of connected pathwidth and related terms used in this work. Section 3
provides a polynomial-time algorithm for determining whether the connected pathwidth of an arbitrary input graph G is
at most k, where k is a fixed integer. The algorithm is inspired by the algorithms for computing minimum-length path
decompositions by Dereniowski, Kubiak, and Zwols [17]. We also use the notation from this paper. Then, Section 4 contains
the analysis of the algorithm (its correctness and running time). We finish with some open problems in Section 5.

2. Definitions

For a simple graph G = (V (G), E(G)) and a set Y ⊆ V (G), the subgraph with vertex set Y and edge set {{u, v} ∈ E(G)
∣∣

u, v ∈ Y } is denoted by G[Y] and is called the subgraph induced by Y . For Y ⊆ V (G), we write NG(Y) to denote the
neighborhood of Y in G , defined as NG (Y) = {v ∈ V (G) \ Y

∣∣ ∃u ∈ Y s.t. {u, v} ∈ E(G)}.

Definition 1. A path decomposition of a simple graph G = (V (G), E(G)) is a sequence P = (X1, . . . , Xl), where Xi ⊆ V (G) for
each i ∈ {1, . . . , l}, and

(i)
⋃l

i=1 Xi = V (G),
(ii) for each {u, v} ∈ E(G) there exists i ∈ {1, . . . , l} such that u, v ∈ Xi ,

(iii) for each i, j, k with 1 ≤ i ≤ j ≤ k ≤ l it holds that Xi ∩ Xk ⊆ X j .

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100 87

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 1. An illustration of I-connectivity; empty circles denote vertices from the set I . A partial path decomposition P = (X1, X2) is I-connected, as every
connected subgraph of G[X1] and G[X1 ∪ X2] contains a vertex from I as required in Definition 2.

The width of a path decomposition P is width(P) = maxi∈{1,...,l} |Xi | − 1. The pathwidth of G , denoted by pw(G), is the
minimum width over all path decompositions of G .

We say that a path decomposition P = (X1, . . . , Xl) is connected if the subgraph G[X1 ∪ · · · ∪ Xi] is connected for each
i ∈ {1, . . . , l}. The connected pathwidth of a graph G , denoted by cpw(G), is the minimum width taken over all connected
path decompositions of G .

Finally, a connected partial path decomposition of a graph G is a connected path decomposition (X1, . . . , Xi) of some
subgraph H of G , where NG (V (G) \ V (H)) ⊆ Xi . In other words, in the latter condition we require that each vertex of H
that has a neighbor outside H belongs to the last bag Xi . Intuitively, a connected partial path decomposition of G can
be potentially a prefix of some connected path decomposition of G . Also note that if (X1, . . . , Xl) is a connected path
decomposition, then for each i ∈ {1, . . . , l}, the sequence (X1, . . . , Xi) is a connected partial path decomposition of G , where
H = G[X1 ∪ · · · ∪ Xi].

In our analysis we use the following intermediate notion between arbitrary and connected path decompositions.

Definition 2. Given I ⊆ V (G), a (partial) path decomposition P = (X1, . . . , Xl) of G is I-connected if for each i ∈ {1, . . . , l}
each connected component H of G[X1 ∪ · · · ∪ Xi] contains a vertex from I and this vertex belongs to the first bag in which
H appears in P .

In other words, if P = (X1, . . . , Xl) is a partial path decomposition or a prefix of one, then the subgraph of G induced by
the union of bags of P may have several connected components and each of them must have a vertex in I . Moreover, if one
looks at the path decomposition of such a connected component H derived from P , i.e. at the path decomposition obtained
from (X1 ∩ V (H), . . . , Xl ∩ V (H)) by removing the empty bags, then such a decomposition starts with a bag containing a
vertex in I . Note that if P is connected then there is only one such connected component. See Fig. 1 for an illustration.

In our analysis, we will assume that the path decompositions we consider have the property that each bag introduces at
most one new vertex, i.e., for P = (X1, . . . , Xl) it holds |Xi+1 \ X1| ≤ 1 for each i ∈ {1, . . . , l − 1}. This property can be easily
reestablished whenever needed (a folklore).

3. The algorithm

We will present an algorithm that decides whether, for a connected input graph G and a set I , there exists an
I-connected path decomposition of width at most k − 1 (thus k is the maximum bag size of the connected path de-
composition to be computed). In the following, G , I and k are hence fixed. Note that we may without loss of generality
assume that the first bag in a connected path decomposition to be computed has only one vertex.

We start by informally sketching the high-level idea of the algorithm. Then, Sections 3.1 and 3.2 give the algorithm and
Section 3.3 gives a summary of our method. We use a dynamic programming approach. To that end we introduce a set of
states, so that each state encodes some partial path decomposition of G . If a transition from one state to another is possible,
then this certifies that the partial path decomposition corresponding to one state can be extended to (i.e., is a prefix of)
a partial path decomposition corresponding to the other state. We will verify whether the transition is possible using a
recursive procedure. The need to ensure consistency of solutions found in recursive calls is the reason why we consider a
more general problem of finding I-connected path decompositions.

Finally, we will show that each transition can be checked in polynomial time and that it is enough to consider only
polynomially many states. This eventually leads to an algorithm with a desired complexity.

For any S ⊆ V (G), we say that a subgraph H of G is an S-branch if H is a connected component of G − S and NG (V (H)) =
S . For any S ⊆ V (G), define B(S) to be the set of all S-branches. A set S is called a bottleneck if the number of S-branches
is at least 2k + 1, as it guarantees us the existence of at least one special branch called an in-branch, which will be defined
formally in the next section. Observe that each connected component of G − X , for any X ⊆ V (G), is an S-branch for exactly
one non-empty subset S of X .

Let us mention that S-branches are also known as full components associated with S (see e.g. Bouchitté and Todinca [12]).

http://mostwiedzy.pl

88 D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

3.1. States

By a potential state we mean a triple
(

X, {B S}S⊆X , { f B S }S⊆X
)
, consisting of:

• a non-empty set X ⊆ V (G) with |X | ≤ k,
• a subset B S ⊆ B(S) of cardinality at most 2k, chosen for every non-empty S ⊆ X ,
• a function f B S : B(S) → {0, 1}, chosen for every non-empty S ⊆ X . We additionally require that if H, H ′ ∈ B(S) \ B S ,

then f B S (H) = f B S (H ′).

The exact meaning of B S will be explained later on, but let us present some intuition. In Lemma 1 we show that for every
path decomposition P , the vertices of all but at most 2k S-branches appear in bags of P in a certain, well-structured way.
The set B S and the function f B S will be used to describe the structure of the remaining, badly behaving S-branches.

Observe that the set X may be chosen in at most nk ways and the number of choices of S is at most 2k . For every S , the
number of S-branches is at most n, so B S can be chosen in at most n2k ways. The function f B S can be chosen in at most
2|B S | · 2 ≤ 22k+1 ways. Therefore, the number of potential states is at most nk · 2k · n2k · 22k+1 = O (n3k), i.e., polynomial in n,
where the asymptotic notation hides the factor that depends on k.

With a potential state s = (X, {B S}S⊆X , { f B S }S⊆X) we associate the following notions. By bag(s) we denote the set X . By
cover(s) we denote the set of vertices

X ∪
⋃

S⊆X,S �=∅

⎛
⎝ ⋃

H∈B(S) : f B S (H)=1

V (H)

⎞
⎠ .

By Gs we denote the subgraph of G induced by cover(s). We say that two states w, s are indistinguishable if cover(w) =
cover(s) and bag(w) = bag(s). Otherwise the states are distinguishable. In particular, indistinguishable states can only differ
by the choice of B S . We note that for such two distinguishable states it may hold that cover(w) = cover(s) but bag(w) �=
bag(s).

Example. In the example in Fig. 1 we can consider two states: s and w with bags bag(s) = X1 and bag(w) = X2. There exists
one {v1}-branch H1 = G − {v1}, two {v2}-branches: H2 = G[{v1}] and H3 = G[{v3, v4, v5, v6}], one {v6}-branch H4 = G −
{v6} and two {v2, v6}-branches: H5 = G[{v4}] and H6 = G[{v3, v5}]. We notice that the set of {v1, v2}-branches is empty.
The state s is equal to (X1, {{H1}, {H2, H3}, ∅}, { f1, f2, f∅}) and the state w is (X2, {{H2, H3}, {H4}, {H5, H6}}, { f2, f3, f4}),
such that f∅ is a function with empty domain, f1(H1) = f2(H3) = f3(H4) = f4(H5) = f4(H6) = 0 and f2(H2) = 1. We notice
that cover(s) = {v1, v2} and cover(w) = {v1, v2, v6}.

Let v be a vertex from cover(s) which has a neighbor u /∈ cover(s). We argue that v ∈ bag(s). Otherwise, if v /∈ bag(s),
then both v and u belong to the same S-branch for some S ⊆ bag(s). Thus, they are either both in cover(s), or outside it.
From this it follows that every vertex v ∈ cover(s), which has a neighbor u /∈ cover(s), must belong to bag(s). Let us denote
the set of such vertices v by border(s). We have proved:

Observation 1. For each potential state s it holds that border(s) ⊆ bag(s).

We say that a potential state s is a state if each connected component of Gs contains a vertex in I .
We introduce a Boolean table T ab, indexed by all states. For a state s, the value of T ab[s] will be set to true by our

algorithm if and only if there exists some I-connected partial path decomposition P = (X1, X2, . . . , Xl) of G with H = Gs ,
such that width(P) ≤ k − 1 and Xl = bag(s). We will use a dynamic programming to fill the table T ab. Then, we will
conclude that G has an I-connected path decomposition of width at most k − 1 if and only if T ab[s] = true for some state
s with cover(s) = V (G).

Observe that such a final state exists, since for s = (X, {B S}S , { f B S }S), we have cover(s) = V (G) if and only if f B S (H) = 1
for every S and H . However, the astute reader may notice that in our representation we might have not included some
I-connected partial path decompositions and it could be possible that we do not find a solution, even though it exists. We
will show that if cpw(G) ≤ k − 1, then there exists a special type of an I-connected path decomposition of width at most
k − 1, called a structured path decomposition (defined later), which can be found using our algorithm because, as we will
argue, our table T ab does not ‘omit’ any structured path decompositions.

3.2. Extension rules

Let us introduce a total ordering ≺ on the set of states. We say that w ≺ s if |cover(w)| < |cover(s)|, or |cover(w)| =
|cover(s)| and |bag(w)| > |bag(s)|. If |cover(w)| = |cover(s)| and |bag(w)| = |bag(s)|, then we resolve such a tie arbitrarily.

We initialize T ab by setting T ab[s] = true for every state s, such that cover(s) = bag(s) = {v}, for some v ∈ I , while for
the remaining states s we initialize T ab[s] to be f alse. In particular for each s with |cover(s)| = 1 and cover(s) = bag(s) ∈ I ,

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100 89

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

we have T ab[s] = true. In our dynamic programming algorithm, we process states according to the ordering ≺ and fill the
table T ab using two extension rules: step extension and jump extension.

Step extension for distinguishable states w, s with w ≺ s and |cover(s)| > 1: if T ab[w] = true and
(S1) each connected component of G[bag(s)] contains a vertex from bag(w) ∪ I ,
(S2) border(w) ⊆ bag(s),
(S3) cover(s) = cover(w) ∪ bag(s),
(S4) bag(s) ∩ cover(w) ⊆ bag(w),
then set T ab[s] to true.

Jump extension for distinguishable states w = (X, {B S}S⊆X , { f B S }S) and s = (X, {B S}S⊆X , {g B S }S) with w ≺ s and
|cover(s)| > 1: if T ab[w] = true and there exists a bottleneck set S ′ ⊆ X , such that
(J1) f B S′ (H) = 0 and g B S′ (H) = 1 for every H ∈ B(S ′) \ B S ′ ,
(J2) f B S′ (H) = g B S′ (H) for every H ∈ B S ′ ,
(J3) f B S (H) = g B S (H) for every non-empty S �= S ′ , S ⊆ X , and H ∈ B(S),
(J4) for each H ∈ B(S ′) \ B S ′ there exists an

((
NG(S ′) ∩ V (H)

) ∪ I
)
-connected path decomposition PH of H of

width at most k − |X | − 1,
then set T ab[s] to true.

Let us present some intuitions behind these extension rules. In step extension, if w corresponds to some I-connected
partial path decomposition P = (X1, X2, . . . , Xl = bag(w)), then s corresponds to an I-connected partial path decomposition
P ′ = (X1, X2, . . . , Xl, Xl+1 = bag(s)) (we extend P by adding a single bag, namely bag(s)). Also note, that each new vertex
in Xl+1, i.e., one that is not in Xl , is (due to (S1)) connected by a path consisting of vertices from Xl+1 to a vertex in Xl or
I , as required in I-connected path decompositions.

In jump extension, if the state w corresponds to some I-connected partial path decomposition P = (X1, X2, . . . , Xl), then
the state s corresponds to an I-connected partial path decomposition P ′ = (X1, X2, . . . , Xl, Xl+1, Xl+2, . . . , Xl+l′), where

•
(⋂l+l′

i=l Xi

)
= Xl = Xl+l′ ,

• P ′′ := (Xl+1 \ Xl, Xl+2 \ Xl, . . . , Xl+l′ \ Xl) is a (not necessarily connected) path decomposition of the graph induced by
some S ′-branches, for some S ′ ⊆ Xl . These are the S ′-branches H in (J1) and P ′′ is obtained by ‘concatenating’ the path
decompositions from (J4).

Note that although a path decomposition PH in (J4) may not be connected, we ensure (by definition of I-connectivity) that
each connected component of the subgraph induced by each prefix of PH has a vertex from NG (S ′) ∩ V (H) or from I . Hence
it contains a neighbor of S ′ or a vertex from I , ensuring the required I-connectivity of the resulting path decomposition.
Fig. 1 presents an example of step extension from state s to state w , i.e., these states fulfill the conditions of the step
extension.

3.3. Summing up

Let us recall how the algorithm works. We introduce a Boolean table T ab, indexed by all states. We initialize T ab by
setting T ab[s] = true for every state s, such that cover(s) = bag(s) = {v}, for some v ∈ I , while for the remaining states s
we initialize T ab[s] to be f alse.

Then we process the states with respect to the ordering ≺, checking whether a step extension or a jump extension can
be applied to set T ab[s] = true. We terminate when we find a state corresponding to a feasible solution (i.e., when we set
T ab[s] = true for some state s with cover(s) = V (G)), or when we have processed all states. In the latter case we report
that a solution does not exist.

We note that the algorithm will be subsequently switching some entries of T ab from f alse to true, and hence until
the completion of the algorithm it is understood that the value f alse of a particular entry of T ab does not provide any
information as to whether a corresponding path decomposition exists.

4. The analysis

Let us start by introducing some more definitions and additional notation. Let P = (X1, X2, . . . , Xl) be a path decom-
position of G . We say that a connected subgraph H of G is contained in an interval [i, j] of P for some 1 ≤ i ≤ j ≤ l,
if V (H) ∩ Xt �= ∅ if and only if t ∈ {i, . . . , j}. Note that this definition is valid since it follows that for a connected sub-
graph H , the subset of indices t such that V (H) ∩ Xt �= ∅ is indeed an interval. If H is contained in [i, j], then we denote
these endpoints of the interval as i = α(H, P) and j = β(H, P). If P is clear from the context, we will often write shortly
α(H) := α(H, P) and β(H) := β(H, P).

For a set S and an I-connected path decomposition P = (X1, X2, . . . , Xl), we say that an S-branch H is an in-branch if
S ⊆ Xα(H) and S ⊆ Xβ(H) . The lemma below gives us a lower bound on the number of in-branches of S .

http://mostwiedzy.pl

90 D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 2. An illustration of a two-vertex bottleneck set S and the corresponding S-branches.

Lemma 1. For every set S and a path decomposition P = (X1, X2, . . . , Xl), at most 2k S-branches are not in-branches.

Proof. Consider an S-branch H , which is not an in-branch. This means that S � Xα(H) or S � Xβ(H) .
First, consider H , such that S � Xα(H) . Let t be the minimum index such that S ⊆ X1 ∪ X2 ∪· · ·∪ Xt . Let v ∈ S be a vertex

in Xt \ (X1 ∪ X2 ∪ · · · ∪ Xt−1), it exists by the definition of t . Recall that v is a neighbor of some vertex w of H , so, since P
is a path decomposition, there must be a bag Xi containing both v and w . Since Xt is the first bag, where v appears, we
observe that i ≥ t and thus β(H) ≥ t .

Suppose now that α(H) > t . Note that since S � Xα(H) , there is some u ∈ S \ Xα(H) . Recall that u is a neighbor of some
vertex from H . However, since u ∈ X1 ∪ X2 ∪ · · · ∪ Xt and u /∈ Xα(H) , the vertex u does not appear in any bag containing a
vertex of H , so P cannot be a path decomposition of G . Thus α(H) ≤ t .

Therefore, the bag Xt contains at least one vertex from H . Since S-branches are vertex-disjoint and |Xt | ≤ k, we observe
that there are at most k S-branches H , such that S � Xα(H) .

Now consider an S-branch H , such that S ⊆ Xα(H) and S � Xβ(H) . Let t′ be the maximum index such that S ⊆ Xt′ ∪ · · · ∪
Xl .

Analogously to the previous case, we observe that α(H) ≤ t′ (by the maximality of t′) and β(H) ≥ t′ , because S � Xβ(H) .
Thus the bag Xt′ contains at least one vertex from H , which shows that the number of S-branches H , such that S ⊆ Xα(H)

and S � Xβ(H) , is at most k. Therefore the total number of S-branches, that are not in-branches is at most 2k, which
completes the proof. �

Recall that a non-empty set S is a bottleneck if |B(S)| > 2k. Thus Lemma 1 implies the following:

Corollary 1. If P = (X1, . . . , Xl) is a path decomposition and S is a bottleneck, then the following properties hold:

1. S has at least one in-branch,
2. there is i, such that S ⊆ Xi ,
3. |S| ≤ k. �

These properties justify the following definition.

Definition 3. For a bottleneck S ⊆ V (G), let t1(S, P) (respectively t2(S, P)) be the minimum (respectively maximum) index
i such that i = α(H, P) (i = β(H, P), respectively) for some S-branch H (respectively H), which is an in-branch.

Note that the definition of an in-branch implies that S ⊆ Xt1(S,P) ∩ Xt2(S,P) . The interval I(S, P) = [t1(S, P), t2(S, P)] is
called the interval of S . Again, we will often write shortly t1(S), t2(S), and I(S), if P is clear from the context.

For a bottleneck S we can refine the classification of S-branches, which are not in-branches. We say that an S-branch H ,
which is not an in-branch, is

• a pre-branch if α(H) < t1(S),
• a post-branch if α(H) ≥ t1(S) and β(H) > t2(S).

By Bx(S, P) we denote the set of all x-branches for S , where x ∈ {pre, in, post}. Again, if P is clear from the context, we will
write Bx(S) instead of Bx(S, P). By C(S) we denote the set of all connected components of G − S , that are not S-branches.

Example. The graph G in Fig. 2 illustrates the above concepts. The sequence X1, X2, . . . , X16 forms a connected path decom-
position of G . The only bottleneck set S consists of two vertices denoted by circles. (In this example we take k = 3.) There
are 13 S-branches: one pre-branch (G[X1 ∪ X2 \ S]), eleven in-branches (G[Xi \ S] for i ∈ {4, 5, . . . , 14}), and one post-branch

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100 91

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

(G[(X15 ∪ X16) \ S]). The interval of S is equal to I(S, P) = [4, 14] and the component G[X3 \ S] is not an S-branch, because
some vertices in S do not have a neighbor in this component.

For a subgraph H of G , we say that H waits in an interval [i, j] of P if

V (H) ∩ Xi = V (H) ∩ Xi+1 = · · · = V (H) ∩ X j.

We say that a path decomposition P is S-structured if each subgraph C that is in C(S) or is a post- or a pre-branch of S
waits in I(S, P). The main technical tool in our approach is the following result concerning the structure of I-connected
path decompositions. The proof of the lemma is provided after giving several technical facts that we need.

Lemma 2. If there exists an I-connected path decomposition P , then there is also an I-connected path decomposition P ′ of width at
most width(P) such that P ′ is S-structured for every bottleneck S.

We define cmin(S, P) as the minimum index i ∈ I(S, P), for which the size of the set

Xi ∩
⎛
⎝ ⋃

H∈Bpre(S)∪Bpost(S)∪C(S)

V (H)

⎞
⎠

is minimum. Also, set X∗ :=
(⋃

H∈Bpre(S)∪Bpost(S)∪C(S) V (H)
)

∩ Xcmin(S,P) to be this minimum-size set.

Let � be the set of all I-connected path decompositions of G and S be the set of all bottlenecks of G . We will define a
function F : S × � → �, which for given S ∈ S and P ∈ � transforms P into an S-structured I-connected path decomposi-
tion of width at most width(P). For simplicity of notation, from now on t1 = t1(S, P), t2 = t2(S, P), and cmin = cmin(S, P),
whenever S and P are clear from the context. Let Bin(S, P) = {H1, . . . , Hlin }, where the in-branches are ordered according
to their first occurrences in P , that is, α(H1) ≤ · · · ≤ α(Hlin). Let

d =
∑

H∈Bin(S)

(β(H) − α(H) + 1) .

In other words, d is the sum of lengths of intervals in which the in-branches H are contained in the path decomposition
P = (X1, X2, . . . , Xl).

For each in-branch Hi , i ∈ {1, . . . , lin}, we define the following sequence:

Pi := (
Xα(Hi) ∩ V (Hi), . . . , Xβ(Hi) ∩ V (Hi)

)
.

Since P is an I-connected path decomposition of G , it is straightforward to observe that Pi is a (NG(S) ∩ V (Hi)) ∪
I-connected path decomposition of Hi . We will denote the elements of Pi by

Pi =
(

Xi
1, . . . , Xi

β(Hi)−α(Hi)+1

)
.

Then, let us define a sequence P∗ as follows:

P∗ := ©lin
i=1 Pi,

where © denotes the concatenation of sequences. Observe that the length of P∗ is exactly d. We will denote the elements
of P∗ by P∗ = (

X∗
1, . . . , X∗

d

)
.

Define B in to be the set of vertices of the in-branches of S , i.e., B in := ⋃
H∈Bin(S,P) V (H). Now, we define a path decom-

position F (S, P) =
(

X ′
1, . . . , X ′

l+d+1

)
as follows (see Fig. 3):

X ′
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi for i ∈ {1, . . . , t1 − 1}; (a)

Xi \ B in for i ∈ {t1, . . . , cmin − 1}; (b)

Xcmin \ B in for i = cmin; (c)

X∗ ∪ X∗
i−cmin

∪ S for i ∈ {cmin + 1, . . . , cmin + d}; (d)

Xcmin \ B in for i = cmin + d + 1; (e)

Xi−d−1 \ B in for i ∈ {cmin + d + 2, . . . , t2 + d + 1}; (f)

Xi−d−1 i ∈ {t2 + d + 2, . . . , l + d + 1}. (g)

(1)

Observe that F (S, P) is obtained from P by a modification of the interval [t1, t2] of P . The prefix (X1, X2, . . . , Xt1−1) and
the suffix (Xt2+1, Xt2+2, . . . , Xl) of P are just copied into F (S, P) without any changes (see conditions (1)(a) and (1)(g)). All

http://mostwiedzy.pl

92 D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 3. Illustration of the conversion from P to P ′ = F (S, P) for a bottleneck S . For simplification, S is assumed to only have 8 S-branches and 3
components, which are denoted by letters H and C , respectively, with appropriate indices.

components of G − S , apart from the in-branches, are covered by bags on positions up to cmin, see (1)(b) and (1)(c), and after
position cmin +d, see (1)(f), and they wait for d +1 steps in the interval [cmin +1, cmin +d +1] of F (S, P) — see (1)(d)–(1)(e).
The interval [cmin + 1, cmin + d] is used in (1)(d) to cover all in-branches, one by one, in the order of their appearance in
P . Intuitively, two bags without any vertices of in-branches are present on positions cmin and cmin + d + 1 to ensure that
for any other bottleneck S ′ , such that I(S, P) � I(S ′, P), we have that cmin(S ′, P) /∈ I(S, P), see (1)(c) and (1)(e). (The
appropriate details are in the proofs.) Fig. 3 illustrates the conversion from P to P ′ := F (S, P) for a bottleneck S . Notice
that the interval of S in P ′ is given by t1(S, P ′) = cmin + 1 and t2(S, P ′) = cmin + d, and it is possibly different than [t1, t2].
In the next lemma we show that F (S, P) has all necessary properties.

Lemma 3. For any I-connected path decomposition P and a bottleneck S, P ′ = F (S, P) is an I-connected path decomposition with
width(P ′) ≤ width(P).

Proof. Let us recall the notation: P := (X1, . . . , Xl), P ′ = F (S, P) = (X ′
1, . . . , X

′
l′), t1 = t1(S, P) and t2 = t2(S, P), B in :=⋃

H∈Bin(S,P) V (H). Moreover, define

Bnot-in :=
⎛
⎝ ⋃

H∈Bpre(S,P)∪Bpost(S,P)∪C(S)

V (H)

⎞
⎠ .

Also, recall that X ′
i = Xi, 1 ≤ i < t1 and X ′

i = Xi−d−1, for all t2 + d + 2 ≤ i ≤ l′ .
First, we want to show that P ′ satisfies the conditions in Definition 1.
Let {u, v} be an edge of G . Since P is a path decomposition, u, v ∈ Xi for some i. If i < t1, then u, v ∈ X ′

i = Xi . If i > t2,
then u, v ∈ X ′

i+d+1 = Xi .

So suppose that u, v ∈ Xi for i ∈ [t1, t2]. Note that this means that u, v ∈ B in ∪ S or u, v ∈ Bnot-in ∪ S . If u, v ∈ Bnot-in ∪ S ,
then we have

(i) u, v ∈ X ′
i , if i ≤ cmin;

(ii) u, v ∈ X ′
i+d+1, otherwise.

Finally, consider the case that, say, u ∈ B in and v ∈ B in ∪ S (if both u, v ∈ S , then we are at the previous case). This
means that u is a vertex of some in-branch Hs ∈ Bin(S, P), so it appears in some bag of Ps and thus of P∗ . This implies
that u, v ∈ X ′ for some j ∈ [cmin + 1, cmin + d]. This implies that P ′ satisfies conditions (i) and (ii) from Definition 1.
j

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100 93

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Now let us verify that the condition (iii) is also satisfied, i.e., for every vertex v and indices i < s < j, such that v ∈ X ′
i ∩ X ′

j
we have v ∈ X ′

s . Clearly the condition is satisfied for every v and j < t1 or i > t2, since these parts of P ′ are just copied from
P without any modifications. The situation is very similar if i ≤ t2 and j ≥ t1 and v ∈ (

S ∪ Bnot-in
) \ X∗ . If v ∈ X∗ , then v is

included in all bags X ′
s for s ∈ [cmin, cmin + d + 1], so the condition (iii) follows from the correctness of P . Finally, if v is a

vertex of some Ha ∈ Bin(S, P), then the condition (iii) follows from the property (iii) that holds for the path decomposition
Pa .

We now show that width(P ′) ≤ width(P). Let c1 = |X∗| and c2 = max
i=t1,...,t2

∣∣B in ∩ Xi
∣∣, and let k = width(P) + 1 =

max
i=1,...,l

|Xi |. Observe that each X ′
i for i /∈ {t1, . . . , t2 + d + 1} is an exact copy of some X j , so

∣∣X ′
i

∣∣ ≤ k. Moreover, each X ′
i

for i ∈ {t1, . . . , cmin} ∪ {cmin + d + 1, . . . , t2 + d + 1} was obtained from some X j by removal of vertices of B in, so again we
have |Xi | ≤ k. Finally, for i ∈ {cmin + 1, . . . , cmin + d} we have

∣∣X ′
i

∣∣ = |S| + ∣∣X∗∣∣ +
∣∣∣X∗

i−cmin

∣∣∣ ≤ |S| + c1 + c2.

However, by the definition of P∗ , we observe that |S| + c1 + c2 ≤ ∣∣X j
∣∣ for some j ∈ {t1, . . . , t2}. Therefore, width(P ′) ≤

width(P).
Finally, recall that P is I-connected. Consider any connected component H of the subgraph G[X ′

1 ∪ · · · ∪ X ′
i] for an

i ∈ {1, . . . , l′}. We argue that H has a vertex in X ′
α(H,P ′) ∩ I as required in an I-connected path decomposition. Denote

j′ = α(H, P ′). We consider a few cases following the definition of P ′ in (1)(a)-(1)(g).
Suppose first that j′ < t1 or j′ ≥ t2 + d + 2. Denote j = j′ when j′ < t1 and j = j′ − d − 1 when j′ ≥ t2 + d + 2. Then,

X ′
1 ∪ · · · ∪ X ′

j′ = X1 ∪ · · · ∪ X j and X ′
j′ = X j . Thus, for such j′ ,

X ′
α(H,P ′) ∩ V (H) = X ′

j′ ∩ V (H) = X j ∩ V (H) = Xα(H,P) ∩ V (H).

Since P is I-connected, Xα(H,P) ∩ V (H) ∩ I �= ∅ which completes the proof for this choice of j′ .
Suppose now that t1 ≤ j′ < t2 + d + 2. Denote for brevity Z = X ′

j′ ∩ V (H). Since each bag of P introduces at most one
new vertex, Z has one vertex, call it v . Note that v is not adjacent to a vertex in S . Otherwise the fact that S ⊆ X ′

j′ would
imply that v and also its neighbor in S belong to H , which would contradict |Z | = 1. Also, v /∈ S because S ⊆ X ′

t1−1 and
v /∈ X ′

t1−1. Thus, informally speaking, we have proved that H is a connected component in G − S that starts in P ′ with the
vertex v and this vertex is not adjacent to any vertex in S . Note that the path decompositions P and P ′ when restricted to
H are identical, (Xα(H,P) ∩ V (H), . . . , Xβ(H,P) ∩ V (H)) = (X ′

α(H,P ′) ∩ V (H), . . . , X ′
β(H,P ′) ∩ V (H)). This implies in particular

that G[X1 ∪ · · · ∪ Xα(H,P)] also has a connected component that consists of only the vertex v . Since, P is I-connected,
v ∈ I . This implies that H has a vertex in X ′

α(H,P ′) ∩ I , i.e., this set consists of v . �
Observe that every connected component H of G − S is either contained in I(S, P ′) (which means that H is an in-branch)

or waits in I(S, P ′) (for all other H).

Observation 2. For any P and a bottleneck S , the path decomposition F (S, P) is S-structured.

Now we want to define a series of transformations, which start with an arbitrary I-connected path decomposition P
and transform it into an I-connected path decomposition with no larger width, which is S-structured for every S ∈ S . For
this, we will apply the F -transformations for all bottlenecks. In order to do this we need some technical lemmas about the
structure of bottlenecks and their branches.

Lemma 4. Let S and S ′ be two bottlenecks, such that S ′ � S. There exists an S ′-branch H such that
⋃

H ′∈B(S) V (H ′) ∪ S \ S ′ ⊆ V (H)

and every S ′-branch H ′ , different than H, is a non-branch connected component of G − S.

Proof. Let S, S ′ ∈ S such that S ′ � S . Clearly S intersects some connected component of G − S ′ . Since every S-branch H ′′ is
connected and S \ S ′ ⊂ NG(V (H ′′)), we observe that two connected components of G − S ′ can not be distinctive, i.e., there
exists a connected component H of G − S ′ such that

⋃
H ′∈B(S) V (H ′) ∪ S \ S ′ ⊆ V (H).

To see that H is an S ′-branch, consider a vertex s′ ∈ S ′ . By assumption, S ′ ⊆ S and hence s′ is also a vertex of S . Thus, s′
has a neighbor in every S-branch H ′ , and thus in H . See Fig. 4 for an illustration.

Now consider an S ′-branch H ′′ �= H . If every vertex of S \ S ′ is adjacent to some vertex of H ′′ , then H ′′ is an S-branch,
a contradiction. Thus, H ′′ is a connected component of G − S , which is not an S-branch. �
Lemma 5. For any two bottlenecks S and S ′ , if S ′ � S, then there exists exactly one connected component H of G − S such that
S ′ ⊆ S ∪ V (H).

http://mostwiedzy.pl

94 D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 4. An illustration for Lemma 4. S and S ′ are bottlenecks, such that S ′ � S . All S-branches are subgraphs of an S ′-branch H and every S ′-branch,
different than H , is a connected component of G − S , which is not an S-branch.

Fig. 5. An illustration of two cases in Lemma 5 and Remark 1; S and S ′ are bottlenecks. All S-branches (apart from H , which is a connected component of
G − S , which may or may be not an S-branch) are subgraphs of C and S ′ ⊆ S ∪ V (H).

Proof. Let S, S ′ ∈ S such that S ′ � S . Clearly S ′ intersects some connected component of G − S . Suppose that S ′ has a
non-empty intersection with two connected components H and H ′ of G − S . Thus, since every S ′-branch H ′′ is connected
and NG (V (H ′′)) = S ′ , we observe that H ′′ contains a vertex of S (otherwise H, H ′ would not be two distinct components).
Since S ′-branches are vertex-disjoint, this implies that the number of such S ′-branches is at most |S|, which is in turn at
most k by Corollary 1. However, this contradicts the assumption that S ′ is a bottleneck. �

The next remark is a straightforward consequence of Lemma 4 and Lemma 5.

Remark 1. Let S and S ′ be bottlenecks such that S ′ � S and S � S ′ . Let H be the connected component of G − S , such
that S ′ ⊆ S ∪ V (H). There exists exactly one connected component C of G − S ′ such that

⋃
H ′∈B(S)\H V (H ′) ∪ S \ S ′ ⊆ V (C).

Moreover, all S ′-branches but possibly C are subgraphs of H .

See Fig. 5 for the illustration for Lemma 5 and Remark 1.
We say two bottlenecks S and S ′ are well-nested in P if

(i) I(S ′, P) � I(S, P) or
(ii) I(S, P) ⊆ I(S ′, P) or

(iii) I(S, P) ∩ I(S ′, P) = ∅.

Observe that the ordering of S, S ′ in the definition above matters.

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100 95

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Lemma 6. For any I-connected path decomposition P and bottlenecks S, S ′ , if P is S ′-structured, then S and S ′ are well-nested in
P . Moreover, if S � S ′ , then either I(S, P) ∩ I(S ′, P) = ∅ or I(S ′, P) ⊆ I(S, P).

Proof. Let P = (X1, . . . , Xl) be an I-connected path decomposition of G and let S, S ′ ∈ S . Suppose P is S ′-structured. Let
us assume that I(S ′, P) ∩ I(S, P) �= ∅, we will show that either I(S ′, P) � I(S, P) or I(S, P) ⊆ I(S ′, P).

Case A: S ′ � S . By Lemma 4, there exists an S ′-branch H such that for every S-branch H ′ it holds that S \ S ′ ∪ V (H ′) ⊆ V (H),
and thus [α(H ′), β(H ′)] ⊆ [α(H), β(H)]. Recall that t1(S) = α(H ′

1) and t2(S) = β(H ′
2) for some in-branches H ′

1, H
′
2 ∈ B(S),

so I(S, P) = [t1(S), t2(S)] ⊆ [α(H), β(H)]. Consider two subcases.

Subcase A1: α(H) ∈ I(S ′, P). Since P is S ′-structured, we observe that H is an in-branch for S ′ , which implies that
I(S, P) ⊆ [α(H), β(H)] ⊆ I(S ′, P).

Subcase A2: α(H) /∈ I(S ′, P). First, observe that if α(H) > t2(S ′), then t1(S) > t2(S ′) and thus I(S, P) ∩ I(S ′, P) = ∅,
which contradicts our assumption. Analogously, if β(H) < t1(S ′), we again obtain that I(S, P) ∩ I(S ′, P) = ∅. Therefore
assume that α(H) < t1(S ′) ≤ β(H). Observe that this implies that H is a pre-branch for S ′ and, since P is S ′-structured, H
waits in I(S ′, P). In particular (S \ S ′) ∩ Xt1(S ′) = (S \ S ′) ∩ Xt1(S ′)+1 = . . . = (S \ S ′) ∩ Xt2(S ′) . Since I(S ′, P) ∩ I(S, P) �= ∅, it
is necessary that t1(S) ≤ t1(S ′) (otherwise t1(S) > t2(S ′)). Thus, t1(S) ≤ t1(S ′) ≤ t2(S ′) ≤ t2(S) (recall H waits in I(S ′, P)).
Summing up, if S ′ � S , then either I(S ′, P) � I(S, P) or I(S, P) ⊆ I(S ′, P), which completes the proof for this case.

Case B: S ′ � S . By Lemma 5, there exists exactly one connected component H of G − S such that S ′ ⊆ S ∪ V (H). Since S ′ � S ,
we observe that V (H) ∩ S ′ �= ∅.

If H is an S-branch that is an in-branch in P , then

I(S ′,P) ⊆ [α(H,P),β(H,P)] ⊆ I(S,P).

We observe that I(S ′, P) ⊆ I(S, P) is equivalent to I(S ′, P) � I(S, P) or I(S ′, P) = I(S, P), thus S and S ′ are well-nested
in P . So assume that H is a connected component of G − S , that is not an in-branch for S (it may still be a pre- or a
post-branch). We consider now two subcases.

Subcase B1: S � S ′. By Lemma 4, all S-branches possibly except for H are not S ′-branches and all S ′-branches are
subgraphs of H .

Because P is S ′-structured, every S-branch but possibly H waits in I(S ′, P). In particular, every in-branch H ′′ for S does
wait in I(S ′, P). Thus, for every such an in-branch H ′′ it holds that I(S ′, P) ⊆ [α(H ′′), β(H ′′)] or I(S ′, P) ∩[α(H ′′), β(H ′′)] =
∅. Note that the second condition implies that I(S ′, P) ∩ I(S, P) = ∅, which contradicts our assumption. Therefore we obtain
that I(S ′, P) ⊆ [α(H ′′), β(H ′′)] ⊆ I(S, P). Note that this shows the second claim of the lemma.

Subcase B2: S \ S ′ �= ∅. Let C be the connected component of G − S ′ , for which it holds
⋃

H ′∈B(S)\H V (H ′) ∪ S \ S ′ ⊆ V (C),
whose existence is guaranteed by Remark 1.

If C is an in-branch for S ′ , we observe that I(S, P) ⊆ [α(C), β(C)] ⊆ I(S ′, P), because P is S ′-structured. On the other
hand, if C is not an in-branch for S ′ , then all in-branches of S wait in I(S ′, P). This is because all subgraphs but in-branches
of S ′ wait in I(S ′, P), and every in-branch for S is vertex-disjoint with every in-branch for S ′ , since they are all contained
in V (C) ∪ S ′ . Thus, since I(S, P) ∩ I(S ′, P) �= ∅, we conclude that I(S ′, P) ⊆ I(S, P), which completes the proof. �

In the next lemma, we show that we can apply a series of F -transformations, one for each bottleneck, so that the
structure obtained in previous F -transformations is not ‘destroyed’ during the subsequent F -transformations.

Lemma 7. Let S, S ′ be bottlenecks and let P be an S-structured I-connected path decomposition. Let P ′ = F (S ′, P).

1. If I(S ′, P) ⊆ I(S, P), then P ′ is S-structured and I(S ′, P ′) ⊆ I(S, P ′).
2. If t2(S, P) < t1(S ′, P), then P ′ is S-structured and t2(S, P ′) < t1(S ′, P ′).
3. If t2(S ′, P) < t1(S, P), then P ′ is S-structured and t2(S ′, P ′) < t1(S, P ′).

Proof. First, let us prove point 1, i.e. we assume that I(S ′, P) ⊆ I(S, P). If S ′ = S , then the results are obvious, so we
consider two cases.

Case A: S ′ � S . Observe that by Lemma 6 we obtain that I(S ′, P) ∩ I(S, P) = ∅ or I(S, P) ⊆ I(S ′, P), which leads to the
equality I(S, P) = I(S ′, P). By Lemma 4, there exists an S ′-branch H , such that

⋃
H ′∈B(S) V (H ′) ∪ S \ S ′ ⊆ V (H). Because

I(S, P) = I(S ′, P), we conclude that H is the only in-branch for S ′ . The path decomposition P is S-structured, so every

http://mostwiedzy.pl

96 D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

connected component of G − S ′ , different than H , waits in I(S ′, P) = I(S, P). Thus, the transformation F (S ′, P) does not
make any changes to bags Xt1(S,P), Xt1(S,P)+1, . . . , Xt2(S,P) , i.e., I(S, P ′) = I(S ′, P ′).

Case B: S ′ � S . By Lemma 5, there exists exactly one connected component H of G − S such that S ′ ⊆ S ∪ V (H). The as-
sumption I(S ′, P) ⊆ I(S, P) implies that some vertex of H appears for the first time in P in the interval I(S, P), i.e., H
does not wait in I(S, P). Moreover, it implies that t1(S, P) ≤ α(H)P ≤ β(H, P) ≤ t2(S, P) due to our general assumption
that each bag introduces at most one new vertex. This implies that H is an in-branch for S . We are going to show now
that every S ′-branch H ′ , which is an in-branch, is a subgraph of H . If S � S ′ , then we obtain it immediately from Lemma 4,
so let S \ S ′ �= ∅. Let C be a connected component of G − S ′ , such that

⋃
H ′∈B(S)\H V (H ′) ∪ S \ S ′ ⊆ V (C), whose exis-

tence is guaranteed by Remark 1. Recall that C might or might not be an S ′-branch, but for sure it is not an in-branch
for S ′ , because then I(S, P) � I(S ′, P), which is a contradiction. Thus, by Remark 1, every in-branch for S ′ is a subgraph
of H .

Because every in-branch for S ′ is a subgraph of H , we conclude that I(S ′, P) ⊆ [α(H, P), β(H, P)] and the only changes
made by the transformation F (S ′, P) concern the vertices of H ∈ Bin(S). Every connected component of G − S , apart from
in-branches (for S ′), waits in I(S ′, P ′), so F (S ′, P) is S-structured and I(S ′, P ′) ⊆ [α(H, P ′), β(H, P ′)] ⊆ I(S, P ′).

To see that cases 2 and 3 hold as well, notice that the prefix (X1, X2, . . . , Xt1(S ′,P)−1) and suffix (Xt2(S ′,P)+1, Xt2(S ′,P)+2,

. . . , Xl) of P are just copied into P ′ without any changes. �
In the following lemma it is crucial that the path decomposition P is not only S-structured but has been obtained by

applying the transformation described in (1)(a)-(1)(g) to P0. In particular, the bags added in (1)(c) and (1)(e) will play a
crucial role in ensuring that the path decomposition returned by F (S ′, P) remains S-structured.

Lemma 8. Let S, S ′ be bottlenecks and let P0 be any I-connected path decomposition. Let P = F (S, P0) and P ′ = F (S ′, P). If
I(S, P) � I(S ′, P), then P ′ is S-structured and I(S, P ′) ⊆ I(S ′, P ′) or I(S, P ′) ∩ I(S ′, P ′) = ∅.

Proof. Let P = (X1, . . . , Xl) be an I-connected path decomposition of G , let S, S ′ ∈ S and P ′ = F (S ′, P). Moreover, assume
that P = F (S, P0) for some I-connected path decomposition P0. In particular, this implies that P is S-structured. Finally,
assume that I(S, P) � I(S ′, P).

Case A: S ′ � S . By Lemma 4 there exists an S ′-branch H such that
⋃

H ′∈B(S) V (H ′) ∪ S \ S ′ ⊆ V (H). If H is an in-branch
for S ′ then I(S, P) ⊆ [α(H, P), β(H, P)] � I(S ′, P). However, recall that F -transformation applied to S ′ and P does not
change the structure of the bags restricted to H (or any other in-branch of S ′). Therefore we conclude that I(S, P ′) ⊆
[α(H, P ′), β(H, P ′)] � I(S ′, P ′) and P ′ is S-structured.

Now assume that H is a pre-branch or a post-branch for S ′ . From the construction of P we have that cmin(S ′,P) /∈
I(S, P). Because every in-branch H ′ for S ′ either waits in I(S, P) or [α(H ′, P), β(H ′, P)] ∩ I(S, P) = ∅, we obtain that
I(S, P ′) ∩ I(S ′, P ′) = ∅ and P ′ is S-structured.

Case B: S ′ � S and S � S ′. By Lemma 5 there exists exactly one connected component H of G − S such that S ′ ⊆ S ∪ V (H).
Because V (H) ∩ S ′ �= ∅ we have that I(S ′, P) ⊆ [α(H, P), β(H, P)]. We observe that H cannot be an in-branch for S ,
otherwise I(S ′, P) ⊆ [α(H, P), β(H, P)] ⊆ I(S, P), which contradicts the assumption that I(S, P) � I(S ′, P). Thus, H /∈
Bin(S).

From the facts that P is S-structured and I(S ′, P) ⊆ [α(H, P), β(H, P)], we observe that H waits in I(S, P). By Remark 1
there exists a connected component C of G − S ′ such that

⋃
H ′∈B(S)\H V (H ′) ∪ S \ S ′ ⊆ V (C). Because H is not an in-branch

for S , all in-branches of S are subgraphs of C . If C is an in-branch for S ′ then I(S, P) ⊆ [α(C, P), β(C, P)] � I(S ′, P). Be-
cause F -transformation does not change bags inside one in-branch, we have that I(S, P ′) ⊆ [α(C, P ′), β(C, P ′)] � I(S ′, P ′)
and P ′ is S-structured. On the other hand, assume that C is not an in-branch for S ′ . From construction of P we have that
cmin(S ′,P) /∈ I(S, P) Because every in-branch H ′ for S ′ either waits in I(S, P) or [α(H ′, P), β(H ′, P)] ∩ I(S, P) = ∅, we
obtain that I(S, P ′) ∩ I(S ′, P ′) = ∅ and P ′ is S-structured.

Case C: S � S ′. From Lemma 4 there exists an S-branch H such that
⋃

H ′∈B(S ′) V (H ′) ∪ S ′ \ S ⊆ V (H), i.e., I(S ′, P) ⊆
[α(H, P), β(H, P)]. We observe that H cannot be an in-branch for S , otherwise I(S ′, P) ⊆ [α(H, P), β(H, P)] ⊆ I(S, P),
which contradicts the assumption that I(S, P) � I(S ′, P).

Let then H be a pre-branch or a post-branch for S , which means that H waits in I(S, P) (notice that it is impossible that
[α(H, P), β(H, P)] ∩ I(S, P) = ∅, because then I(S ′, P) ∩ I(S, P) = ∅). From construction of P we have that cmin(S ′,P) /∈
I(S, P). Because every in-branch H ′ for S ′ either waits in I(S, P) or [α(H ′, P), β(H ′, P)] ∩ I(S, P) = ∅, we obtain that
I(S, P ′) ∩ I(S ′, P ′) = ∅ and P ′ is S-structured. �

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100 97

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Now we are ready to prove Lemma 2.

Proof of Lemma 2. Let P be an I-connected path decomposition. Let S = {S1, S2, . . . , Sn′ } be the set of all bottlenecks. We
define a path decomposition P ′ :=Pn′ in the following recursive way:

P0 = P;
Pi = F (Si,Pi−1), for i ∈ {1, . . . ,n′}.

We are going to prove now that Pq is S j -structured and Si, S j are well-nested in Pq for every 1 ≤ j ≤ q ≤ n′ and
1 ≤ i ≤ n′ .

Induction on q. If q = 1, then obviously j = 1. By Observation 2, Pq is Sq-structured. Thus, by Lemma 6, Sq and Si are
well-nested in Pq for every 1 ≤ i ≤ n′ . So assume that q > 1 and the claim holds for q − 1.

Let j ∈ {1, . . . , q − 1}. For every S j we have, by the induction assumption, that Sq, S j are well-nested in Pq−1 and
Pq−1 is S j-structured. By Lemma 8, if I(S j, Pq−1) � I(Sq, Pq−1), then Pq = F (Sq, Pq−1) is S j-structured. By Lemma 7, if
I(Sq, Pq−1) ⊆ I(S j, Pq−1) or I(S j, Pq−1) ∩ I(Sq, Pq−1) = ∅, then Pq = F (Sq, Pq−1) is S j -structured.

Because Pq is S j-structured, then from Lemma 6 for any i ∈ {1, . . . , n′} we have that Si, S j are well-nested in Pq .
So P ′ is S-structured for every bottleneck S ∈ S . Note that Lemma 3 ensures that P ′ is an I-connected path decompo-

sition of width at most width(P), which finishes the proof. �
Now we are ready to show the correctness of our algorithm. We will prove it in two steps.

Lemma 9. If G has an I-connected path decomposition of width at most k −1, then T ab[s] = true for some state s such that cover(s) =
V (G).

Proof. Suppose that G has an I-connected path decomposition of width k − 1. By Lemma 2, there exists an I-connected
path decomposition P = (X1, . . . , Xl) that has width k − 1 and is S-structured for each bottleneck S .

By Lemma 6, the set S of all bottlenecks with relation S ≺ S ′ if and only if I(S, P) ⊆ I(S ′, P) forms a partial order
(assuming that any ties, i.e. when I(S, P) = I(S ′, P), are resolved arbitrarily). Let S1, . . . , St be the maximal elements with
respect to this partial order. Note that for i �= j, I(Si, P) ∩ I(S j, P) = ∅ and for any bottleneck S ′ /∈ {S1, . . . , St} we have
I(S ′, P) ⊆ I(Si, P) for some i ∈ {1, . . . , t}. Assume without loss of generality that the ‘maximal’ bottlenecks are ordered
according to the left endpoints of their intervals,

t1(S1) ≤ t1(S2) ≤ · · · ≤ t1(St).

We show how to arrive at the desired state s. To that end we argue, by induction on j, that for each

j ∈ J := {1, . . . , l} \
t⋃

i=1

{t1(Si), . . . , t2(Si) − 1}

there exists a state s j such that cover(s j) = G[X1 ∪ · · · ∪ X j], bag(s j) = X j and T ab[s j] = true.
Since the first bag of P consists of a vertex in I , this clearly holds for j = 1 so take j > 1 and assume that the claim is

true for each j′ ∈ J ∩ {1, . . . , j − 1}. We consider two cases.

Case A: j /∈ I(Si, P) for each i ∈ {1, . . . , t}. Hence we have j − 1 ∈ J . This implies, according to Lemma 1, that for each
bottleneck S , either there are at most 2k S-branches H such that α(H) ≤ j, or there are at most 2k S-branches such that
j ≤ β(H). Thus, there exists a state s j such that cover(s j) = G[X1 ∪ · · · ∪ X j] and bag(s j) = X j . The step extension rule and
T ab[s j−1] = true, which holds by the induction hypothesis, imply T ab[s j] = true as required.

Case B: j ∈ I(Si, P) for some bottleneck Si . By the definition of the set J , j = t2(Si). Hence, the preceding index of j in the
set J is j′ = t1(Si) − 1. Again, by the definition of I(Si, P), Lemma 1, and the maximality of Si with respect to the partial
order, we have that for each bottleneck set S either at most 2k S-branches H satisfy α(H) ≤ j′ , or at least |B(Si′)| − 2k
S-branches H are contained in [1, j′], i.e., satisfy β(H) ≤ j′ , depending whether t2(S) ≤ j′ or t1(S) > j′ . Thus, there exists a
state s j such that cover(s j) = G[X1 ∪· · ·∪ X j] and bag(s j) = X j . Consider the jump extension rule constructed for S ′ = Si . For
the set B S ′ in (J1) and (J2) take all S ′-branches that are not in-branches, i.e., those that are covered in [j′ + 1, j] in P . Note
that each S-branch of each bottleneck S �= Si such that S ⊆ X j′ waits in the interval I(Si, P) because P is Si -structured,
which ensures the condition (J3). Condition (J4) holds because the decomposition PH in (J4) exists which is certified by
the decomposition P , namely PH = (Xα(H) ∩ V (H), . . . , Xβ(H) ∩ V (H)). Thus, T ab[j′] = true (which holds by the induction
hypothesis) ensures that T ab[j] = true.

Finally observe that l ∈ J , cover(sl) = G[X1 ∪ · · · ∪ Xl] = V (G) and T ab[sl] = true. Thus, s = sl is the required state. �

http://mostwiedzy.pl

98 D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Lemma 10. For any state s, if T ab[s] = true, then Gs has an I-connected path decomposition of width at most k − 1.

Proof. Proof by induction on the position of s in the ordering ≺. First, let cover(s) = {v} for some v ∈ V (G) (notice that
such states are smallest, according to ≺). If v ∈ I , then T ab[s] was set true in the initialization step. This is justified by
considering connected path decomposition consisting of a single bag {v}, which is a proper connected path decomposition
of the single-vertex graph ({v}, ∅). On the other hand, if v /∈ I , then T ab[s] is never set true, as the extension rules apply
only to states with |cover(s)| > 1.

Now suppose that |cover(s)| ≥ 2, and the Lemma holds for all states w ≺ s. Since T ab[s] = true, its value must have been
set by one of the extension rules. Consider two cases.

Case 1: T ab[s] was set by step extension. Consider the state w . If bag(s) � bag(w), then since by (S4), bag(s) ∩ cover(w) ⊆
bag(w), we have that bag(s) � cover(w). Therefore, cover(s) = cover(w) ∪ bag(s) implies that |cover(s)| > |cover(w)|, which
means that w ≺ s. On the other hand, if bag(s) ⊆ bag(w), we have cover(s) = cover(w) due to (S3). However, since s and
w , are distinguishable, we have bag(s) � bag(w), so |bag(s)| < |bag(w)| and thus w ≺ s.

So, by the inductive assumption, T ab[w] was set properly and there exists an I-connected path decomposition
P = (X1, X2, . . . , Xl) of G w that has width at most k − 1, where Xl = bag(w). Let Xl+1 := bag(s) and let P ′ :=
(X1, X2, . . . , Xl, Xl+1).

We claim that P ′ is a path decomposition of Gs . Indeed,
⋃l+1

i=1 Xi = ⋃l
i=1 Xi ∪ Xl+1 = cover(w) ∪ bag(s) = cover(s). Now,

consider an edge vu of Gs . If both v, u belong to cover(w), they appear in some Xi for i ≤ l (by the inductive assumption).
If both v, u belong to bag(s), we are done too. Finally, if v ∈ cover(w) and u ∈ bag(s) \ cover(w), we know from (S2)
that v ∈ border(w) ⊆ bag(s), so we are again in the previous case. Now suppose for a contradiction that there are some
1 ≤ i < j ≤ l, such that Xi ∩ Xl+1 � X j . This means that bag(s) = Xl+1 contains a vertex of cover(w) \ bag(w), which is a
contradiction with (S4).

Moreover, since width(P) ≤ k − 1 and |bag(s)| ≤ k, we have width(P ′) ≤ k − 1. Finally we prove that P ′ is I-connected.
Consider any connected component H of G[X1 ∪ · · · ∪ Xi] for some i ∈ {1, . . . , l + 1}. If α(H, P ′) ≤ l, then Xα(H,P) ∩ V (H) =
Xα(H,P ′) ∩ V (H) contains a vertex from I because P is I-connected. Otherwise α(H, P ′) = l + 1. Then clearly i = l + 1 and
H is a connected component of G[Xl+1]. By (S1), H contains a vertex from I . Thus, P ′ is I-connected. This justifies setting
T ab[s] = true.

Case 2: T ab[s] was set by jump extension. Let w = (X, {B S}S , { f B S }S), s = (X, {B S}S , {g B
S }S) and let S ′ ⊆ X be defined as in

the definition of the jump extension. To simplify the notation, set B′ := B(S ′) \ B S ′ = {H1, H2, . . . , Hm}. Observe that since
S ′ is a bottleneck, we have |B(S ′)| ≥ 2k + 1, thus there is at least one H ∈ B′ . Since V (H) � cover(w) and V (H) ⊆ cover(s)
by (J1) and (J3), we have |cover(w)| < |cover(s)| and thus w ≺ s. So, by the inductive assumption, T ab[w] was set properly
to be true and there exists an I-connected path decomposition P = (X1, X2, . . . , Xl) of G w with width at most k − 1,
where Xl = X = bag(w). By (J4), for every H ∈ B′ there is a path decomposition PH = (X H

1 , X H
2 , . . . , X H

l(H)
) of width at most

k − |X | − 1, such that X H
1 contains a neighbor of S ′ or a vertex in I , i.e., PH is

(
NG(S ′) ∩ V (H)

) ∪ I-connected.
We claim that

P ′ = P ◦
⎛
⎝

m∏
i=1

l(Hi)∏
j=1

(
Xl ∪ X Hi

j

)⎞
⎠ ◦ Xl,

where both ◦ and
∏

denote concatenation of appropriate sequences, is an I-connected path decomposition of Gs of width
at most k − 1.

First, observe that cover(s) = cover(w) ∪ ⋃
H∈B′ V (H) due to (J2) and (J3). By the definition of P and decompositions

PH for H ∈ B′ , we observe that P ′ covers exactly cover(s).
Now consider an edge vu of Gs . If both vertices v, u belong to cover(w), or to V (H) for some H ∈ B′ , then, by the

definition of P and PH , both v and u appear in some bag of the decomposition P ′ . If v ∈ cover(w) and u ∈ V (H) for some
H ∈ B′ , then we know that v ∈ border(w) and therefore v ∈ Xl , so both vertices appear in every bag containing u. Finally,
we observe that there are no edges joining vertices from different S ′-branches.

The third condition of the definition of path decomposition follows directly from the definition of P and PH and the
fact that subgraphs H are S ′-branches.

Observe that |Xi | ≤ k for i ≤ l (by the definition of P), and since |X H
j | ≤ k −|X | for every H and j, we have |X ∪ X H

j | ≤ k,
so width(P ′) ≤ k − 1.

Denote P ′ = (X1, . . . , Xl, Xl+1, . . . , Xl′). Consider any connected component H of G[X1 ∪ · · · ∪ Xi] for some i ∈ {1, . . . , l′}.
If i ≤ l, then H has a vertex from Xα(H,P ′) ∩I = Xα(H,P) ∩I as required. So, let i > l. If H is contained in some subgraph in
B′ , then by (J4),

(
NG(S ′) ∩ V (H)

) ∪ I-connected and hence H has a vertex from Xα(H,P ′) ∩ I . If H is not contained in any
subgraph from B′ , then again by (J4), H has a vertex in Xl . But then, by I-connectivity of P , H has a vertex in Xα(H,P ′) ∩I .
Thus, P ′ is I-connected.

This completes the proof. �

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100 99

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Combining Lemmas 9 and 10, we obtain the following corollary.

Corollary 2. The algorithm is correct, i.e., the value of T ab[s] is true for some state s with cover(s) = V (G) if and only if cpw(G) ≤
k − 1. �

Now let us estimate the computational complexity of our algorithm.

Lemma 11. For every fixed k ≥ 1, a graph G with n vertices, and I ⊆ V , there is an algorithm deciding in time f (k) · nO (k2) whether
G has an I-connected path decomposition of width at most k − 1, where f is a function depending on k only.

Proof. We do induction on k. First, observe that for a connected graph G , cpw(G) = 0 if and only if G is a single-vertex
graph. Moreover, cpw(G) = 1 if and only if G is a caterpillar, and optimal connected path decompositions of caterpillars
have very simple structure, so we can verify in polynomial time whether there is an I-connected one.

So assume that k ≥ 2 and that the claim holds for k − 1. For given G and I , we run the dynamic programming algorithm
that we described in Section 3. The correctness of the algorithm follows from Corollary 2. Now let us estimate its computa-
tional complexity. Recall that the total number of states is O (n3k), so the total number of pairs of states is O (n6k). For each
pair of states we check if one of the two extension rules can be applied.

Observe that for each state s, we can compute cover(s), bag(s) and border(s) in polynomial time. Thus checking if the
step extension can be applied can also be done in polynomial time.

Now consider the possible jump extension from a state w to a state s. Verifying the first three conditions can be clearly
done in polynomial time. We check in (J4) if the appropriate path decomposition PH of each S ′-branch H exists by calling
the algorithm recursively with the initial set

(
NG(S ′) ∩ V (H)

) ∪ I . By the inductive assumption, this can be done in total
time bounded by nO (1) · f ′(k − 1)nc·(k−1)2

, for some function f ′ and a constant c′ . This gives total time complexity

nO (1) · n6k · f ′(k − 1) · nc′(k−1)2 = f (k) · nO (k2)

for some function f . �
Now, the main result of the paper follows easily from Lemma 11.

Theorem 1. For every fixed k ≥ 1, there is an algorithm deciding in time f (k) · nO (k2) whether cpw(G) ≤ k − 1, for some function f
depending on k only, i.e., in time polynomial in n.

Proof. For every vertex s∗ ∈ V , we run the dynamic programming algorithm for I = {s∗}, i.e., we exhaustively guess a vertex
in the first bag of some fixed solution. By Lemma 11, the total running time is as claimed. �

Let us point out that we did not try to optimize the dependence of the degree of the polynomial function in Theorem 1
on k, as we were only interested in finding a polynomial algorithm.

5. Open problems

As pointed out, both pathwidth and connected pathwidth are asymptotically the same for an arbitrary graph G , namely
cpw(G)/pw(G) ≤ 2 + o(1). However, there are several open questions regarding the complexity of exact algorithms for
connected pathwidth. One such immediate question that is a natural next step in the context of our work is whether
connected pathwidth is FPT with respect to this parameter. We conjecture that this is indeed the case.

Conjecture 1. Determining whether a given graph with n vertices has connected pathwidth at most k can be done in time f (k) ·nO (1) ,
for some function f , i.e., the problem is FPT with respect to k.

Also, it is not known if connected pathwidth can be computed faster than in time O ∗(2n) for an arbitrary n-vertex graph
(recall that this is possible for pathwidth).

Finally, let us point out that the notion of connected pathwidth appeared in the context of pursuit-evasion games called
node search, edge search or mixed search. A challenging and long-standing open question related to those games is whether
their connected variants belong to NP. See [2] for more details regarding this question.

Acknowledgement

This research has been partially supported by National Science Centre (Poland) grant number 2015/17/B/ST6/01887.

http://mostwiedzy.pl

100 D. Dereniowski et al. / Theoretical Computer Science 794 (2019) 85–100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

References

[1] E. Amir, Approximation algorithms for treewidth, Algorithmica 56 (4) (2010) 448–479.
[2] L. Barrière, P. Flocchini, F. Fomin, P. Fraigniaud, N. Nisse, N. Santoro, D. Thilikos, Connected graph searching, Inf. Comput. 219 (2012) 1–16.
[3] L. Barrière, P. Fraigniaud, N. Santoro, D. Thilikos, Connected and Internal Graph Searching, Technical Report, UPC Barcelona, 2002.
[4] M.J. Best, A. Gupta, D.M. Thilikos, D. Zoros, Contraction obstructions for connected graph searching, Discrete Appl. Math. 209 (2016) 27–47.
[5] T.C. Biedl, T. Bläsius, B. Niedermann, M. Nöllenburg, R. Prutkin, I. Rutter, Using ILP/SAT to determine pathwidth, visibility representations, and

other grid-based graph drawings, in: 21st International Symposium on Graph Drawing (GD 2013), Bordeaux, France, September 23–25, 2013, 2013,
pp. 460–471, Revised Selected Papers.

[6] L. Blin, P. Fraigniaud, N. Nisse, S. Vial, Distributed chasing of network intruders, Theor. Comput. Sci. 399 (1–2) (2008) 12–37.
[7] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput. 25 (6) (1996) 1305–1317.
[8] H.L. Bodlaender, P.G. Drange, M.S. Dregi, F.V. Fomin, D. Lokshtanov, M. Pilipczuk, A ckn 5-approximation algorithm for treewidth, SIAM J. Comput. 45 (2)

(2016) 317–378.
[9] H.L. Bodlaender, F.V. Fomin, A.M.C.A. Koster, D. Kratsch, D.M. Thilikos, A note on exact algorithms for vertex ordering problems on graphs, Theory

Comput. Syst. 50 (3) (2012) 420–432.
[10] H.L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, J. Algorithms 21 (2) (1996) 358–402.
[11] P. Borowiecki, D. Dereniowski, L. Kuszner, Distributed graph searching with a sense of direction, Distrib. Comput. 28 (3) (2015) 155–170.
[12] V. Bouchitté, I. Todinca, Treewidth and minimum fill-in: grouping the minimal separators, SIAM J. Comput. 31 (1) (2001) 212–232.
[13] D. Coudert, A Note on Integer Linear Programming Formulations for Linear Ordering Problems on Graphs, Technical Report, Inria; I3S; Universite Nice

Sophia Antipolis; CNRS, 2016.
[14] D. Coudert, D. Mazauric, N. Nisse, Experimental evaluation of a branch-and-bound algorithm for computing pathwidth and directed pathwidth, ACM J.

Exp. Algorithmics 21 (1) (2016) 1.3.
[15] D. Dereniowski, Connected searching of weighted trees, Theor. Comput. Sci. 412 (2011) 5700–5713.
[16] D. Dereniowski, From pathwidth to connected pathwidth, SIAM J. Discrete Math. 26 (4) (2012) 1709–1732.
[17] D. Dereniowski, W. Kubiak, Y. Zwols, The complexity of minimum-length path decompositions, J. Comput. Syst. Sci. 81 (8) (2015) 1715–1747.
[18] J.A. Ellis, I.H. Sudborough, J.S. Turner, Graph separation and search number, in: Proc. of the 21st Allerton Conference on Communication Control and

Computing, 1983.
[19] U. Feige, M. Hajiaghayi, J.R. Lee, Improved approximation algorithms for minimum weight vertex separators, SIAM J. Comput. 38 (2) (2008) 629–657.
[20] P. Flocchini, M. Huang, F. Luccio, Contiguous search in the hypercube for capturing an intruder, in: Proc. 19th IEEE International Parallel and Distributed

Processing Symposium (IPDPS 2005), IEEE Computer Society, Washington, DC, USA, 2005, p. 62.
[21] F. Fomin, D. Thilikos, I. Todinca, Connected graph searching in outerplanar graphs, Electron. Notes Discrete Math. 22 (2005) 213–216.
[22] F.V. Fomin, Complexity of connected search when the number of searchers is small, in: Open Problems of GRASTA 2017: The 6th Workshop on GRAph

Searching, Theory and Applications, 2017.
[23] F.V. Fomin, D.M. Thilikos, An annotated bibliography on guaranteed graph searching, Theor. Comput. Sci. 399 (3) (2008) 236–245.
[24] P. Fraigniaud, N. Nisse, Connected treewidth and connected graph searching, in: Proc. 7th Latin American Theoretical Informatics Symposium (LATIN

2006), Valdivia, Chile, 2006, pp. 479–490.
[25] P. Fraigniaud, N. Nisse, Monotony properties of connected visible graph searching, Inf. Comput. 206 (12) (2008) 1383–1393.
[26] M. Fürer, Faster computation of path-width, in: Proc. 27th International Workshop on Combinatorial Algorithms (IWOCA 2016), Helsinki, Finland,

August 17–19, 2016, 2016, pp. 385–396.
[27] D. Ilcinkas, N. Nisse, D. Soguet, The cost of monotonicity in distributed graph searching, Distrib. Comput. 22 (2) (2009) 117–127.
[28] L.M. Kirousis, C.H. Papadimitriou, Searching and pebbling, Theor. Comput. Sci. 47 (1986) 205–218.
[29] K. Kitsunai, Y. Kobayashi, K. Komuro, H. Tamaki, T. Tano, Computing directed pathwidth in o(1.89n) time, in: Proc. 7th International Symposium on

Parameterized and Exact Computation (IPEC 2012), Ljubljana, Slovenia, September 12–14, 2012, 2012, pp. 182–193.
[30] J. Lagergren, Efficient parallel algorithms for graphs of bounded tree-width, J. Algorithms 20 (1) (1996) 20–44.
[31] N. Nisse, Connected graph searching in chordal graphs, Discrete Appl. Math. 157 (12) (2008) 2603–2610.
[32] N. Nisse, D. Soguet, Graph searching with advice, Theor. Comput. Sci. 410 (14) (2009) 1307–1318.
[33] T. Parsons, Pursuit-evasion in a graph, in: Theory and Applications of Graphs, in: Lecture Notes in Mathematics, vol. 642, Springer, 1978, pp. 426–441.
[34] B.A. Reed, Finding approximate separators and computing tree width quickly, in: Proc. 24th Annual ACM Symposium on Theory of Computing (STOC

1992), May 4–6, 1992, Victoria, British Columbia, Canada, 1992, pp. 221–228.
[35] N. Robertson, P.D. Seymour, Graph minors. I. Excluding a forest, J. Comb. Theory, Ser. B 35 (1) (1983) 39–61.
[36] N. Robertson, P.D. Seymour, Graph minors. XX. Wagner’s conjecture, J. Comb. Theory, Ser. B 92 (2) (2004) 325–357.
[37] K. Suchan, Y. Villanger, Computing pathwidth faster than 2n , in: Proc. 4th International Workshop on Parameterized and Exact Computation (IWPEC

2009), Copenhagen, Denmark, September 10–11, 2009, 2009, pp. 324–335, Revised Selected Papers.
[38] A. Takahashi, S. Ueno, Y. Kajitani, Mixed searching and proper-path-width, Theor. Comput. Sci. 137 (2) (1995) 253–268.
[39] B. Yang, D. Dyer, B. Alspach, Sweeping graphs with large clique number, Discrete Math. 309 (18) (2009) 5770–5780.

http://refhub.elsevier.com/S0304-3975(19)30212-9/bib416D69723130s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib424646464E53543132s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib636F6E6E65637465645F616E645F696E7465726E616Cs1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib4265737447545A3136s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426965646C424E4E50523133s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426965646C424E4E50523133s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426965646C424E4E50523133s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426C696E464E563038s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426F646C61656E6465723936s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426F646C61656E6465724444464C503136s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426F646C61656E6465724444464C503136s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426F646C61656E646572464B4B543132s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426F646C61656E646572464B4B543132s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426F646C61656E6465724B3936s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib426F726F776965636B69444B3135s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib44424C503A6A6F75726E616C732F7369616D636F6D702F426F75636869747465543031s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib436F75646572743136s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib436F75646572743136s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib436F75646572744D4E3136s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib436F75646572744D4E3136s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib446572656E696F77736B693131s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib446572656E696F77736B6931325349444D41s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib444552454E494F57534B493230313531373135s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib456C6C697353543833s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib456C6C697353543833s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib4665696765484C3038s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib46484C3035s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib46484C3035s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib636F6E6E65637465645F6F75746572706C616E6172s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib666F6D696E5175657374696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib666F6D696E5175657374696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib46543038s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib464E3036s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib464E3036s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib464E3038s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib46757265723136s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib46757265723136s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib494E533039s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib736561726368696E67506562626C696E67s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib4B697473756E61694B4B54543132s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib4B697473756E61694B4B54543132s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib4C616765726772656E3936s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib4E697373653038s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib4E533039s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib506172736F6E735075727375697445766173696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib526565643932s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib526565643932s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib526F62657274736F6E533833s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib526F62657274736F6E533034s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib53756368616E563039s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib53756368616E563039s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib74616B616861736869313939356D69786564s1
http://refhub.elsevier.com/S0304-3975(19)30212-9/bib5944413039s1
http://mostwiedzy.pl

	Finding small-width connected path decompositions in polynomial time
	1 Introduction
	1.1 Related work
	1.2 Motivation
	1.3 Outline

	2 Deﬁnitions
	3 The algorithm
	3.1 States
	3.2 Extension rules
	3.3 Summing up

	4 The analysis
	5 Open problems
	Acknowledgement
	References

