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a b s t r a c t

The monotone iterative method is used to show that corresponding difference problems
with boundary conditions have extremal solutions in the region bounded by lower and
upper solutions. It is important to indicate that the right-hand sides of problems depend
on r delayed arguments. Difference inequalities of such types are also discussed. Two
examples satisfying the assumptions are presented.
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1. Introduction

Put

(F y)(k) = f (k, y(k), y(α1(k)), y(α2(k)), . . . , y(αr(k))).

In this paper, we consider first-order delayed difference equations with nonlinear boundary value problems:{
∆y(k− 1) = (F y)(k), k ∈ Z[1, T ] = {1, 2, . . . , T },
g(y(0), y(T )) = 0, (1)

where∆y(k− 1) = y(k)− y(k− 1)with assumption
H1: f ∈ C(Z[1, T ] × Rr+1,R), g ∈ C(R× R,R), αi ∈ C(Z[1, T ], Z[0, T ]), αi(k) ≤ k, i = 1, 2, . . . , r,
and the next type of equations:{

∆y(k) = (F y)(k), k ∈ Z[0, T − 1],
g(y(0), y(T )) = 0, (2)

where∆y(k) = y(k+ 1)− y(k)with assumption
H2: f ∈ C(Z[0, T−1] × Rr+1,R), g ∈ C(R× R,R), αi ∈ C(Z[0, T−1], Z[0, T−1]), αi(k) ≤ k, i = 1, 2, . . . , r.
Difference equations occur in numerous settings and forms, both inmathematics itself and in its applications to statistics,

computing, electrical circuit analysis, dynamical systems, economics, biology, and other fields, see for example [1–4] and
the references therein. Mathematical modeling of problems in physical sciences relies heavily on the use of differential
equations together with initial or boundary conditions. Discrete boundary value problems are also natural consequences
of discretization techniques of differential boundary problems including also problems with delayed arguments. Recently,
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some papers devoted to the study of the existence of solutions for nonlinear difference problems have appeared. There are
several techniques which are often employed in boundary value problems. One of the methods employed is the method
of upper and lower solutions coupled with iterative methods. It provides constructive schemes for calculating the desired
solutions.
It well known that themonotone iterative technique offers an approach for obtaining approximate solutions of nonlinear

differential equations. It can be used both initial and boundary problems. There are only a few papers when the monotone
iterative technique is used to first-order differential problemswith delayed arguments, see for example [5–7]. This technique
can also be used to first-order difference equations with delayed arguments and I known only one such paper [8]. Note that
problem (1) represents a discrete analogue of the delay differential equation of the form

x′(t) = f (t, x(t), x(α1(t)), x(α2(t)), . . . , x(αr(t))),

where αi(t) ≤ t for i = 1, 2, . . . , r see for example [5,6]. In [8], special cases of (1) and (2) are discussed. Moreover,
in paper [8], it is assumed that the right-hand side of difference problem satisfies a one sided Lipschitz conditions with
constant coefficients while in my paper f satisfies such condition with functional coefficients. This paper generalizes results
of [8].
Let C = C(Z[0, T ],R) denote the class of mapsw continuous on Z[0, T ] (discrete topology) with the norm

‖w‖ = max
k∈Z[0,T ]

|w(k)|.

Note that C is a Banach space. By a solution of (1), we meanw ∈ C such that it satisfies problem (1). Similarly we define the
solution of problem (2).

2. Difference inequalities

In this section, we present difference inequalities which are needed later.

Lemma 1. Assume that α ∈ C(Z[1, T ], Z[0, T ]), α(k) ≤ k, k ∈ Z[0, T ], y ∈ C(Z[0, T ],R), M, L ∈ C(Z[1, T ],R+), R+ =
[0,∞) and{

∆y(k− 1) ≤ −M(k)y(k)− L(k)y(α(k)), k ∈ Z[1, T ],
y(0) ≤ 0.

In addition, we assume that

ρ1 ≡

T∑
i=1

L(i)
i−1∏
j=1

[1+M(j)] ≤ 1, (3)

where
∏0
i=1 · · · = 1.

Then y(k) ≤ 0, k ∈ Z[0, T ].

Proof. Assume that the assertion is not true. Then, there exists k0 ∈ Z(0, T ] such that y(k0) > 0. Put

y(k1) = min
k∈Z[0,k0]

y(k) = λ ≤ 0.

It results

[1+M(k)]y(k)− y(k− 1) ≤ −λL(k), k ∈ Z[1, k0],

and

y(k)Sk − y(k− 1)Sk−1 ≤ −λL(k)Sk−1, k ∈ Z[1, k0]

with

S0 = 1, Sk =
k∏
i=1

[1+M(i)], k ∈ Z[1, T ].

Hence

∆[y(k− 1)Sk−1] ≤ −λL(k)Sk−1, k ∈ Z[1, k0].

Summing it from k1 + 1 to k0 gives

y(k0)Sk0 − λSk1 ≤ −λ
k0∑

i=k1+1

L(i)Si−1. (4)
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Hence

−λSk1 < −λ
k0∑

i=k1+1

L(i)Si−1,

because y(k0) > 0. It yields

1 <
k0∑

i=k1+1

L(i)Si−1 ≤ ρ1

because λ < 0, Sk1 ≥ 1. It is a contradiction. The same conclusion we have for λ = 0. This ends the proof. �

Remark 1. Note that ifM(i) = 0, i ∈ Z[0, T ], then

ρ1 =

T∑
i=1

L(i).

Remark 2. Let L(i) = L, M(i) = M . Then

ρ1 =
L(1+M)T

(L+M)
.

In this case Lemma 1 reduces to Theorem 2.1 [8].

Lemma 2. Assume that α ∈ C(Z[0, T−1], Z[0, T−1]), α(k) ≤ k, k ∈ Z[0, T−1], y ∈ C(Z[0, T ],R),M ∈ C(Z[1, T ], [0, 1)),
L ∈ C(Z[1, T ],R+) and{

∆y(k) ≤ −M(k+ 1)y(k)− L(k+ 1)y(α(k)), k ∈ Z[0, T − 1],
y(0) ≤ 0.

In addition, we assume that

ρ2 ≡

T∑
i=1

L(i)
1

i∏
j=1
[1−M(j)]

≤ 1. (5)

Then y(k) ≤ 0, k ∈ Z[0, T ].

Proof. The proof is similar to the proof of Lemma 1. Assume that the assertion is not true. Then, there exists k0 ∈ Z(0, T ]
such that y(k0) > 0. Put

y(k1) = min
k∈Z[0,k0]

y(k) = λ ≤ 0.

It results

∆[y(k)Pk] ≤ −λL(k+ 1)Pk+1, k ∈ Z[0, k0]

with

Pi =
k∏
i=1

1
1−M(i)

, k ∈ Z[1, T ].

Summing it from k1 to k0 − 1 gives

y(k0)Pk0 − λPk1 ≤ −λ
k0−1∑
i=k1

L(i+ 1)Pi+1.

Hence

−λPk1 < −λ
k0−1∑
i=k1

L(i+ 1)Pi+1,
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because y(k0) > 0. It yields

1 <
k0−1∑
i=1

L(i+ 1)Pi+1 ≤ ρ2

because λ < 0, Pk1 > 1. It is a contradiction. This ends the proof. �

Remark 3. Note that ifM(i) = 0, i ∈ Z[0, T ], then

ρ2 =

T∑
i=1

L(i).

Remark 4. Let L(i) = L, M(i) = M . Then

ρ2 =
L

(1−M)T (L+M)
.

In this case Lemma 2 reduces to Theorem 2.2 [8].

The next two lemmas we formulate without any proofs since they are similar to ones of Lemmas 1 and 2, respectively.

Lemma 3. Assume that αi ∈ C(Z[1, T ], Z[0, T ]), αi(k) ≤ k, k ∈ Z[0, T ], i ∈ Z[1, r], y ∈ C(Z[0, T ],R),M, Li ∈ C(Z[1, T ],
R+), i ∈ Z[1, r] and∆y(k− 1) ≤ −M(k)y(k)−

r∑
i=1

Li(k)y(αi(k)), k ∈ Z[1, T ],

y(0) ≤ 0.

In addition, we assume that

ρ3 ≡

T∑
i=1

L(i)
i−1∏
j=1

[1+M(j)] ≤ 1, (6)

whereL(i) =
∑r
s=1 Ls(i).

Then y(k) ≤ 0, k ∈ Z[0, T ].

Lemma 4. Assume that αi ∈ C(Z[0, T − 1], Z[0, T − 1]), αi(k) ≤ k, k ∈ Z[0, T − 1], i ∈ Z[1, r], y ∈ C(Z[0, T ],R), M ∈
C(Z[1, T ], [0, 1)), Li ∈ C(Z[1, T ],R+) and∆y(k) ≤ −M(k+ 1)y(k)−

r∑
i=1

Li(k+ 1)y(αi(k)), k ∈ Z[0, T − 1],

y(0) ≤ 0.

In addition, we assume that

ρ4 ≡

T∑
i=1

L(i)
1

i∏
j=1
[1−M(j)]

≤ 1 withL(i) =
r∑
s=1

Ls(i). (7)

Then y(k) ≤ 0, k ∈ Z[0, T ].

3. Monotone iterative method

Theorem 1 (Discrete Arzela–Ascoli Theorem, [9]). Let A be a closed subset of C. If A is uniformly bounded and the set {u(k) :
u ∈ A} is relatively compact for each k ∈ Z[0, T ], thenA is compact.

Now we consider the following linear problem∆y(k− 1) = −M(k)y(k)−
r∑
i=1

Li(k)y(αi(k))+ h(k),

y(0) = ξ ∈ R,
(8)

where h ∈ C(Z[1, T ],R) and bounded.
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Theorem 2. Assume that M, Li ∈ C(Z[1, T ],R+), αi ∈ C(Z[0, T ], Z[0, T ]), αi(k) ≤ k, i = 1, 2, . . . , r. Let h ∈ C(Z[0, T ],R)
and be bounded. Let condition (6) hold. Then problem (8) has a unique solution.

Proof. We first show that solving (8) is equivalent to solving a fixed point problem. Let y be any solution of problem (8).
Note that the equation of problem (8) can be also written in the following form

∆

[
y(k− 1)

k−1∏
i=1

(1+M(i))

]
=

[
−

r∑
j=1

Lj(k)y(αj(k))+ h(k)

]
k−1∏
i=1

(1+M(i))

for k ∈ Z[1, T ]. Summing it from 1 to s gives

y(s) =

[
ξ +

s∑
i=1

(
−

r∑
ν=1

Lν(i)y(αν(i))+ h(i)

)
i−1∏
j=1

(1+M(j))

](
s∏
j=1

[1+M(j)]

)−1
≡ (Ahy)(s),

for s ∈ Z[0, T ]. Similarly, it is easy to see that if y is any solution of y = Ahy, then y is a solution of problem (8).
The continuity of M, Lν, h imply that Ah : C → C is continuous and bounded. This and Theorem 1 imply that Ah is

compact. Now, Schauder’s fixed point implies that Ah has a fixed point, i.e. problem (8) has a solution.
Now we show that (8) has the unique solution. Assume that (8) has two solutions u, v and u 6= v. Put p = u − v. Then

p(0) = 0, and

∆p(k− 1) = −M(k)p(k)−
r∑
i=1

Li(k)p(αi(k)), k ∈ Z[1, T ].

Hence p(k) ≤ 0 for k ∈ Z[0, T ], by Lemma 3. It shows that u ≤ v. Now, if we put p = v − u, then using again Lemma 3 we
see that v ≤ u. It shows that problem (8) has the unique solution. This ends the proof. �

We say that y0 is called a lower solution of problem (1) if{
∆y0(k− 1) ≤ (F y0)(k), k ∈ Z[1, T ],
g(y0(0), y0(T )) ≤ 0

and it is an upper solution of (1) if the above inequalities are reversed.

Theorem 3. Suppose that assumptionH1 holds. Let y0, z0 be lower and upper solutions of problem (1), respectively, and y0 ≤ z0.
In addition, we assume that
H3: there exist functions M, Li ∈ C(Z[1, T ],R+), i = 1, 2, . . . , r such that condition (6) holds and

f (k, u, v1, . . . , vr)− f (k, ū, v̄1, . . . , v̄r) ≤ M(k)[ū− u] +
r∑
i=1

Li(k)[v̄i − vi]

for y0 ≤ u ≤ ū ≤ z0, y0(αi(k)) ≤ vi ≤ v̄i ≤ z0(αi(k)), i = 1, 2, . . . , r,
H4: g is nonincreasing with respect to the second variable, and there exists a constant a > 0 such that

g(ū, v)− g(u, v) ≤ a(ū− u)

for y0(0) ≤ u ≤ ū ≤ z0(0), y0(T ) ≤ v ≤ z0(T ).
Then problem (1) has, in the sector [y0, z0]∗, minimal and maximal solutions, where

[y0, z0]∗ = {w ∈ C : y0 ≤ w ≤ z0}.

Proof. Let us define G by

(G(u, v))(k) = M(k)[u(k)− v(k)] +
r∑
i=1

Li(k)[u(αi(k))− v(αi(k))].

For k ∈ Z[1, T ] and n = 0, 1, . . ., let{
∆yn+1(k− 1) = (F yn)(k)− (G(yn+1, yn))(k),

yn+1(0) = yn(0)−
1
a
g(yn(0), yn(T )),

and {
∆zn+1(k− 1) = (F zn)(k)− (G(zn+1, zn))(k),

zn+1(0) = zn(0)−
1
a
g(zn(0), zn(T )).
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Note that y1, z1 are well defined, by Theorem 2. First we need to show that

y0 ≤ y1 ≤ z1 ≤ z0. (9)

Put p = y0 − y1. Then

p(0) = y0(0)− y0(0)+
1
a
g(y0(0), y0(T )) ≤ 0,

∆p(k− 1) ≤ (F y0)(k)− (F y0)(k)+ (G(y1, y0))(k)

= M(k)p(k)−
r∑
i=1

Li(k)p(αi(k)).

This and Lemma 3 imply that p ≤ 0, so y0 ≤ y1. Similarly, we can show that z1 ≤ z0. To show that y1 ≤ z1, we put
p = y1 − z1. Then

p(0) = y0(0)− z0(0)+
1
a
[g(z0(0), z0(T ))− g(y0(0), y0(T ))] ≤ 0,

∆p(k− 1) = (F y0)(k)− (F z0)(k)− (G(y1, y0))(k)+ (G(z1, z0))(k)

≤ −M(k)p(k)−
r∑
i=1

Li(k)p(αi(k)),

by assumptions H3,H4. It shows that (9) holds.
Using the mathematical induction we can show that

y0 ≤ y1 ≤ · · · ≤ yn ≤ zn ≤ · · · ≤ z1 ≤ z0.

Since {yn} is increasing and bounded then {yn} converging to y uniformly on Z[0, T ]. Similarly, {zn} converging to z uniformly
on Z[0, T ]. Moreover, y0 ≤ y ≤ z ≤ z0. Since f and g are continuous, y and z are solutions of problem (1).
Now we need to show that y, z are extremal solutions of problem (1) in the sector [y0, z0]∗. Let u ∈ [y0, z0]∗ be any

solution of (1) in that sector. Assume that yi ≤ u ≤ zi for some positive integer i. Let p = yi − u, q = u − zi. Then
p(0) ≤ 0, q(0) ≤ 0 and

∆p(k− 1) = (F yi−1)(k)− (G(yi, yi−1))(k)− (F u)(k)

≤ −M(k)p(k)−
r∑
i=1

Li(k)p(αi(k)),

∆q(k− 1) = (F u)(k)− (F zi)(k)+ (G(zi, zi−1))(k)

≤ −M(k)q(k)−
r∑
i=1

Li(k)q(αi(k)).

This and Lemma 3 give yi ≤ u ≤ zi. By induction, we can show that yn ≤ u ≤ zn. Now if n → ∞, then y ≤ u ≤ z, so we
have the assertion. This ends the proof. �

Now we discuss problem (2). We say that y0 is called a lower solution of (2) if{
∆y0(k) ≤ (F y0)(k), k ∈ Z[0, T − 1],
g(y0(0), y0(T )) ≤ 0

and it is an upper solution of (2) if the above inequalities are reversed.
The proof of the next theorem is similar to the proof of Theorem 3 therefore it is omitted. By H ′3 we denote assumption

H3 with condition (7) instead of (6).

Theorem 4. Suppose that assumptions H2,H
′

3,H4 hold. Let y0, z0 be lower and upper solutions of problem (2), respectively, and
y0 ≤ z0.
Then problem (2) has, in the sector [y0, z0]∗, minimal and maximal solutions.

Example 1. Let T ≤ 23 and 0 < ξ < .001. We consider the following problem{
∆x(k− 1) = −

2k
1000

x(k)+
k
1000

x(k− 1)+ ξ ≡ (F x)(k), k ∈ Z[1, T ],
x(0) = x(T ),

(10)

so g(u, v) = u− v, α(0) = 0 and α(k) = k− 1 if k ∈ Z[1, T ]. Note that

M(k) =
2k
1000

, L1(k) =
k
1000

, a = 1,
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and

ρ3 =
1
1000

T∑
i=1

i
i−1∏
j=1

(
1+

2j
1000

)
≤
23
1000

23∑
i=1

(
1+

46
1000

)i−1
=
1
2

[
(1.046)23 − 1

]
≈ 0.90669 < 1.

It shows that assumptions H1,H3,H4 are satisfied.

Now we put y0(k) = 0, z0(k) = 1, k ∈ Z[0, T ]. It is easy to show that y0, z0 are lower and upper solutions of problem
(10), respectively. Hence problem (10) has extremal solutions in the region [y0, z0]∗, by Theorem 3.

Example 2. We consider the problem{
∆y(k) = −β1(k)y(α1(k))− β2(k)y(α2(k))+ h(k), k ∈ Z[0, T − 1],
y(0) = y2(T ), (11)

where β1, β2, h ∈ C[Z[0, T − 1],R+) and

α1(k) =
{
0, k = 0,
k− 1, k ∈ Z[1, T ], α2(k) =

{
0, k = 0, 1,
k− 2, k ∈ Z[2, T ],

L1(k)+ L2(k) ≥ h(k) > 0,
T∑
i=1

[L1(i)+ L2(i)] ≤ 1. (12)

Assumptions H2, H
′

3,H4 are satisfied withM(k) = 0, L1(k) = β1(k), L2(k) = β2(k), a = 1.

Put y0 = 0, z0 = 1. Then y0, z0 are lower and upper solutions of problem (11), respectively. Problem (11) has extremal
solutions in [y0, z0]∗, by Theorem 4.
For example, if we take h(k) = 1

100 , L1(k)+ L2(k) = L,
1
100 ≤ L ≤

1
T , then conditions (12) hold.
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