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FINITE DIFFERENCE APPROXIMATIONS FOR NONLINEAR

FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

by Anna Baranowska and Zdzis law Kamont

Abstract. Classical solutions of nonlinear partial differential equations are
approximated in the paper by solutions of quasilinear systems of difference
equations. Sufficient conditions for the convergence of the method are
given. The proof of the stability of the difference problem is based on a
comparison method.

This new approach to the numerical solving of nonlinear equations
is generated by a linearization method for initial problems. Numerical
examples are given.

1. Difference systems corresponding to nonlinear equations. For
any metric spaces X and Y we denote by C(X,Y ) the class of all contin-
uous functions from X into Y . We will use vectorial inequalities with the
understanding that the same inequalities hold between their corresponding
components. Let E be the Haar pyramid

E = { (t, x) = (t, x1, . . . , xn) ∈ R1+n : t ∈ [0, a], −b+Mt ≤ x ≤ b−Mt }
where a > 0, M = (M1, . . . ,Mn) ∈ Rn

+, R+ = [0,+∞), b = (b1, . . . , bn) ∈ Rn

and b ≥ Ma. Write Ω = E × R × Rn and suppose that f : Ω → R is a given
function of the variables (t, x, p, q), q = (q1, . . . , qn). We consider the nonlinear
first order partial differential equation

(1) ∂tz(t, x) = f( t, x, z(t, x), ∂xz(t, x) )

with the initial condition

(2) z(0, x) = ϕ(x), x ∈ [−b, b],
where ϕ : [−b, b] → R is a given function and ∂xz = (∂x1z, . . . , ∂xnz). We are
interested in the construction of a method for the approximation of solutions
to problem (1), (2) with solutions of associated difference equations and in the
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estimation of the difference between these solutions. The classical difference
methods for nonlinear partial differential equations consist in replacing partial
derivatives with difference expressions. Then, under suitable assumptions on
given functions and on the mesh, solutions of difference equations approximate
solutions of the original problem.

Let N and Z be the sets of natural numbers and integers, respectively. For
x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), we write

x � y = (x1y1, . . . , xnyn) ∈ Rn, ‖x‖ =
n∑

i=1

|xi|.

We define a mesh on the set E in the following way. Suppose that (h0, h
′)

where h′ = (h1, . . . , hn) stand for steps of the mesh. For h = (h0, h
′) and

(i,m) ∈ Z1+n where m = (m1, . . . ,mn), we define nodal points as follows:

t(i) = ih0, x(m) = m � h′, x(m) = (x(m1)
1 , . . . , x(mn)

n ).

Denote by ∆ the set of all h = (h0, h
′) such that there is N = (N1, . . . , Nn) ∈

Nn with the property N � h′ = b. We assume that ∆ 6= ∅ and that there is a
sequence {h(j) }, h(j) ∈ ∆, such that limj→∞ h(j) = 0. There is N0 ∈ N such
that N0h0 ≤ a < (N0 + 1)h0. Let

R1+n
h = { (t(i), x(m)) : (i,m) ∈ Z1+n }

and

Eh = E ∩R1+n
h , E′h = { (t(i), x(m)) ∈ Eh : (t(i) + h0, x

(m)) ∈ Eh },

E0.h = {x(m) : −N ≤ m ≤ N }, Ih = { t(i) : 0 ≤ i ≤ N0 }.
For a function z : Eh → R and for a point (t(i), x(m)) ∈ Eh we write z(i,m) =
z(t(i), x(m)). For 1 ≤ j ≤ n we put ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, 1 standing
on the j-th place. We define difference operators δ0, δ = (δ1, . . . , δn) in the
following way. For z : Eh → R we put

(3) δ0z
(i,m) =

1
h0

(
z(i+1,m) − z(i,m)

)
,

(4) δjz
(i,m) =

1
hj

(
z(i,m+ej) − z(i,m)

)
, 1 ≤ j ≤ κ,

(5) δjz
(i,m) =

1
hj

(
z(i,m) − z(i,m−ej)

)
, κ+ 1 ≤ j ≤ n,

where 0 ≤ κ ≤ n is fixed. If κ = 0 then δ is given by (5), for κ = n, δ is defined
by (4). Write

δz(i,m) = ( δ1z(i,m), . . . , δnz
(i,m) ).
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Suppose that problem (1), (2) is solved numerically by the difference method

(6) δ0z
(i,m) = f( t(i), x(m), z(i,m), δz(i,m) ),

(7) z(0,m) = ϕ
(m)
h , x(m) ∈ E0.h,

where ϕh : E0.h → R is a given function. If we assume that h′ ≤ h0M
then the set Eh has the following property: if (t(i), x(m)) ∈ E′h then
(t(i), x(m+ej)), (t(i), x(m−ej)) ∈ Eh for 1 ≤ j ≤ n and consequently, there exists
exactly one solution zh : Eh → R of problem (6), (7). Sufficient conditions for
the convergence of the method (6), (7) to a solution of (1), (2) are given in the
following theorem.

Theorem 1.1. Suppose that
1) f ∈ C(Ω, R) and the derivatives ( ∂q1f, . . . , ∂qnf ) = ∂qf exist on Ω and

∂qf ∈ C(Ω, Rn),
2) there is A ∈ R+ such that

(8) | f(t, x, p, q)− f(t, x, p̄, q) | ≤ A|p− p̄| on Ω,

3) h ∈ ∆, h′ ≤ h0M and

1− h0

n∑
j=1

1
hj

∣∣ ∂qjf(P )
∣∣ ≥ 0

where P = (t, x, p, q) and

(9) ∂qjf(P ) ≥ 0 for 1 ≤ j ≤ κ, ∂qjf(P ) ≤ 0 for κ+ 1 ≤ j ≤ n,

4) v : E → R is a solution of (1), (2), v is of class C1 and there is a
function α0 : ∆ → R+ such that

|ϕ(m) − ϕ
(m)
h | ≤ α0(h) on E0.h and lim

h→0
α0(h) = 0,

5) zh : Eh → R is a solution of (6), (7).
Under these assumptions there is a function α : ∆ → R+ such that

(10) | v(i,m) − z
(i,m)
h | ≤ α(h) on Eh and lim

h→0
α(h) = 0.

The above theorem is a consequence of results presented in [1]–[3], see also
[4]. Note that the Lipschitz condition (8) may be replaced in the theorem by
a nonlinear estimate of the Perron type.

The following condition is important in these considerations. Write

(11) sign ∂qf = ( sign ∂q1f, . . . , sign ∂qnf ) .

We have assumed in Theorem 1.1 that function (11) is constant on Ω.
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Remark 1.2. Suppose that all the assumptions of Theorem 1.1 are satisfied
and

1) the solution v : E → R of (1), (2) is of class C2 and c̃ ∈ R+ is such a
constant that

|∂xjv(t, x)| ≤ c̃, |∂ttv(t, x)| ≤ c̃, |∂xjxjv(t, x)| ≤ c̃, 1 ≤ j ≤ n,

where (t, x) ∈ E,
2) there is A0 ∈ R+such that ‖∂qf(t, x, p, q)‖ ≤ A0 on Ω.
Then we have the following error estimate for the method (6), (7):

(12) |v(i,m) − z
(i,m)
h | ≤ ᾱ(h) on Eh

where

ᾱ(h) = α0(h)eAa + h0
c̃

2
(1 +A0M?) θ(A), M? = max {Mi : 1 ≤ i ≤ n },

and

θ(A) =
eAa − 1
A

if A > 0, θ(A) = a if A = 0.

The above result can be proved by the methods used in [1]–[2].
Consider now another difference method for problem (1), (2). Let the

operators δ0, δ = (δ1, . . . , δn) be defined by

δ0z
(i,m) =

1
h0

(
z(i+1,m) −Dz(i,m)

)
,

Dz(i,m) =
1
2n

n∑
j=1

(
z(i,m+ej) + z(i,m−ej)

)
,

(13)

(14) δjz
(i,m) =

1
2hj

(
z(i,m+ej) − z(i,m−ej)

)
, 1 ≤ j ≤ n,

where (t(i), x(m)) ∈ E′h and z : Eh → R. Consider difference problem (6), (7)
with δ0 and δ given by (13), (14).

Theorem 1.3. Suppose that conditions 1), 2) of Theorem 1.1 are satisfied
and

1) h ∈ ∆, h′ ≤ h0M and for P = (t, x, p, q) ∈ Ω we have
1
n
− h0

hj

∣∣ ∂qjf(P )
∣∣ ≥ 0, 1 ≤ j ≤ n,

2) v : E → R is a solution of (1), (2), v is of class C1 and there is a
function α0 : ∆ → R+ such that |ϕ(m) − ϕ

(m)
h | ≤ α0(h) on E0.hand

limh→0 α0(h) = 0,
3) zh : Eh → R is a solution of (6), (7) with δ0, δ given by (13), (14).
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Then there is a function α : ∆ → R+ such that condition (10) is satisfied.

This theorem can be proved with use of the methods presented in [1], [4].

Remark 1.4. Suppose that all the assumtions of Theoren 1.3 are satisfied
and the solution v : E → of (1), (2) is of class C2. Then we have the following
error estimate for the method: there are c0, c1 ∈ R+ such that

|v(i,m) − z
(i,m)
h | ≤ c0α0(h) + c1 h0 on Eh.

Now we formulate a new class of difference problems corresponding to (1),
(2). We transform the nonlinear differential equation into a quasilinear system
of difference equations. We will use a linearization method for equation (1)
with respect to the last variable. We omit the condition that function (11) is
constant on Ω and we consider difference operators of the form (3)–(5). We
will need the following assumption.

Assumption H0[f ]. Suppose that f ∈ C(Ω, R) and the derivatives

∂xf = (∂x1f, . . . , ∂xnf), ∂pf, ∂qf = (∂q1f, . . . , ∂qnf)

exist on Ω and ∂xf, ∂qf ∈ C(Ω, Rn), ∂pf ∈ C(Ω, R).
Denote by (z, u), u = (u1, . . . , un) the unknown functions of the variables

(t(i), x(m)). Write u(i,m) = (u(i,m)
1 , . . . , u

(i,m)
n ) and

P (i,m)[z, u] =
(
t(i), x(m), z(i,m), u(i,m)

)
.

We consider the system of difference equations

(15) δ0z
(i,m) = f(P (i,m)[z, u] ) +

n∑
j=1

∂qjf(P (i,m)[z, u] )
(
δjz

(i,m) − u
(i,m)
j

)
,

δ0u
(i,m)
r = ∂xrf(P (i,m)[z, u] ) + ∂pf(P (i,m)[z, u] )u(i,m)

r

+
n∑

j=1

∂qjf(P (i,m)[z, u] ) δju(i,m)
r , r = 1, . . . , n,

(16)

with the initial condition

(17) z(0,m) = ϕ
(m)
h , u(0,m) = ψ

(m)
h , −N ≤ m ≤ N,

where ϕh : E0.h → R and ψh = (ψh.1, . . . , ψh.n) : E0.h → Rn are given functions.
The operators δ0 and δ = (δ1, . . . , δn) are defined now in the following way. If
the functions z and u = (u1, . . . , un) are calculated on the set Eh∩( [0, t(i)]×Rn )
then we put

(18) δ0z
(i,m) =

1
h0

(
z(i+1,m) − z(i,m)

)
.
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The difference operators with respect to the spatial variables are given in the
following way:

(19) δjz
(i,m) =

1
hj

(
z(i,m+ej) − z(i,m)

)
if ∂qjf(P (i,m)[z, u] ) ≥ 0,

and

(20) δjz
(i,m) =

1
hj

(
z(i,m) − z(i,m−ej)

)
if ∂qjf(P (i,m)[z, u] ) < 0,

where j = 1, . . . , n. The difference expressions

δ0u
(i,m)
r , ( δ1u(i,m)

r , . . . , δnu
(i,m)
r ), 1 ≤ r ≤ n,

are defined in the same way.
Note that if h′ ≤ h0M then there exists exactly one solution (zh, uh),

zh : Eh → R, uh = (uh.1, . . . , uh.n) : Eh → Rn, of problem (15)–(20).
It is essential in our considerations that we approximate solutions of nonlin-

ear problem (1), (2) with solutions of the quasilinear difference system. More
precisely: we will use (15)–(17) for approximation of the solution v : E → R of
problem (1), (2) and the derivative ∂xv : E → Rn.

System (15), (16) is obtained in the following way. We first introduce
an additional unknown function u = ∂xz, u = (u1, . . . , un) in (1). Then we
consider the following linearization of (1) with respect to u:

(21) ∂tz(t, x) = f(U ) +
n∑

j=1

∂qjf(U )
(
∂xjz(t, x)− uj(t, x)

)
,

where U = (t, x, z(t, x), u(t, x)). By differentiating equation (1) with respect to
xr, 1 ≤ r ≤ n, we get the differential system in the unknown function u :

∂tur(t, x) = ∂xrf(U ) + ∂pf(U )ur(t, x) +
n∑

j=1

∂qjf(U ) ∂xjur(t, x),

1 ≤ r ≤ n.

(22)

Assume that ∂xϕ = ( ∂x1ϕ, . . . , ∂xnϕ ) exists on [−b, b]. It is natural to consider
the following initial condition for system (21), (22):

(23) z(0, x) = ϕ(x), u(0, x) = ∂xϕ(x), x ∈ [−b, b].

Difference problem (15)–(17) is a discretization of system (21), (22) with initial
condition (23). In our approach, the discretization method for system (21),
(22) depends on the point of the mesh and on the previous values of z and u.
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2. Convergence of difference methods. We will denote by F(X,Y )
the class of all functions defined on X and taking values in Y , X and Y being
arbitrary sets. We will need the following assumption throughout the paper.

Assumption H[f ]. Suppose that Assumption H0[f ] is satisfied and
1) there is A ∈ R+ such that

‖ ∂xf(P ) ‖, | ∂pf(P )|, ‖ ∂qf(P ) ‖ ≤ A on Ω

where P = (t, x, p, q),
2) there is B ∈ R+ such that the terms

‖ ∂xf(t, x, p, q)− ∂xf(t, x, p̄, q̄) ‖, | ∂pf(t, x, p, q)− ∂pf(t, x, p̄, q̄) |,

‖ ∂qf(t, x, p, q)− ∂qf(t, x, p̄, q̄) ‖
are bounded from above by B [ |p− p̄|+ ‖q − q̄‖ ] .

Theorem 2.1. Suppose that Assumption H[f ] is satisfied and
1) h ∈ ∆, h′ ≤ h0M and for P = (t, x, p, q) ∈ Ω we have

(24) 1− h0

n∑
j=1

1
hj

∣∣ ∂qjf(P )
∣∣ ≥ 0,

2) the function ϕ : [−b, b] → R is of class C2 and v : E → R is the solution
of (1), (2) and v is of class C2 on E,

3) (zh, uh) = (zh, uh.1, . . . , uh.n) : Eh → R1+n is the solution of problem
(15)–(20) and there is α0 : ∆ → R such that

|ϕ(m) − ϕ
(m)
h |+ ‖∂xϕ

(m) − ψ
(m)
h ‖ ≤ α0(h), −N ≤ m ≤ N,

and limh→0 α0(h) = 0.
Then there is a function α : ∆ → R+ such that

|v(i,m) − z
(i,m)
h |+ ‖ ∂xv

(i,m) − u
(i,m)
h ‖ ≤ α(h) on Eh

and limh→0 α(h) = 0.

Proof. Write w = ∂xv and w = (w1, . . . , wn). Then the functions
(v, w) : E → R1+n are the solution of problem (21)–(23). Let the functions

Γh.0 : E′h → R, Γh : E′h → Rn, Γh = (Γh.1, . . . ,Γh.n )

Λh.0 : E′h → R, Λh : E′h → Rn, Λh = (Λh.1, . . . ,Λh.n )
be defined by

Γ(i,m)
h.0 = δ0v

(i,m) − ∂tv
(i,m)

+
n∑

j=1

∂qjf(P (i,m)[v, w] )
[
∂xjv

(i,m) − δjv
(i,m)

]
,

(25)
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Γ(i,m)
h.r = δ0w

(i,m)
r − ∂tw

(i,m)
r

+
n∑

j=1

∂qjf(P (i,m)[v, w] )
[
∂xjw

(i,m)
r − δjw

(i,m)
r

]
, r = 1, . . . , n,

(26)

and

Λ(i,m)
h.0 = f(P (i,m)[v, w] )− f(P (i,m)[zh, uh] )

−
n∑

j=1

∂qjf(P (i,m)[v, w] )w(i,m)
j +

n∑
j=1

∂qjf(P (i,m)[zh, uh] )u(i,m)
h.j

+
n∑

j=1

[
∂qjf(P (i,m)[v, w] )− ∂qjf(P (i,m)[zh, uh] )

]
δjv

(i,m),

(27)

Λ(i,m)
h.r = ∂xrf(P (i,m)[v, w] ) + ∂pf(P (i,m)[v, w] )w(i,m)

r

− ∂xrf(P (i,m)[zh, uh] )− ∂pf(P (i,m)[zh, uh] )u(i,m)
h.r

+
n∑

j=1

[
∂qjf(P (i,m)[v, w] )− ∂qjf(P (i,m)[zh, uh] )

]
δjw

(i,m)
r ,

r = 1, . . . , n.

(28)

Write
ξ
(i,m)
h = v(i,m) − z

(i,m)
h ,

λ
(i,m)
h = w(i,m) − u

(i,m)
h , λ

(i,m)
h =

(
λ

(i,m)
h.1 , . . . , λ

(i,m)
h.n

)
.

It follows from (15), (16) and from (21), (22) that ξh and λh satisfy the differ-
ence equations

ξ
(i+1,m)
h = ξ

(i,m)
h + h0

n∑
j=1

∂qjf(P (i,m)[zh, uh] ) δjξ
(i,m)
h

+ h0

[
Γ(i,m)

h.0 + Λ(i,m)
h.0

]
,

(29)

and

λ
(i+1,m)
h.r = λ

(i,m)
h.r + h0

n∑
j=1

∂qjf(P (i,m)[zh, uh] ) δjλ
(i,m)
h.r

+ h0

[
Γ(i,m)

h.r + Λ(i,m)
h.r

]
, r = 1, . . . , n.

(30)
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Let ωh.0, ωh : Ih → R be the functions defined by

(31) ω
(i)
h.0 = max { |ξ(i,m)

h | : (t(i), x(m)) ∈ Eh },

(32) ω
(i)
h = max { ‖λ(i,m)

h ‖ : (t(i), x(m)) ∈ Eh },
where 0 ≤ i ≤ N0. We will write a difference inequality for the function
ωh.0 + ωh. Put

J+[i,m] = { j ∈ {1, . . . , n} : ∂qjf(P (i,m)[zh, uh] ) ≥ 0 },

J−[i,m] = { 1, . . . , n } \ J+[i,m].
Consider the operator Wh : F(Eh, R) → F(E′h, R) defined by

Wh[ξ](i,m) = ξ(i,m)

 1− h0

n∑
j=1

1
hj

∣∣∣∂qjf(P (i,m)[zh, uh] )
∣∣∣


+ h0

∑
j∈J+[i,m]

1
hj
∂qjf(P (i,m)[zh, uh] ) ξ(i,m+ej)

− h0

∑
j∈J−[i,m]

1
hj
∂qjf(P (i,m)[zh, uh] ) ξ(i,m−ej)

where ξ ∈ F(Eh, R) and (t(i), x(m)) ∈ E′h. It follows from (19), (20) and (29),
(30) that

(33) ξ
(i+1,m)
h = Wh[ξh](i,m) + h0

[
Λ(i,m)

h.0 + Γ(i,m)
h.0

]
, (t(i), x(m)) ∈ E′h.

For the function λh = (λh.1, . . . , λh.n) we write

Wh[λh](i,m) =
(
Wh[λh.1](i,m), . . . ,Wh[λh.n](i,m)

)
.

According to (30) and the definition of the difference operators (δ1, . . . , δn) we
have

(34) λ
(i+1,m)
h = Wh[λh](i,m) + h0

[
Λ(i,m)

h + Γ(i,m)
h

]
, (t(i), x(m)) ∈ E′h.

We conclude from Assumption H[f ] and from condition 2) of the theorem that
there are functions γ0, γ : ∆ → R+ and a constant c̃ ∈ R+ such that

(35) |Γ(i,m)
h.0 | ≤ γ0(h), ‖Γ(i,m)

h ‖ ≤ γ(h), (t(i), x(m)) ∈ E′h,
and

(36) ‖ ∂xjv(t, x) ‖ ≤ c̃, |∂xjxrv(t, x)| ≤ c̃, (t, x) ∈ E, j, r = 1, . . . , n,

where
lim
h→0

γ0(h) = 0, lim
h→0

γ(h) = 0.
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According to Assumption H[f ] and (31), (32) we have

(37)
∣∣∣ Λ(i,m)

h.0

∣∣∣ ≤ (A+ 2c̃B)
[
ω

(i)
h.0 + ω

(i)
h

]
+Aω

(i)
h ,

(38) ‖Λ(i,m)
h ‖ ≤ B(1 + 2c̃)

[
ω

(i)
h.0 + ω

(i)
h

]
+Aω

(i)
h ,

where (t(i), x(m)) ∈ E′h. We conclude from (24) and from (19), (20) that

(39) |Wh[ξh](i,m)| ≤ ω
(i)
h.0, (t(i), x(m)) ∈ E′h,

and

‖Wh[λh](i,m)‖ ≤

 1− h0

n∑
j=1

1
hj

∣∣∣ ∂qjf(P (i,m)[zh, uh] )
∣∣∣
 ‖λ(i,m)

h ‖

+ h0

∑
j∈J+[i,m]

1
hj
∂qjf(P (i,m)[zh, uh] ) ‖λ(i,m+ej)

h ‖

− h0

∑
j∈J−[i,m]

1
hj
∂qjf(P (i,m)[zh, uh] ) ‖λ(i,m−ej)

h ‖ ≤ ω
(i)
h ,

(40)

where (t(i), x(m)) ∈ E′h. It follows from (33) and from Assumption H[f ] that

(41) ω
(i+1)
h.0 ≤ ω

(i)
h.0 [1 + h0(A+ 2c̃B)] + 2h0(A+ c̃B)ω(i)

h + h0γ0(h),

where 0 ≤ i ≤ N0 − 1. In a similar way we obtain the difference inequality

(42) ω
(i+1)
h ≤ ω

(i)
h [1 + h0B(1 + 2c̃) + h0A] + h0B(1 + 2c̃)ω(i)

h.0 + h0γ(h),

where 0 ≤ i ≤ N0−1. Write C = B+3A+4c̃B. It follows from (41), (42) that
the difference inequality

ω
(i+1)
h.0 + ω

(i+1)
h ≤

(
ω

(i)
h.0 + ω

(i)
h

)
(1 + h0C) + h0 [γ0(h) + γ(h)] ,

i = 0, 1, . . . , N0 − 1,

is satisfied. This gives

(43) ω
(i)
h.0 + ω

(i)
h ≤ α(h), i = 0, 1, . . . , N0,

with

(44) α(h) = α0(h)eCa + [γ0(h) + γ(h)]
eCa − 1
C

if C > 0,

(45) α(h) = α0(h) + [γ0(h) + γ(h)] a if C = 0.

This completes the proof of the theorem.

Now we formulate a result on the error estimate for method (15)–(20).
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Lemma 2.2. Suppose that all the assumptions of Theorem 2.1 are satisfied
and

1) the solution v : E → R of (1), (2) is of class C3 on E,
2) the constant c̃ ∈ R+ is such that

|∂xjv(t, x)|, |∂xixjv(t, x)|, |∂ttv(t, x)|, |∂ttxjv(t, x)|, |∂xixjxrv(t, x)| ≤ c̃,

where (t, x) ∈ E and i, j, r = 1, . . . , n.
Then

(46) |v(i,m) − z
(i,m)
h |+ ‖∂xv

(i,m) − u
(i,m)
h ‖ ≤ α̃(h)

on Eh where

α̃(h) = α0(h)eaC + γ̃(h0)
eaC − 1
C

if C > 0,

α̃(h) = α0(h) + aγ̃(h0) if C = 0,

and
C = B + 3A+ 4Bc̃, γ̃(h0) = h0c̃ [1 +A M?].

Proof. It follows from assumption 2) that estimates (35) hold with

γ0(h) = γ(h) =
1
2
γ̃(h0).

Then we obtain the lemma from inequalities (43).

Remark 2.3. If we apply method (6), (7) to solve problem (1), (2) numer-
ically, then we approximate derivatives with respect to spatial variables with
difference expressions which are calculated with use of the previous values of
the approximate solution. If we use method (15)–(17) then we approximate
the spatial derivatives of z with using adequate difference equations which are
generated by the original problem. Therefore numerical results obtained by
(15)–(17) are better than those obtained by method (6), (7).

Remark 2.4. Results on the error estimates for methods (6), (7) and (15)–
(17) can be characterized as follows. In (12) and (46) we have estimated the
terms

|v(i,m) − z
(i,m)
h | and |v(i,m) − z

(i,m)
h |+ ‖∂xv

(i,m) − u
(i,m)
h ‖,

respectively. The functions ᾱ and α̃ in (12) and (46) are similar. Therefore,
numerical results obtained by (15)–(17) for initial problem (1), (2) are better
that those obtained by (6), (7).

We illustrate the above properties of difference methods by a numerical example.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


26

Now we consider the system of difference equations (15), (16) with opera-
tors δ0 and δ = (δ1, . . . , δn) defined by (13), (14) where (t(i), x(m)) ∈ E′h and
z : Eh → R. The difference expressions

δ0u
(i,m)
r , ( δ1u(i,m)

r , . . . , δnu
(i,m)
r ), 1 ≤ r ≤ n,

are defined in the same way.

Theorem 2.5. Suppose that Assumption H[f ] is satisfied and
1) h ∈ ∆, h′ ≤ h0M and for P = (t, x, p, q) ∈ Ω we have

(47)
1
n
− h0

hj

∣∣ ∂qjf(P )
∣∣ ≥ 0, 1 ≤ j ≤ n,

2) the function ϕ : [−b, b] → R is of class C2 and v : E → R is the solution
of (1), (2) and v is of class C2 on E,

3) (zh, uh) = (zh, uh.1, . . . , uh.n) : E → R1+n is the solution of problem
(15)–(17) with δ0 and δ given by (13), (14),

4) there is α0 : ∆ → R+ such that

|ϕ(m) − ϕ
(m)
h |+ ‖∂xϕ

(m) − ψ
(m)
h ‖ ≤ α0(h), −N ≤ m ≤ N,

and limh→0 α0(h) = 0.
Then there is α : ∆ → R+ such that

|v(i,m) − z
(i,m)
h |+ ‖ ∂xv

(i,m) − u
(i,m)
h ‖ ≤ α(h) on Eh

and limh→0 α(h) = 0.

Proof. Write w = ∂xv, w = (w1, . . . , wn). Then the functions (v, w) : E →
Rn satisfy (21)–(23). Let the functions

Γh.0, Γh = ( Γh.1, . . . ,Γh.n ) , Λh.0, Λh = ( Λh.1, . . . ,Λh.n ) ,

be defined by (25)–(28) with δ0 and δ = (δ1, . . . , δn given by (13), (14). Write

ξ
(i,m)
h = v(i,m) − z

(i,m)
h ,

λ
(i,m)
h = w(i,m) − u

(i,m)
h , λ

(i,m)
h =

(
λ

(i,m)
h.1 , . . . , λ

(i,m)
h.n

)
.

Suppose that the functions ωh.0, ωh : Ih → R+ are defined by (31), (32) and
the operator Wh : F(Eh, R) → F(E′h, R) is given in the following way:

Wh[ξ](i,m) =
1
2

n∑
j=1

[
1
n

+
h0

hj
∂qjf(P (i,m)[zh, uh] )

]
ξ(i,m+ej)

+
1
2

n∑
j=1

[
1
n
− h0

hj
∂qjf(P (i,m)[zh, uh] )

]
ξ(i,m−ej),
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where ξ ∈ F(Eh, R) and (t(i), x(m)) ∈ E′h. It follows that relations (33), (34),
(39), (40) are satisfied with the above given Wh and we get the difference
inequality

ω
(i+1)
h.0 + ω

(i+1)
h ≤ (ω(i)

h.0 + ω
(i)
h )(1 + h0C) + h0[γ0(h) + γ(h)], 0 ≤ i ≤ N0 − 1,

with γ0, γ, c̃ satisfying (35), (36) and C = B + 3A+ 4c̃B. Then estimate (43)
is satisfied with α defined by (44), (45). This completes the proof.

It it easy to formulate a result on the error estimate for the method under
the additional assumption that the solution of (1), (2) is of class C3 on E.

In the results on error estimates we need estimates for the derivatives of
the solution v of problem (1), (2). One may obtain them by the method of
differential inequalities, see [5], Chapter VII.

3. Numerical examples. Let n = 1 and

E = { (t, x) ∈ R2 : t ∈ [0, 1], |x| ≤ 2− 2t }.

Consider the differential equation

(48) ∂tz(t, x) =
1
2

sin( 1 + ∂xz(t, x) ) + f(t, x)

with the initial condition

(49) z(0, x) = 0, x ∈ [−2, 2],

where

f(t, x) = 1 + x3 − 1
2

sin ( 1 + 3x2t ).

The exact solution of this problem is v(t, x) = t(1+x3), (t, x) ∈ E. The classical
difference method for (48), (49) has the form

z(i+1,m) =
1
2

[
z(i,m+1) + z(i,m−1)

]
+ h0f

(i,m)

+
h0

2
sin

[
1 + ( z(i,m+1) − z(i,m−1) )( 2h1 )−1

]
,

(50)

(51) z(0,m) = 0 for x(m) ∈ [−2, 2],

where f (i,m) = f(t(i), x(m)). Note that Theorem 1.1 does not apply to equation
(48). The convergence of method (50), (51) follows from Theorem 1.3.

Now we consider method (15), (16) for problem (48), (49). Denote by (z, u)
the unknown functions of the variables (t(i), x(m)) and consider the system of
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difference equations

z(i+1,m) = z(i,m) +
h0

2
sin (1 + u(i,m)) + h0 f

(i,m)

+
h0

2
cos (1 + (u(i,m)))

[
δz(i,m) − u(i,m)

]
,

(52)

(53) u(i+1,m) = u(i,m) + h0F
(i,m) +

h0

2
cos( 1 + u(i,m) ) δu(i,m)

with the initial condition

(54) z(0,m) = 0, u(0,m) = 0, x(m) ∈ [−2, 2],

where

F (i,m) = F (t(i), x(m)), F (t, x) = 3x2 − 3xt cos (1 + 3x2t).

The difference expressions δz(i,m) and δu(i,m) are defined in the following way.
If cos (1 + u(i,m)) ≥ 0 then

δz(i,m) =
z(i,m+1) − z(i,m)

h1
and δu(i,m) =

u(i,m+1) − u(i,m)

h1
,

If cos (1 + u(i,m)) < 0 then

δz(i,m) =
z(i,m) − z(i,m−1)

h1
and δu(i,m) =

u(i,m) − u(i,m−1)

h1
.

Denote by zh and (z̃h, ũh) the solutions of problems (50), (51) and (52)–(54),
respectively. Consider the errors

ε
(i,m)
h = v(i,m) − z

(i,m)
h , ε̃

(i,m)
h = v(i,m) − z̃

(i,m)
h , (t(i), x(m)) ∈ Eh.

We put h0 = 0.001, h1 = 0.002 and we have the following experimental values
for the errors ε and ε̃.

Table of errors, ε = v − zh

t = 0.4 t = 0.5 t = 0.6 t = 0.7

x = 0.5 −4.307 10−4 −7.032 10−4 −1.039 10−3 −1.434 10−3

x = 0 −3.284 10−5 −6.422 10−5 −1.109 10−4 −1.760 10−4

x = −0.5 5.095 10−4 7.710 10−4 1.089 10−3 1.469 10−3
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Table of errors, ε̃ = v − z̃h

t = 0.4 t = 0.5 t = 0.6 t = 0.7

x = 0.5 2.500 10−5 2.022 10−5 1.477 10−5 1.101 10−5

x = 0 3.425 10−6 −6.664 10−6 −1.146 10−5 −1.809 10−5

x = −0.5 9.517 10−5 1.174 10−5 1.355 10−4 1.469 10−4

Note that |ε̃(t, x)| < |ε(t, x)| for all values of (t, x).
We also give the following information on the errors of methods (50), (51) and
(52)–(54). Write

η(i) = max { |ε(i,m)| : (t(i), x(m)) ∈ Eh },

η̃(i) = max { |ε̃(i,m)| : (t(i), x(m)) ∈ Eh }, 0 ≤ i ≤ N0.

In Table E, we give experimental values of the functions η and η̃ for h0 =
0.001, h1 = 0.002.

Table E
t = 0.40 t = 0.45 t = 0.50 t = 0.55 t = 0.60 t = 0.65 t = 0.70

η(t) : 1.28 10−3 1.42 10−3 1.52 10−3 1.60 10−3 1.76 10−3 1.85 10−3 1.83 10−3

η̃(t) : 3.18 10−4 2.85 10−4 2.31 10−4 1.65 10−4 1.35 10−4 1.42 10−4 1.50 10−4

Note that η̃(t) < η(t) for all t. Thus we see that the errors of method (50),
(51) are larger than the errors of (52)–(54). This is due to the fact that the
approximation of the spatial derivatives of z in (52)–(54) is better than the
respective approximation of ∂xz in (50), (51). Methods described in Theorems
2.1 and 2.5 have the potential for applications in the numerical solving of first
order nonlinear differential equations.
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