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1. Introduction

Let x0 be a fixed point of a map f . The local fixed point index ind( f , x0) ∈ Z is a topological
invariant that plays important role in fixed point theory. It can also be used to study a structure of
periodic points and dynamical properties of a map. In such a case the sequence of fixed point indices
of iterations {ind( f n, x0)}∞n=1 is applied.

We will consider local self-maps f of Rm in a neighborhood of the fixed point 0. Let f : U → Rm,

where U is an open subset of Rm , be a map such that 0 is an isolated fixed point for each iteration.
Then, the local fixed point index at 0, ind( f n,0), is well defined for each f n taken on a small enough
neighborhood of 0.
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The knowledge about the form of the sequence {ind( f n, x0)}∞n=1 allows one to deduce valuable
information about the existence of periodic points, number of orbits and dynamical behavior of f in
a neighborhood of a fixed point (cf. for example [1,13,21]).

Thus, the important task is to find all possible restrictions for the sequence of fixed point indices.
In 1971 Krasnosel’skii and Zabreiko noticed that (for continuous maps) {ind( f n, x0)}∞n=1 cannot take
arbitrary values but its elements must satisfy some congruences [26]. Namely, they observed that for
any prime number p holds:

ind( f , x0) ≡ ind
(

f p, x0
)

(mod p).

These restrictions, known as mod p property, were proved by Steinlein in 1972 [25]. In 1984 Al-
brecht Dold found much more general congruences for indices [4], called Dold relations:

∑
k|n

μ(n/k) ind
(

f k, x0
) ≡ 0 (mod n), (1.1)

where μ is the arithmetic Möbius function.
The natural question is whether there are any further restrictions for local indices of a continuous

map for m > 1. (In dimension one there are just few sequences of indices of a very special form.)
Graff and Nowak-Przygodzki showed in [11] that the answer is negative, even in dimension 2 every
sequence of integers which satisfies Dold relations can be realized as a sequence of fixed point indices
of an iterated map (cf. also [1]).

Nowadays, the problem of determining the form of indices for different classes of maps is stud-
ied very intensively, the main attention is focused on planar homeomorphisms [10,14,15,19]; R3-
homeomorphisms [20]; smooth maps [3,17,18,23]; simplicial maps [6,24] and holomorphic maps [2,
5,27,28].

The theory for smooth maps was initiated in 1974 by a very elegant result of Shub and Sullivan
[23], who proved that, unlike in the continuous case, the sequence of indices is always bounded.

In 1983 Chow, Mallet-Paret and Yorke gave, in terms of the derivative of f at 0, further restrictions
for indices of a smooth map, which we call CMPY conditions [3] (cf. Theorem 2.6). They also formu-
lated the conjecture, which may be presented in the following form: the only restrictions for indices
of iterations of a smooth map are CMPY conditions. The proof of this hypothesis was given in 1990 for
dimension 2 [1] and in 2006 for dimension 3 [9]. The aim of this paper is to prove the conjecture for
arbitrary dimension. In this way we obtain the complete description of the forms of indices in Rm for
each m. This knowledge may be successfully used in many branches of dynamical systems, differen-
tial equations and periodic point theory. Let us mention here an application in determining minimal
number of periodic points in a smooth homotopy class of a given map. This problem is a classical
one in continuous category (cf. [12]), establishing the complete list of possible indices of iterations for
smooth maps makes it possible to deal with it also in the smooth category [7,8]. Our results enable us
also to confirm old Babenko and Bogatyi conjecture (cf. [1]), which states that any bounded sequence
satisfying Dold relations is a sequence of indices of an isolated fixed point of a smooth map of an
Euclidean space.

The paper is organized in the following way: in Section 2 we introduce the notation and recall
Chow, Mallet-Paret and Yorke theorem. In the third section we formulate our main result: we ob-
tain the list of sequences that are admissible by CMPY conditions in Rm (Theorem 3.1), and next
we state that every sequence from this list can be realized (Theorem 3.2). The second part is much
more difficult, because we must simultaneously control topological and differential properties of con-
structed maps to obtain the given values of indices, preserving smoothness. Sections 4–8 are devoted
to the detailed construction of one of the classes of realizations, and in Section 9 we discuss how
to realize the other forms of indices. In the final section we consider Babenko and Bogatyi problem
and the question of the realization of indices in some narrower classes of smooth maps. In particu-
lar we discuss the recent result obtained by Ruiz del Portal and Salazar by Conley index methods in
dimension 3 [22].
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2. Chow, Mallet-Paret and Yorke theorem in RRRn

Due to Dold relations (cf. formula (1.1)) one may write down indices of iterations in the convenient
form of a combination of some basic sequences. This representation is called a periodic expansion.

Definition 2.1. For a given k ∈ N we define

regk(n) =
{

k if k | n,

0 if k � n.

In other words, regk is the periodic sequence:

(0, . . . ,0,k,0, . . . ,0,k, . . .),

where the non-zero entries appear for indices divisible by k.
By μ we will denote the classical Möbius function, i.e., μ : N → Z is defined by the following three

properties: μ(1) = 1, μ(k) = (−1)s if k is a product of s different primes, μ(k) = 0 otherwise.

Theorem 2.2. (Cf. [13].) A sequence {ind( f n,0)}∞n=1 can be written down uniquely in the following form of a
periodic expansion:

ind
(

f n,0
) =

∞∑
k=1

ak regk(n),

where

an = 1

n

∑
k|n

μ

(
n

k

)
ind

(
f k,0

)
.

Notice that by Dold relations (1.1) coefficients an are always integers.

Definition 2.3. Assume that a periodic expansion for a sequence {ind( f n,0)}∞n=1 is given. Let B =
{n ∈ N: an �= 0}. The set B is called the set of local algebraic periods.

Definition 2.4. Let H be a finite subset of natural numbers, we introduce the following notation.
By LCM(H) we mean the least common multiple of all elements in H with the convention that

LCM(∅) = 1. We define the sets H , m · H , Hodd by:

H = {
LCM(Q ): Q ⊂ H

}
,

m · H = {mh: h ∈ H}, Hodd = {h ∈ H: h is odd}.

Now we start to consider the smooth case. Let f : U → Rm , where U is an open subset of Rm

containing 0, be a C1 map with 0 an isolated fixed point for each iteration.

Definition 2.5. By � we will denote the set of degrees of all primitive roots of unity which are
contained in σ(D f (0)), the spectrum of the derivative at 0.

Chow, Mallet-Paret and Yorke showed that the set of local algebraic periods B for {ind( f n,0)}∞n=1,
where f is a C1 map, is finite and depends only on the set �.
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We denote by σ+ the number of real eigenvalues of D f (0) greater than 1, σ− the number of real
eigenvalues of D f (0) less than −1, in both cases counting with multiplicity.

Below we state the theorem of Chow, Mallet-Paret and Yorke [3], expressed in the language of
periodic expansions (cf. [13]).

Theorem 2.6. Let U ⊂ Rm be an open neighborhood of 0, f : U → Rm be a C1 map having 0 as an isolated
fixed point for each iteration. Then:

ind
(

f n,0
) =

∑
k∈O

ak regk(n),

where

(∗) O =
{

� if σ− is even,

� ∪ 2�odd if σ− is odd.

(∗∗) If σ− is odd and k ∈ 2�odd \ �, then ak = −ak/2 .
(∗∗∗) The bounds for the coefficients a1 and a2 are the following:

(1) a1 = (−1)σ+ if 1 /∈ σ(D f (0)).
(2) a1 ∈ {−1,0,1} if 1 is an eigenvalue of D f (0) with multiplicity 1.
(3) a2 ∈ {0, (−1)σ++1} if 1 /∈ σ(D f (0)) and −1 is the eigenvalue of D f (0) with multiplicity 1.

3. Indices of iterations in RRRm

In this section we formulate the main result of the paper, i.e. we give the complete list of all forms
of indices in arbitrary dimension.

We use the following notation: for natural s we denote by L(s) any set of natural numbers of the
form L with #L = s and 1,2 /∈ L.

By L2(s) we denote any set of natural numbers of the form L with #L = s + 1 and 1 /∈ L, 2 ∈ L.
Let us remind that LCM(∅) = 1.

Theorem 3.1 (Main Theorem I). Let f be a C 1 self-map of Rm, m > 1. Then the sequence of local indices of
iterations {ind( f n,0)}∞n=1 has one of the following forms.

(I) For m odd

(
Ao) ind

(
f n,0

) =
∑

k∈L2( m−3
2 )

ak regk(n),

(
Bo), (Co), (Do) ind

(
f n,0

) =
∑

k∈L( m−1
2 )

ak regk(n),

where

a1 =
⎧⎨
⎩

1 in the case (Bo),

−1 in the case (Co),

0 in the case (Do),(
Eo), (F o) ind

(
f n,0

) =
∑

k∈L2( m−1 )

ak regk(n),
2
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where a1 = 1 and

a2 =
{

0 in the case (Eo),

−1 in the case (F o).

(II) For m even:

(
Ae) ind

(
f n,0

) =
∑

k∈L2( m−4
2 )

ak regk(n),

(
Be) ind

(
f n,0

) =
∑

k∈L( m−2
2 )

ak regk(n),

(
Ce), (De), (Ee) ind

(
f n,0

) =
∑

k∈L2( m−2
2 )

ak regk(n),

where

a1 =
⎧⎨
⎩

1 in the case (Ce),

−1 in the case (De),

0 in the case (Ee),(
F e) ind

(
f n,0

) =
∑

k∈L( m
2 )

ak regk(n),

where a1 = 1.

Theorem 3.2 (Main Theorem II). Every sequence of integers which is of one of the forms (A)–(F) can be realized
as a sequence of local indices of iterations of a C1 self-map of Rm.

Example 3.3. Let us consider the following sequence of integers:

(2,2,5,2,2,5, . . .). (3.1)

Can this sequence be a sequence of local indices of iterations of a smooth map in the plane?
We see that the above sequence may be written down as 2 reg1(n) + reg3(n). On the other hand,

by Theorem 3.1 in dimension m = 2 the only admissible sequences are (m even, and L2(−1) = L(0) =
∅ = LCM(∅) = 1):

(
Ae) = (

Be) ind
(

f n,0
) = a1 reg1(n),(

Ce), (De), (Ee) ind
(

f n,0
) = a1 reg1(n) + a2 reg2(n),

where

a1 =
⎧⎨
⎩

1 in the case (Ce),

−1 in the case (De),

0 in the case (Ee),(
F e) ind

(
f n,0

) = reg1(n) + ak regk(n),

where k > 2.
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As the sequence (3.1) is not of any of the forms listed above, it cannot be obtained as a sequence
of local indices of some iterated smooth map in dimension 2. �
3.1. Proof of Theorem 3.1

Now we prove Theorem 3.1, the proof of Theorem 3.2, which is in fact Chow, Mallet-Paret and
Yorke conjecture is much more difficult and will be given in the forthcoming sections.

Let G = {d1, . . . ,ds} = � \ {1,2} (see Definition 2.5) and define G2 = G ∪ {2}. Now we classify
possible forms of indices of iterations in dependence on s:

Lemma 3.4. Let f be a smooth local self-map of Rm having 0 as an isolated fixed point for each iteration.

(I) If m = 2s then

ind
(

f n,0
) =

∑
k∈G

ak regk(n) and a1 = 1. (3.2)

(II) If m = 2s + 1 then

ind
(

f n,0
) =

∑
k∈G

ak regk(n) and a1 ∈ {−1,0,+1} (3.3)

or

ind
(

f n,0
) =

∑
k∈G2

ak regk(n) and a1 = 1, a2 ∈ {0,−1}. (3.4)

(III) If m = 2s + 2 then

ind
(

f n,0
) =

∑
k∈G2

ak regk(n) and a1 ∈ {−1,0,+1} (3.5)

or

ind
(

f n,0
) =

∑
k∈G

ak regk(n). (3.6)

(IV) If m � 2s + 3 then

ind
(

f n,0
) =

∑
k∈G2

ak regk(n). (3.7)

Proof. We make use of Theorem 2.6. Notice that in any case O ⊂ G2 (for the definition of O see
Theorem 2.6), thus we start with a general remark that for any map

ind
(

f n,0
) =

∑
k∈G2

ak regk(n)

for some integers ak (not necessarily non-zero). This gives the case (IV). Now we will show that in
the first three cases some restrictions on the numbers ak must be satisfied.

http://mostwiedzy.pl
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(I) By dimension arguments D f (0) has no real eigenvalues. In particular neither 1 nor 2 belongs
to � and moreover σ+ = σ− = 0. As a result, by Theorem 2.6(1), a1 = (−1)σ+ = 1 and by (∗) of
Theorem 2.6 O = � = G . These restrictions give the formula (3.2).

(II) In this case there is a single real eigenvalue. Let us consider two cases in dependence whether
σ− is even or odd.

(A) σ− is even (hence σ− = 0).
(a) If 1 ∈ σ(D f (0)) then its multiplicity is 1, hence Theorem 2.6(2) implies a1 ∈ {−1,0,+1}. Here

−1 is not an eigenvalue (2 /∈ �), hence there are no restrictions for a2. By (∗) of Theorem 2.6
the fact that σ− is even implies O = � = G . This leads to the formula (3.3).

(b) If −1 ∈ σ(D f (0)) then its multiplicity is one and 1 is not an eigenvalue. Now Theorem 2.6
parts (1) and (3) imply a1 = (−1)σ+ = 1 and a2 ∈ {−1,0}. This gives the formula (3.4).

(c) If neither +1 nor −1 is an eigenvalue of D f (0) then by the same argument as in item (a)
O = G . By Theorem 2.6(1) a1 = (−1)σ+ = ±1, and so this case is covered by the formula (3.3).

(B) σ− is odd. Then the only real eigenvalue ν satisfies ν < −1, thus � = G . Item (∗) of Theorem 2.6
implies that O = G ∪ 2Godd . Additionally by (∗∗) ak = −ak/2 for k ∈ 2Godd \ G and by (1) a1 = 1.
Thus, item (∗∗) implies a2 = −a1 = −1 (since 2 /∈ σ(D f (0))).
Let us notice however, that G ∪ 2Godd ⊂ G2. As a consequence, this case is covered by the formula
(3.4).

(III) Now there are at most two real eigenvalues (counting multiplicities). Let μ denote the multi-
plicity of the eigenvalue +1.

(A) Let μ � 1. Then by Theorem 2.6 parts (1) and (2) a1 ∈ {−1,0,+1} which gives the formula
(3.5).

(B) Let μ = 2. Then σ− = 0 and −1 is not an eigenvalue, so by the same argument like in item
(IIAa) O = G which gives the formula (3.6). �
Proof of Theorem 3.1. The case of m = 2 was proved in [1], m = 3 in [9]. For m > 3 the proof is a
consequence of Lemma 3.4. Namely, let m (and thus s) be fixed. We rearrange the formulation of
Lemma 3.4, considering separately even and odd m and taking G = L(s) and G2 = L2(s). This ends the
proof. �
4. Realization of the case (F e)

In the forthcoming part of the paper we prove Theorem 3.2. In Sections 4–9 we concentrate on
the case (F e), which is the most fundamental one. In Section 9 we will give the descriptions of
realizations in the other cases. The important part of Section 4 consists of the description of the
scheme of the construction (Section 4.3). The proof of Lemma 4.1 (which is formulated below) is
given in Section 8.

Let d1, . . . ,ds , where s = m
2 , be given natural numbers greater than 2. Without loss of generality

we may assume that di �= d j for i �= j. For each non-empty set J ⊂ {d1, . . . ,ds} we define d J = LCM( J ).
Moreover, we assume that a collection of integers ad J is given. Then, we claim the existence of the
needed realization (F e) in the following lemma.

Lemma 4.1. There exists a smooth map F : R2s → R2s such that 0 is the only periodic point of F and

ind
(

F n,0
) = reg1(n) +

∑
J

ad J regd J
(n) (4.1)

for every n ∈ N, where the summation extends over the family of all non-empty subsets of {d1, . . . ,ds}.
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Fig. 1. Examples of the flows hp for different p.

The most difficult task is to realize (all at the same time for one map) expressions of the forms
ad J regd J

(n), when J has more than one element. In the next sections we show how to do it on some

surfaces in R2s .

4.1. Planar realization of reg1(n) + ad regd(n)

Let ad be a given integer. In this section we define a two-dimensional flow, the discretization of
which has indices equal to reg1(n) + ad regd(n) (cf. [9]).

Let us consider planar flows hp : R2 ×R → R2 with phase portraits consisting of 2|p−1| hyperbolic
regions for p < 1, 2(p − 1) elliptic regions for p > 1 (the examples of such flows are given in Fig. 1);
or with 0 as a source for p = 1.

This kind of flows may be described in the polar coordinates by the following equations:

ṙ = ark+1 cos(p − 1)α,

α̇ = brk sin(p − 1)α, (4.2)

where k � 0 is an integer, a and b are positive real numbers.
The classical Poincaré–Bendixson formula for index of the discretization of such flows states that

each double elliptic region gives the contribution to the index equal to +1; each double hyperbolic
−1; and the fixed point itself gives the contribution equal to 1.

Thus, if we define H p = hp(·, ·,1) : R2 → R2, we get that ind(H p,0) = 1 + 2(p−1)
2 = p.

Now, for a given natural number d and an integer ad we define the map Ô as the 2π
d rotation

around 0 and put p = add + 1. Then Ô commutes with H p and

ind
(
(Ô ◦ H p)n,0

) =
{

1 if d � n,

add + 1 if d | n
= reg1(n) + ad regd(n). (4.3)

To sum up the above considerations: in order to find a planar map that realizes the expression
reg1(n) + ad regd(n) as indices of iterations, we take the flow hadd+1:

ṙ = ark+1 cos(addα),

α̇ = brk sin(addα), (4.4)

where α ∈ [0,2π ], k > 0 is a fixed arbitrarily chosen integer and a,b > 0 are fixed arbitrarily chosen
real numbers. Then the needed map is the discretization of the flow (4.4) composed with Ô , i.e. 2π

d
rotation around 0, and produce the indices according to the formula (4.3).
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4.2. Rotation-like system in Rm, m is even

Assume m is even, m
2 = s ∈ N. We will use the following polar coordinates:

x1 = r1 cosφ1, y1 = r1 sinφ1,

x2 = r2 cosφ2, y2 = r2 sinφ2,

· · · · · ·
xs = rs cosφs, ys = rs sinφs. (4.5)

We define the flow R : R2s × R → R2s in the polar coordinates by the formula

R(r1, φ1, . . . , rs, φs; t) =
(

r1, φ1 + t

d1
, . . . , rs, φs + t

ds

)
. (4.6)

Let us notice that:

• the only stationary point of R is 0 ∈ R2s ,
• the period of the trajectory of the point (r1, φ1, . . . , rs, φs) �= (0, . . . ,0) is equal to 2π LCM{di:

ri �= 0}.

We denote by S(r,φ) the trajectory of the point (r, φ) = (r1, φ1, . . . , rs, φs) under the flow R . Now, for
a given non-empty set K ⊂ {1, . . . , s} we define below some special trajectory S K of R .

For each 1 � i � s we define:

rK
i =

{
1/

√
#K if i ∈ K ,

0 if i /∈ K .
(4.7)

Thus we obtain:

(
rK

1

)2 + · · · + (
rK

s

)2 = 1.

Notice that rK
i = rK

i′ for i, i′ ∈ K and ri = 0 for i /∈ K .
We will denote the trajectory of (rK ,0) = (rK

1 ,0, . . . , rK
s ,0) under R as S K . We have:

S K =
{(

rK
1 ,

t

d1
, . . . , rK

s ,
t

ds

)
: t ∈ R

}
. (4.8)

The trajectory S K is contained in S2s−1 ⊂ R2s and has the period equal to 2π LCM(K ).

4.3. Scheme of the proof of Lemma 4.1

For a non-empty subset K ⊂ {1, . . . , s} we denote J K = {di: i ∈ K }. When K is fixed we will simply
write J instead of J K . Let us recall that d J = LCM( J ). For a given K we will define a 2-dimensional
surface in R2s , a cone over the trajectory S(r,φ) by:

cone S(r,φ) = {λl: l ∈ S(r,φ), λ � 0}. (4.9)

By cone S K we will denote the cone over S K .
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Lemma 4.2. For each (r,α) the surface cone S(r,α) is invariant under the flow R.

Proof. It is an immediate consequence of the definition of R , see the formula (4.6). �
Now we are in a position to give the general scheme of the construction. First, we notice that the

space R2s splits into cones over orbits of R . The cones are homeomorphic to R2 and mutually disjoint
in the following meaning: cone S ′ ∩ cone S ′′ = {0} or S ′ = S ′′ . Then the proof is divided into two parts.

(1) We fix a non-empty subset K ⊂ {1, . . . , s} and we find a flow Pad J K
on the surface cone S K whose

1-time map composed with 1-time map of R realizes the sum

reg1 +ad J K
regd J K

as indices of iterations. Such maps define a self-map of
⋃

∅�=K⊂{1,...,s} cone S K realizing the de-
manding sum

∑
∅�=K⊂{1,...,s} ad J K

regd J K
with a1 = 1.

(2) It remains to extend this map to a smooth self-map of R2s with 0 as the only periodic point in
such a way that the fixed point indices of all iterations are the same as those of the self-map of⋃

∅�=K⊂{1,...,s} cone S K .

The first part will be done in Section 5. Since the second part is a bit technical one we present its
more detailed scheme.

(I) The desired extension will be the composition F = Sφ
1 ◦ S R

1 ◦ R1 ◦ P1 of time-one maps of some
flows (R is the rotation-like system defined in Section 4.2).

(II) The flow P is given by the formula (5.1) in cone S K . In the cone-neighborhood V K (ε) of cone S K

it is combined with a sink, and outside V K (ε) it is just a sink (Section 7.1).
(III) The flows R and P preserve the cones of the rotation-like system R . The restriction of the com-

position R1 ◦ P1 to cone S K realizes reg1 +ad J regd J
(Corollary 5.1). Moreover R ◦ P is a sink (to 0)

outside V K (ε).
(IV) The composition Sφ

1 ◦ S R
1 is identity on cone S K , hence the restriction of F = Sφ

1 ◦ S R
1 ◦ R1 ◦ P1

to this cone still realizes reg1 +ad J regd J
. On the other hand, Sφ

1 ◦ S R
1 acts in such a way that F

moves the points towards cone S K (Section 7.2). This implies (by Lemma 8.5)

ind
(

F n
|V K (ε),0

) = ind
(

F n| cone S K
,0

) = reg1(n) + ad J regd J
(n).

(V) To realize the sum reg1 +∑
∅�=K⊂{1,...,s} ad J regd J

we apply the above construction to all K ⊂
{1, . . . , s} simultaneously (compare Corollary 5.2).

(VI) Finally, we prove that F is smooth. This follows from the smoothness of the involved flows. The
last is evident outside 0. It remains to check that the partial derivatives of discretizations are
continuous at 0. This is a consequence of the homogeneity of the considered flows (Section 8.1).

5. Realization of the expression ad J regd J
on a surface in RRR2s

Let us fix a non-empty subset K ⊂ {1, . . . , s} and let J = {di: i ∈ K }. Without loss of generality
we may assume that 1 ∈ K . Then we define the flow Pad J

: R2s × R → R2s in the generalized polar

coordinates by:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ1 = r1|r|k cos(ad J d1φ1),

φ̇1 = 1

d1
|r|k sin(ad J d1φ1),

ṙ2 = r2|r|k cos(ad J d1φ1),

φ̇2 = 1

d2
|r|k sin(ad J d1φ1),

· · ·
ṙs = rs|r|k cos(ad J d1φ1),

φ̇s = 1

ds
|r|k sin(ad J d1φ1).

(5.1)

Let us investigate what is the form of the flow Pad J
on the surface cone S K .

First of all let us notice that cone S K is a two-dimensional surface, thus there are relations among
parameters ri and φi , for different i. Indeed:

• by the formula (4.9): for each i ∈ K , ri has the same form ri = λ · 1√
#K

, we will denote this

common value by ρ ,
• by the form of S K cf. (4.8) there is a relation among φi for different i. Namely, taking φ1 =

t/d1, . . . , φn = t/dn we get:

d1φ1 = d2φ2 = · · · = dnφn. (5.2)

Let us denote the above common value by ψ .

The cone S K is composed of periodic orbits and each of them has the period 2πd J . In particular,
ψ defined in (5.2) may be chosen (for each point) in [0,2πd J ].

The restriction of the flow (5.1) to the cone S K takes the following form:

{
ρ̇ = (

√
#K )kρk+1 cos(ad J ψ),

ψ̇ = (
√

#K )kρk sin(ad J ψ).
(5.3)

We substitute

ψ

d J
= α

and then we obtain: ⎧⎪⎨
⎪⎩

ρ̇ = (
√

#K )kρk+1 cos(ad J d J α),

α̇ = 1

d J
(
√

#K )kρk sin(ad J d J α),
(5.4)

where now α ∈ [0,2π ].
On the other hand, this is the same formula as (4.4). Consequently, taking into account that the

time-one map of the flow R is 2π
d J

rotation around 0 on the cone, by the formula (4.3) we obtain the

following

Corollary 5.1. The composition of the time-one map of the flow Pad J
with the time-one map of R restricted to

the surface cone S K , realizes the sum reg1 +ad J regd J
.
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Corollary 5.2. The above compositions define a self-map F of
⋃

∅�=K⊂{1,...,s} cone S K . The point 0 is the only
periodic point and the map realizes the sum

reg1 +
∑

∅�=K⊂{1,...,s}
ad J K

regd J K
.

Proof. We apply 2s − 2 times Lemma 5.3 (see below)

ind
(

F n
|⋃∅�=K⊂{1,...,s} cone S K

,0
)

=
∑

∅�=K⊂{1,...,s}
ind

(
F n| cone S K

,0
) − (

2s − 2
)

reg1(n)

=
∑

∅�=K⊂{1,...,s}

(
reg1(n) + ad J K

regd J K
(n)

) − (
2s − 2

)
reg1(n)

= reg1(n) +
∑

∅�=K⊂{1,...,s}
ad J K

regd J K
(n),

and we get the desired formula. �
Lemma 5.3. (Cf. [16].) Let Y = A ∪ B be a topological space, x0 ∈ A ∩ B, U be an open neighborhood of x0
in Y . Let F : U → Y , F (U ∩ A) ⊂ A and F (U ∩ B) ⊂ B. If x0 is an isolated fixed point of F and U , U ∩ A, U ∩ B
and U ∩ A ∩ B are ENRs, then:

ind(F , x0) + ind(F |A∩B , x0) = ind(F |A, x0) + ind(F |B , x0).

To end the proof of Lemma 4.1 it is enough to extend the map F to a smooth self-map of R2s

without changing the fixed point indices of any iteration.

6. Deviations and neighborhoods of the cones

Now we start to extend onto R2s the self-map of
⋃

∅�=K⊂{1,...,s} cone S K , realizing reg1 +∑
∅�=K⊂{1,...,s} ad J K

regd J K
. We fix a non-empty subset K ⊂ {1, . . . , s} and at first we will extend the

map on a cone-neighborhood of the surface cone S K . In order to do that we will define functions
called deviations and some “regular” neighborhoods of cone S K and describe its properties.

First, we prove a useful lemma which justifies the way we defined the flow Pad J
.

Lemma 6.1. For each (r,α) the surface cone S(r,α) is invariant under the flow Pad J
.

Proof. For a given point (r, φ) = (r1, φ1, . . . , rn, φn), cone S(r,φ) is a surface generated by two parame-
ters (λ, t), namely: cone S(r,φ) = {(λr1,

t
d1

+ φ1, . . . , λrn, t
dn

+ φn): λ � 0, t ∈ [0,2π ]}.
Thus V s and Vt , the two tangent vectors to cone S(r,φ) , have the forms:

V s = (r1,0, r2,0, . . . , rn,0)

and

Vt =
(

0,
1

d
,0,

1

d
, . . . ,0,

1

d

)
.

1 2 n
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Now, it suffices to notice that the vector field that generates Pad J
(given by left-hand side of (5.1))

(ṙ, φ̇) = (ṙ1, φ̇1, . . . , ṙn, φ̇n) at each point (except for 0 which is fixed) is a linear combination of V s

and Vt :

(ṙ, φ̇) = [|r|k cos(ad J d1φ1)
]
V s + [|r|k sin(ad J d1φ1)

]
Vt . (6.1)

As a result, (ṙ, φ̇) is always tangent to cone S(r,φ) , so cone S(r,φ) is invariant under the flow
Pad J

. �
Let us define a cone-neighborhood of cone S K :

V K = {
(r1, φ1, . . . , rs, φs): ri > 0, |diφi − d jφ j| < π for i, j ∈ K

}
.

Now, we define the real-valued maps, called deviations, DΦ , DG on V K .
Consider an element in V K represented by (r1, φ1, . . . , rs, φs) ∈ R2s . We denote Φ = ∑

i∈K
diφi
#K and

then define DΦ(r, φ):

DΦ =
∑
i∈K

(diφi − Φ)2. (6.2)

Let us notice that the value of Φ depends on the φi ’s, however if (r1, φ1, . . . , rs, φs) and (r1, φ
′
1, . . . , rs,

φ′
s) represent the same element and both satisfy the condition used in the definition of V K , then the

value of DΦ is the same, hence we get a correctly defined function on V K .
Furthermore, we put G = ∑

i∈K
ri

#K . Then we define

DG =
∑
i∈K

(ri − G)2

G2
+

∑
i /∈K

r2
i

G2
. (6.3)

Let us notice that the maps DΦ, DG are homogeneous:

DΦ(λ · z) = DΦ(z), DG(λ · z) = DG(z) (6.4)

for all 0 �= z ∈ V K and λ > 0.
Finally, we define

V K (ε) = {
(r, φ): DΦ(r, φ) � ε and DG(r, φ) � ε

}
.

We choose ε so small that the sets V K (ε) are disjoint for different K . Notice that for small enough ε
the deviations are well defined on V K (ε).

We end this section with the following observation:

Lemma 6.2. The deviation maps DΦ and DG are constant on each surface cone S(r,φ) ⊂ V K (ε).

Proof. Consider first DΦ . Let us take two points (r, φ) and (r, φ′) in cone S(r,φ) . Then φ = (μ1, . . . ,μn)

and φ′ = (μ1 + t
d1

, . . . ,μn + t
dn

). We obtain:

Φ
(
r, φ′) =

∑
i∈K (μi + t/di)di

#K
=

∑
i∈K μidi

#K
+ t = Φ(r, φ) + t. (6.5)

By the definition of DΦ(r, φ′) and the equality (6.5) we get:
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DΦ

(
r, φ′) =

∑
i∈K

[
(μi + t/di)di − Φ

(
r, φ′)]2

=
∑
i∈K

[
diμi + t − Φ(r, φ) − t

]2 = DΦ(r, φ). (6.6)

The corresponding equality for DG is evident, since no φi is used in its definition. �
Notice that by the above lemma V K (ε) consists of cones, i.e. if (r, φ) ∈ V K (ε) then cone S(r,φ) ⊂

V K (ε).

Corollary 6.3. Lemma 6.2 together with Lemmas 4.2 and 6.1 (invariance of cone S(r,α)) implies that the devi-
ations for DG and DΦ do not change their values under the action of R and Pad J

.

7. Flows

In this section we define three flows: P , Sφ and Sr on R2s which will be used directly to construct
the needed realization (F e). The flow P will be the extension of Pad J

onto R2s while Sφ , Sr make the

values of Φ and R smaller, which guarantees that no new periodic points appear.
We take a C∞ map gε : [0,∞) → [0,1] such that

• gε(0) = 1,
• gε(x) = 0 iff x ∈ [ε,∞),
• gε is decreasing on [0, ε] and the derivatives at 0 and ε are equal to 0.

Let

γ J (r, φ) = gε

(
DΦ(φ)

) · gε

(
DG(r)

)
. (7.1)

Remark 7.1. Notice that outside 0 the following equalities hold:

γ J |∂V K (ε) ≡ 0, (7.2)

γ J | cone S K
≡ 1. (7.3)

7.1. Definition of P

First we define the flow P ad J
by the formula

P ad J
= γ J Pad J

+ (1 − γ J )z, (7.4)

where z is the following flow for which 0 is a sink:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṙ1 = −rk+1
1 ,

ṙ2 = −rk+1
2 ,

· · ·
ṙn = −rk+1

n .

(7.5)

Now P is defined by:
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P =
∑

J

Pad J
. (7.6)

Thus, on each V K (ε), P is a combination of Pad J
and a sink, while P is just a sink outside each

V K (ε).

7.2. Definition of pushing flows Sφ and Sr

Again, a subset K ⊂ {1, . . . , s} is fixed. We will define two flows on V K (ε) which:

• disappear on cone S K and on the boundary of V K (ε),
• move the cones in V K (ε) towards cone S K .

These maps will be used to remove periodic points of some retractions during the calculation of
indices (cf. Section 8.2).

The flow Sφ will be given by

φ̇i = 1

di
· rk+1γ J (r, φ) · (Φ − diφi) if i ∈ K ,

φ̇i = 0 if i /∈ K . (7.7)

In the similar way we define the flow Sr

ṙi = (G − ri)r
k · γ J (r, φ) if i ∈ K ,

ṙi = −rir
k · γ J (r, φ) if i /∈ K . (7.8)

The next lemma provides the main property of the flows Sφ, Sr : their composition pushes each
cone S(r, φ) ⊂ V K (ε) towards cone S K .

Lemma 7.2. Let us consider the flow Sφ ◦ Sr and a point (r, φ) ∈ Int V K (ε) \ cone S K . Then either DG or DΦ

decreases when t grows.

Proof. First notice that G is constant for the flow Sr :

d

dt
G = d

dt

∑
i∈K

ri

#K
=

∑
i∈K

1

#K

dri

dt

= rk · γ J

∑
i∈K

1

#K
(G − ri) = rk · γ J

(
G −

∑
i∈K

ri

#K

)
= 0. (7.9)

Assume that ri �= G for i ∈ K or ri �= 0 for i /∈ K . (Recall that ri > 0 for all i ∈ K .) Basing on the
observation that G in the formula (7.8) is a constant, it is easy to notice that DG decreases as t grows,
because each ri given in (7.8) tends to G .

If ri = G for i ∈ K and ri = 0 for i /∈ K , we get that DG(r, φ) = 0, but for these points we may
repeat the same reasoning for DΦ and obtain that DΦ decreases if diφi �= Φ . This ends the proof. �
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8. Proof of Lemma 4.1

Now we are in a position to give the proof of Lemma 4.1.
We define an extension F of a self-map of

⋃
K cone S K (given in Section 5) to a self-map of R2s

by the formula:

F := Sφ
1 ◦ Sr

1 ◦ R1 ◦ P1, (8.1)

where Sφ
1 , Sr

1, R1 and P1 denote time-one maps of the respective flows.

8.1. Smoothness of F

First, we prove some lemmas which are needed to show that F is smooth.

Definition 8.1. We call Γ : Rd → R a homogeneous function of degree p if for every real λ > 0 there
is: Γ (λx1, . . . , λxd) = λpΓ (x1, . . . , xd).

Lemma 8.2. Let G : R2s → R have the following form expressed in the polar coordinates (4.5): G(x) =
h1(r)h2(φ), where h1 : Rs+ → R is a homogeneous function of degree p. Then G is also a homogeneous func-
tion of degree p.

Proof.

G(λx) = h1(λr)h2(φ) = λph1(r)h2(φ) = λp G(x). �
Lemma 8.3. Let us assume that a flow W on R2s is given in the polar coordinates by the formulas

ṙi = ri Li(r1, . . . , rs) · Hi(φ1, . . . , φs),

φ̇i = Li(r1, . . . , rs) · Ti(φ1, . . . , φs), (8.2)

where i = 1, . . . , s; Hi, Ti are C1 , real-valued and 2π -periodic; Li : Rs+ → R is a homogeneous C1 function
of degree k � 1 for each i.

Then W1 , the time-one map of the flow W , is a C1 map.

Proof. After differentiating the formulas (4.5) we get:

ẋi = ṙi cosφi − φ̇iri sinφi,

ẏi = ṙi sinφi + φ̇iri cosφi . (8.3)

Using the formulas (8.3) we may rewrite the equations for the flow (8.2) in such a form that the
left-hand sides are expressed in Cartesian coordinates and right-hand sides in the polar coordinates:

{
ẋi = ri Li(r1, . . . , rs) · Hi(φ1, . . . , φs) cosφi − ri Li(r1, . . . , rs) · Ti(φi, . . . , φs) sin φi,

ẏi = ri Li(r1, . . . , rs) · Hi(φ1, . . . , φs) sinφi + ri Li(r1, . . . , rs) · Ti(φi, . . . , φs) cos φi .
(8.4)

Let us denote the right-hand sides of the formulas (8.4) by Q i , i = 1, . . . ,2s. In order to show that
the discretization of the flow (8.4) is C1 it is enough to state that all Q i (as the functions on R2s in
the Cartesian coordinates) are C1. It is immediate that each such map is C1 in R2s \ {0}. We show
that they are C1 near the origin. Let z = (z1, . . . , z2s) = (x1, y1, . . . , xs, ys).
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We get that each Q i has the form h1(r)h2(φ) where h1 is a homogeneous function of degree k + 1,
thus by Lemma 8.2 Q i is also a homogeneous function of degree k + 1.

Next, by the Euler theorem, partial derivatives of Q i are homogeneous function of degree k. We
obtain finally:

lim
z→0

∂ Q i

∂z j
(z) = lim

z→0

∂ Q i

∂z j

(
‖z‖ z

‖z‖
)

= lim
z→0

‖z‖k ∂ Q i

∂z j

(
z

‖z‖
)

= 0. (8.5)

The last equality results from the fact that ∂ Q i
∂z j

are bounded on the unit sphere. Consequently, each

partial derivative of Q i at zero exists and is continuous. �
Remark 8.4. Notice that all partial derivatives of Q i converge to zero, as z → 0, thus the map Q =
(Q 1, . . . , Q 2s) has the derivative at 0 equal to 0. This implies that the derivative of the time-one map
of the flow (8.4) at 0 is equal to identity.

Proof of the smoothness of F . The map F is the composition of four maps given in (8.1). The smooth-
ness of R1 is obvious. The flow P has the form (8.2), thus by Lemma 8.3 P1 is smooth. The same
argument as for P (with only small modifications) applies to Sφ and Sr . This completes the proof. �
8.2. Calculation of indices

Now we show that the fixed point indices of iterations of F are given by the formula (4.1). By
Corollary 5.2 it suffices to prove the following lemma.

Lemma 8.5.

ind
(

F n
|V K (ε),0

) = ind
(

F n| cone S K
,0

)
. (8.6)

Proof. Let r be a retraction r : V K (ε) → cone S K . We show that there exists a homotopy H : V K (ε) ×
I → V K (ε), such that H(·,0) = id and H(·,1) = r. Then, for each fixed n, the homotopy h(n) = F n ◦ H
joins F n with F n ◦ r. As a result, if for each t the composition F n ◦ Ht : V K (ε) → V K (ε) has no fixed
points (except for 0) we obtain the formula (8.6) by homotopy invariance of fixed point index.

We define H by:

H(r, φ, t) = (
H ′(r, t), H ′′(φ, t)

)
, (8.7)

where

H ′(r, t) =
{

(1 − t)ri + tG for i ∈ K ,

(1 − t)ri for i /∈ K ,
(8.8)

H ′′(φ, t) =
{

(1 − t)φi + t Φ
di

for i ∈ K ,

φi for i /∈ K .
(8.9)

To complete the proof we must show that F n ◦ Ht has the unique periodic point 0. Let us recall
that the map F changes the cones in V K (ε) (by Lemma 7.2 F diminishes DG or DΦ ). On the other
hand, each cone in V K (ε) \ cone S K is pushed in each moment of the homotopy Ht (for t � 0) to
a cone whose (at least one) deviation DG or DΦ is smaller. The last follows from the fact that the
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homotopies H ′ and H ′′ are convex combinations between the coordinates and their mean values, and
thus the deviations are decreasing. This completes the proof. �
9. Realizations of other cases

In this section we describe the constructions of realizations of all other cases. We follow the steps
of Lemma 3.4, i.e. we start with the case when the dimension m is equal to 2s, then we get the case
(F e), realized in the previous section. Next, we gradually increase the dimension, which enables us to
construct the realizations with less and less number of restrictions. However, we cannot obtain the
realizations just as the products of (F e) on R2s and some map on complementing space (Remark 9.1).
We need in particular two additional cones (cf. S̃±K below) interchanged by symmetry, in order to
obtain not only ad regd appearing in (F e) but also a2d reg2d with arbitrary a2d .

The smoothness in all cases follows again from the homogeneity of the considered vector fields.

9.1. Realizations for m = 2s + 1

We represent R2s+1 as R2s × R, and will denote (2s + 1)-axis by M1.
We take rK ∈ R2s defined by the formula (4.7) and consider

S̃ K =
{(

rK
1 ,

t

d1
, . . . , rK

s ,
t

ds
,0

)
: t ∈ R

}
(9.1)

and

S̃±K =
{(

rK
1 ,

t

d1
, . . . , rK

s ,
t

ds
,±1

)
: t ∈ R

}
. (9.2)

Next, we will consider the cones cone S̃ K ⊂ R2s × {0} and cone S̃±K ⊂ R2s+1.
We define the rotation flow in R2s+1 by

R̃(r1, φ1, . . . , rs, φs, x2s+1; t) =
(

r1, φ1 + t

d1
, . . . , rs, φs + t

ds
, x2s+1

)

= (
R(r1, φ1, . . . , rs, φs; t), x2s+1

)
. (9.3)

We use the symmetry map s : R2s+1 → R2s+1:

s(x1, x2, . . . , x2s, x2s+1) = (x1, x2, . . . , x2s,−x2s+1).

Notice that

s(cone S̃±K ) = cone S̃∓K . (9.4)

We take on the additional axis M1 one of the three flows, a sink or a source or straight (straight
flow is a flow with the fixed point 0 removable by any small perturbation) and denote it as Γi , where
i ∈ {sink, straight, source}.

Each of them generates time-one map Γi,1, which realizes fixed point indices on M1 of the form

ind
(
Γ n

sink,1,0
) = reg1(n),

ind
(
Γ n

straight,1,0
) = 0,

ind
(
Γ n

source,1,0
) = − reg1(n). (9.5)
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We extend each of the flows Γi onto the small cone-neighborhood of M1, V M1 , and denote the
extended flow as Γ̃i .

Let us remind that by J we denote any subset of {d1, . . . ,ds} (determined by a set of indices
K ⊂ {1, . . . , s}), d J = LCM( J ), LCM(∅) = 1.

Remark 9.1. The realizations which can be obtained as a product of F (realizing (F e)) and a one-
dimensional map are of very special forms. Namely, by the multiplicativity property of fixed point
index for the self-maps F × Γi,1 of R2s × R, where i ∈ {sink, straight, source}, we get

ind
(

F n × Γ n
i,1,0 × 0

) = ind
(

F n,0
) · ind

(
Γ n

i,1,0
)
.

On the other hand, the multiplication of two expansions is expressed by the formula

regk(n) · regl(n) = GCD{k, l} regLCM{k,l}(n), (9.6)

where GCD{k, l} denotes the greatest common divisor of k and l.
As a consequence, by the formula (9.6) we obtain:

F × Γsink,1 gives a subcase of
(

Eo).
F × Γsource,1 gives the case

(
Co).

Except for the sequences reg1(n),− reg1(n),0, in the one-dimensional space we can realize one more:
reg1(n) − reg2(n) by s ◦ Γsource,1. Thus, by the product F × (s ◦ Γsource,1) we can obtain also the case
(F o) but with the additional restrictions ad = −a2d for d odd.

Summing it up, by the products we cannot realize all possible sequences of indices.

Realization of the sequence defined by (3.3), i.e.

∑
J

ad J regd J
, a1 ∈ {−1,0,+1}.

We consider the following counterpart of the formula (8.1):

F̃ := S̃φ
1 ◦ S̃r

1 ◦ R̃1 ◦ P̃1, (9.7)

where R̃1 is the time-one map of the flow defined in (9.3). The flow P̃ is constructed from P (see
Section 7.1) by the following modifications:

• we add a (2s + 1) component of the flow Pad J
, cf. (5.1):

ẋ2s+1 = x2s+1|r|k cos(ad J d1φ1),

• on the cone-neighborhoods of cone S̃±K and cone S̃ K the flow P̃ is the combination of Pad J

and a sink on R2s+1, in the same way as in the formula (7.4),

• on V M1 P̃ is the combination of Γ̃i and a sink,

• outside the above cone-neighborhoods we define P̃ as a sink. (9.8)
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The maps S̃φ
1 and S̃r

1 are the counterpart of Sφ
1 and Sr

1 and move the points towards the cones
(or to M1 in the case of V M1 ) so that the fixed point indices will be equal to those calculated on the
cones (or on M1, respectively). As a result, we obtain by Lemma 5.3 and the formula (9.5):

ind
(

F̃ n,0
) =

(
reg1(n) +

∑
J �=∅

ad J regd J
(n)

)
+ (

ind
(
Γ n

i,1,0
)) − reg1(n)

= a1 reg1(n) +
∑
J �=∅

ad J regd J
(n), (9.9)

where:

a1 =
⎧⎨
⎩

1 for i = sink,

0 for i = straight,

−1 for i = source.

Realization of the sequence defined by (3.4), i.e.

∑
J

ad J regd J
+

∑
J : d J is odd

a2d J reg2d J
, a1 = 1, a2 ∈ {0,−1}.

Now we use additionally the cones S̃±K , and in their neighborhoods we define P̃ in the same way
as described in (9.8). We define the realization as

F̃ := s ◦ S̃φ
1 ◦ S̃r

1 ◦ R̃1 ◦ P̃1. (9.10)

Observe that F̃ |M1 = s ◦ Γi,1, and

ind
(
sn ◦ Γ n

sink,1,0
) = reg1(n),

ind
(
sn ◦ Γ n

source,1,0
) = reg1(n) − reg2(n). (9.11)

Finally, F̃ realizes:

• ad J regd J
(n) on S̃ K ,

• a2d J reg2d J
on S̃±K ,

• a1 reg1(n)+a2 reg2(n) on M1, where the sum has one of two forms of the formula (9.11). (9.12)

9.2. Realizations for m = 2s + 2

We represent R2s+2 as R2s × R2, and will denote (x2s+1, x2s+2)-plane by M2.
We repeat the similar construction as in the previous case, namely we define analogously

S̃ K =
{(

rK
1 ,

t

d1
, . . . , rK

s ,
t

ds
,0,0

)
: t ∈ R

}
(9.13)

and
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S̃±K =
{(

rK
1 ,

t

d1
, . . . , rK

s ,
t

ds
,1,±1

)
: t ∈ R

}
. (9.14)

Next, we build the cones cone S̃ K ⊂ R2s × {(0,0)} and cone S̃±K ⊂ R2s+2.
We define the rotation flow in R2s+2 by

R̃(r1, φ1, . . . , rs, φs, x2s+1, x2s+2; t)

= (
R(r1, φ1, . . . , rs, φs; t), x2s+1, x2s+2

)
. (9.15)

We use the symmetry map

s(x1, x2, . . . , x2s, x2s+1) = (x1, x2, . . . , x2s, x2s+1,−x2s+1).

Realization of the sequence defined by (3.5), i.e.

∑
J

ad J regd J
+

∑
J : d J is odd

a2d J reg2d J
, a1 ∈ {−1,0,+1}.

In this case we define the flow P by the formulas (5.1) with the additional pair of the polar
coordinates. This formula is valid also in the neighborhoods of each cone S̃±K .

On the space M2 we take one of the planar flows hp described in Section 4.1, such that it is
symmetric along the axis x2s+2. Considering indices of iterations of its discretization, which have the
form a1 reg1 +a2 reg2, it is easy to observe that the coefficient a1 depends on whether the flow is
sink, straight, or source on the (x2s+1)-axis, and is equal to 1,0,−1 respectively. On the other hand,
we may obtain arbitrary a2 by taking appropriate number of symmetric sectors on M2.

We define F̃ = s ◦ S̃φ
1 ◦ S̃r

1 ◦ R̃1 ◦ P̃1 which realizes:

• ad J regd J
(n) on cone S̃ K ,

• a2d J reg2d J
on cone S̃±K ,

• a1 reg1(n) + a2 reg2(n) on M2 with a1 ∈ {−1,0,1} and arbitrary a2. (9.16)

Realization of the sequence defined by (3.6), i.e.

∑
J

ad J regd J
, a1 arbitrary.

Here we define P as a sink in the neighborhood of each cone S̃±K . On the space M2 we take one
of the planar flows hp described in Section 4.1. The discretization of such flow enables us to realize
a1 reg1 with arbitrary coefficient a1.

Next, we define F̃ = S̃φ
1 ◦ S̃r

1 ◦ R̃1 ◦ P̃1 which realizes:

• ad J regd J
(n) on cone S̃ K ,

• a1 reg1(n) on M2 with arbitrary a1. (9.17)
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9.3. Realizations for m � 2s + 3

We represent R2s+3 as R2s × R3, and denote (x2s+1, x2s+2, x2s+3)-space by M3. In this case we
may find a flow on M3, symmetric along the (x2s+1, x2s+2)-plane, such that its discretization realizes
on M3 every sequence of the form a1 reg1(n) + a2 reg2(n) with no restrictions for the coefficients
a1 and a2 (see [9] for details). Repeating then exactly the same scheme as in (9.17), we realize the
sequence given in the formula (3.5), i.e.∑

J

ad J regd J
+

∑
J : d J is odd

a2d J reg2d J
, a1,a2 arbitrary.

10. Final remarks

10.1. Problem of Babenko and Bogatyi

In [1] Babenko and Bogatyi asked whether any bounded sequence satisfying Dold relations is a sequence
of indices of an isolated fixed point of a smooth map of an Euclidean space (Problem 4, p. 22). Theorem 3.2
enables us to answer this question positively. Namely, any bounded sequence satisfying Dold relations
can be written down as a finite combination of basic sequences regk (cf. [13]). As a consequence,
if we take s big enough in Lemma 3.4 we are able to realize any sequence {b(n)}n of the form
b(n) = ∑

k∈A ak regk(n), where A is finite. Furthermore, for a given sequence {b(n)}n we may establish
the lowest dimension m such that {b(n)}n can be realized by a smooth map in Rm . In any case,
if #A = p we are able to realize {b(n)}n for m = 2p + 3 (see (IV), formula (3.7) of the proof of
Lemma 3.4).

10.2. Realizations in the narrower classes of maps

At the end of the article we discuss the problem of finding the realizations in some narrower
classes of maps. We study the case of C1 maps, but it is an interesting question whether the se-
quences enlisted in Theorem 3.1 may be obtained as indices of some more regular maps, which
satisfy additional restrictions.

Let us recall that the map F realizing expression in the formula (4.1) of Lemma 4.1 is the com-
position of a non-singular linear map R and some flows. On the other hand, the flows may be taken
arbitrarily small. The same is true for all realizations of the remaining cases. As a result, we get the
following

Corollary 10.1. The map realizing any of admissible expressions given in Theorem 3.1 can be chosen a diffeo-
morphism being an arbitrarily small deformation of a non-singular linear map.

A class which is very important in dynamical systems consists of maps f for which {0} is an
isolated invariant set, i.e. there is U , an open neighborhood of 0, such that

⋂
k∈Z

f k(U ) = {0}. (10.1)

An open problem is whether there are always C1 realizations for which {0} is an isolated invariant
set. Notice that in some of our realizations elliptic sectors are used, so they do not satisfy the assump-
tion (10.1) in such cases. Ruiz del Portal and Salazar considered in [22] that problem in dimension 3
by a use of Conley index methods. These authors gave the list (Proposition 1 in [22]) of examples of
R3-diffeomorphisms satisfying (10.1) which do not cover all sequences admissible by Theorem 3.1 in
dimension 3. They also conjectured that the list is optimal in the following sense. Let f be an R3-
diffeomorphism such that Fix( f ) = Per( f ) = {0}, if the sequence of indices of f at an isolated fixed
point 0 does not follow any of the patterns from their list then {0} is not an isolated invariant set
of f .
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