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Abstract 

This research work performs the first time exploring and addressing the flexomagnetic 

property in a shear deformable piezomagnetic structure. The strain gradient reveals 

flexomagneticity in a magnetization phenomenon of structures regardless of their atomic 

lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse 

magnetization couples both piezomagnetic and flexomagnetic features into the material 
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structure. The mathematical modeling begins with the Timoshenko beam model to find 

the governing equations and non-classical boundary conditions based on shear 

deformations. Flexomagneticity evolves at a small scale and dominant at micro/nanosize 

structures. Meanwhile, the well-known Eringen’s-type model of nonlocal strain gradient 

elasticity is integrated with the mathematical process to fulfill the scaling behavior. From 

the viewpoint of the solution, the displacement of the physical model after deformation is 

carried out as the analytical solution of the Galerkin weighted residual method (GWRM), 

helping us obtain the numerical outcomes on the basis of the simple end conditions. The 

best of our achievements display that considering shear deformation is essential for 

nanobeams with larger values of strain gradient parameter and small amounts of the 

nonlocal coefficient. Furthermore, we showed that the flexomagnetic (FM) effect brings 

about more noticeable shear deformations’ influence. 

Keywords: Flexomagneticity; Buckling analysis; Timoshenko nanobeam; NSGT; 

GWRM 

Nomenclature: 

xx : Axial strain  

xz : Shear strain 

xxz : Gradient of the axial elastic strain  

11C : Elastic modulus 

xx : Axial stress 

xz : Shear stress 

31f : Component of the fourth-order flexomagnetic coefficients tensor 

33a : Component of the second-order magnetic permeability tensor  

31q : Component of the third-order piezomagnetic tensor 

xxz : Component of the higher-order hyper-stress tensor 
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zB : Magnetic flux  

zH : Component of magnetic field 

31g : Influence of the sixth-order gradient elasticity tensor 

q : Third-order piezomagnetic tensor 

a : Second-order magnetic permeability tensor 

g : sixth-order gradient elasticity tensor 

C : Fourth-order elasticity coefficient tensor 

f : Fourth-order flexomagnetic tensor 

r : Fifth-order tensor 

ui (i=1,3): Displacement in the x- and z- directions 

u and w: Axial and transverse displacements of the mid-plan 

 : Rotation of beam elements around the y-axis 

z: Thickness coordinate 

 : External magnetic potential 

 : Magnetic potential function 

 l nm : Strain gradient length scale parameter 

   
2 2

0nm e a  : Nonlocal parameter 

mX : Residue of the equations 

sk : Shear correction factor 

xN : Axial stress resultant 

xQ : Shear stress resultant 

xM : Moment stress resultant 

xxzT : Hyper stress resultant 

1. Introduction 

Magnetic properties are divided into different categories: diamagnetic, 

paramagnetic, ferrimagnetic, ferromagnetic materials, etc. Ferromagnetic materials are 

magnetic structures with high permeability, such as cobalt and iron. Ferromagnetic 

materials are divided into hard (e.g., CoFe2O4) and soft groups (e.g., Fe3O4). Hard 

magnetic materials are materials that become magnetized hardly ever; That is, a strong 

magnetic field is required to create magnetism in them. As these materials become 
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magnetized hardly, they also lose scarcely ever their magnetic properties. These structures 

are suited to be used as a steady magnetic state, such as sensors and measuring 

instruments. Conversely, soft magnetic structures are easily magnetized and just as easily 

lose their magnetic properties [1-5].  

CoFe2O4 magnetic nanostructures have received particular attention among 

different spinel ferrites, such as exclusive physical features, excellent mechanical 

hardness, significant magnetostrictive coefficient, high coercivity, moderate saturation 

magnetization, etc. [6, 7]. From a technological perspective, these characteristic 

properties cause the structure described above entirely significant, leading to its 

application in gas sensors, magnetic hyperthermia, biosensors, ferrofluid technology, and 

high-density magnetic media [8-11]. 

A lot of practical applications can be observed from the phenomenological 

magneto-mechanical coupling of crystals. Structures with reduced dimensions 

functioning as nano configurations are affected principally and importantly from this type 

of coupling. It is already known that the connection between induced magnetization and 

strain gradient is mainly significant among small-size structures. Flexomagneticity (FM) 

is a phenomenon that exists during the magneto-mechanical coupling regarding the 

magnetic field and strain gradient [12-14]. Compared to the flexomagneticity, 

flexoelectricity influence appears in crystalline structures between the electric field and 

strain gradient (converse effect) [15-33]. The physical action of FM makes it competent 

to the economic outlook. The advantage of FM property gives a possible way of 

improving biosensor efficiency. 
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The contemporary decade has been witnessed plenty of research work performed 

on the mechanics of piezomagnetic (PM) nano configurations [34-42]. However, the 

availability of FM in scientific papers is seen hardly and scarcely [43-52]. In the 

aforementioned reports presented on FM for PM structures, in order to model the domain 

displacement field, all available references employed the concept of the Euler-Bernoulli 

(EB) approach regardless of shear deformation. By contrast, in the present research work, 

we analyze the transverse shear deformation on the basis of utilizing the Timoshenko 

beam approach. As long as the domain is a nanoscale volume, the size-dependent 

mechanical response should be considered. The literature in [43, 44] used the surface 

elasticity hypothesis to address this scale-dependent reaction. Oppositely, in the current 

paper and similar to [45-52], we handle stress/strain-driven non-classical elasticity 

models conforming to the nonlocal strain gradient size-dependent approach. Using this 

approach leads to investigating two concurrent size-dependent nanomaterials' behaviors: 

inhomogeneity distribution of atoms (material particles) and long-range lattice 

interactions. The first one occurs due to a large surface to the volume of atoms, and the 

second one arises concerning the long-range interatomic interaction among the whole 

atoms of the domain. It is germane to note that the [43, 44] applied both direct and 

converse magnetic fields; however, [45-52] and the present article have taken the 

converse effect only. We keep the ends of the magnetic nanobeam mathematically in 

simply-supported boundary conditions through a numerical solving procedure. Up to our 

knowledge, the literature has confirmed that FM behavior is completely size-dependent. 

Moreover, the crucial achievements of [45-52] approved that the FM can cause 

more material stiffness. Therefore, we aim to investigate the relevance between transverse 
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shear deformation and the FM, which is a novel study in the present scientific work and 

what follows. In a point of fact, until now, the FM has been investigated on thin beam 

models only regardless of shear deformation [43-52]. Furthermore, the linear 

mathematical model which is obtained by this study is solved through the medium of the 

Galerkin weighted residual method. The numerical results have appeared in line with the 

graphical figures and detailed parametric diagrams. 

2. Mathematical modeling 

2.1 Fundamental calculations of the piezomagnetic-flexomagnetic (PFM) media  

We begin the fundamental formulation of a PFM solid by assuming some 

restrictions acting as minute deformations in an isothermal environment, referencing [12-

14]. Thus, the magnetic field H and displacement u are variables in the vector framework. 

   ,u u x  H=H x                                                                                                          (1) 

in which x  defines a position vector.  

We introduce the free energy density U defined within the flexomagneticity as 

follows 

 
1 1 1

, , : : :
2 2 2

:

U U H H a H C g r

H q H f

       

 

       

   

                                                 (2) 

in which “⋮”, “:”, and “∙” depict the inner (scalar) products in the spaces of third-order 

tensor, second-order tensor, and vectors, respectively.   

The elastic strain and its gradient are  expressed as 

 1
,

2

Tu u                                                                                                        (3) 
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where   is the 3D nabla operator. 

In what follows, we use the magnetic potential ψ related  with H as 

H                                                                                                                               (4) 

To study the FM on a static PM model, based on the virtual work principle, one 

can use the variational approach 

V
UdV A                                                                                                                               (5) 

where A  is dedicated for performing the work of outer loads, V exhibits the domain 

volume occupied by FM solid. 

For simplicity, a standard relation for A  is introduced as 

V V

A F u t uds  



                                                                                                                                  (6) 

in which t and F display the surface traction and external mass forces, respectively. 

We illustrate the following equations based on Eq. (5) and calculus of variations 

  0F                                                                                                                                  (7a) 

0B                                                                                                                                (7b) 

where B  is a magnetic induction vector, and the constitutive relations of a PFM media 

can be established as 

:
U

C r H q  



    


                                                                                                                 (8a) 

: :
U

g r H f  



    


                                                                                                      (8b) 

:
U

B a H q f
H

 


     


                                                                                                             (8c) 
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2.2 The PFM hard magnetic soft one-dimensional structure 

This research tries to develop the FM studies on PM solids by accounting for the 

shear deformation of the structure while both ends of the one-dimensional beam-shaped 

configuration are held in simple supports. Regarding Fig. 1, a one-dimensional figured 

beam bridged by simple ends can be detected. Dimensions of the beam are respectively 

assigned in the parametric framework by h and L for its thickness and effective length. 

 

Fig. 1. Geometrical details of a simply supported square figured beam 

While a beam incorporates FM properties, the constitutive relations (Eq. (8)) are re-

defined as follows [43, 44] 

11 31xx xx zC q H                                                                                                             (9) 

31 31xxz xxz zg f H                                                                                                        (10) 

33 31 31z z xx xxzB a H q f                                                                                                (11) 

As the main scope of this paper is exerting transverse shear deformation in the PFM 

solid, we use the Timoshenko model as follows [53, 54] 

     1 ,u x  z u x z x                                                                                                                 (12a) 
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   3 ,u x z w x                                                                                                                  (12b) 

 In view of Lagrangian strain and as the present study addresses the linear stability 

of PFM nanoscale beams, thus 

1

2

ji
ij

j i

uu

x x


 
     

                                                                                                             (13) 

On developing Eq. (13) based on Eq. (12), one obtains 

xx

du d
z

dx dx


                                                                                                                       (14a) 

xz

dw

dx
                                                                                                                         (14b) 

xx
xxz

d d

dz dx

 
                                                                                                                                       (14c) 

Modifying the Lagrange principle (5), we came to  

  0W U                                                                                                               (15) 

where the given letters U  and W  state respectively the internal strain energy 

originated from mechanical and magnetic sections, and mechanical work of external 

elements accomplished on the system.  

The following relation can depict the whole strain energy of the beam 

 U xx xx xz xz xxz xxz z zV
B H dV                                                                   (16) 

Equilibrium equations and non-classical end supports conditions can be obtained 

after imposing the variational method on Eq. (16) as follows 

1

0

L
Mech x x x xxz
U x

dN dQ dM dT
u w Q dx

dx dx dx dx
     

 
        

 
                                  (17a) 
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2

2

0 2

hL
Mag z
U

h

dB
dzdx

dz
 



                                                                                                 (17b) 

 
1 0

L
Mech
U x x x xxzN u Q w M T                                                                       (18a) 

 
2

/2

/2
0

L
hMag

zU h
B dx 


                                                                                                    (18b) 

where indices 1 and 2, respectively associated with the mechanical and magnetic parts, 

furthermore 

/2

/2

h

x xx

h

N dz


                                                                                                                     (19) 

/2

/2

h

x xx

h

M zdz


                                                                                                                     (20) 

/2

/2

h

x s xz

h

Q k dz


                                                                                                                      (21) 

/2

/2

h

xxz xxz

h

T dz


                                                                                                                  (22) 

Taking external items such as loads and environmental effects results in 

mechanical work in the solid, hence [55-58] 

2
0

0

1

2

L

W x

dw
N dx

dx

 
   

 
                                                                                                              (23) 

Then, the first variation of Eq. (23) can be produced as 

0

0

L

W x

d w dw
N dx

dx dx




 
   

 
                                                                                                   (24) 

where 
0
xN  reveals in-plane pre-buckling force. 
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There is only a transverse component for the present media for the magnetic field 

determined as [59, 60] 

0z

d
H

dz


                                                                                                                                  (25) 

Let us match the literature and embed the beam in a magnetic potential difference 

circuit so that the maximum and minimum magnetic potentials are at the uppermost and 

lowest surfaces, respectively. Therefore, the magnetic boundary conditions for a reverse 

PM impact besides closed-circuit yields [43, 44] 

, 0
2 2

h h
 

   
        
   

                                                                                      (26a-b) 

By combining Eqs. (11), (17b), (18b), (25), and (26) together and making some 

mathematical processes give the magnetic potential distribution in line with the thickness 

and component of the magnetic field as 

2
231

332 4 2

q h d h
z z

a dx h

    
           

                                                                               (27) 

31

33
z

q d
H z

a dx h

 
                                                                                                             (28) 

The study of the structural properties of nanodomains, especially the accurate 

measurement of their mechanical response, has required complex tools. The ultrasmall size 

space is transferred into a continuum solid media through some mathematical theorems to 

avoid using complicated equipment. These theoretical models can act in two forms, integral 

or differential operators. However, we here employ a differential framework of one of these 

models, which is famed as nonlocal strain gradient elasticity theory (NSGT) [61] 

2 2
2

2 2
1 1ij ijkl ij

d d
C l

dx dx
  

   
     

   

                                                                                   (29) 
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In other words, in constitutive relations for stress tensor (8a), we consider C as an integro-

differential operator related to Eq. (29). 

The right side of the NSGT relation is assumed to project the strain gradient role. 

This part is significant in the mechanics of micro/nanoscale deformable materials [62]. 

Further, the left side is considered to render the nonlocality of atoms. Both parts involve 

extra parameters, respectively   as a nonlocal parameter and l  as a strain gradient 

parameter. It should be reminded that    
2 2

0nm e a   where e  denotes a nonlocal 

quantity and a  indicates a characteristic internal length which can be the distance between 

the center of two neighbor atoms. It should be remembered that the values of small-scale 

parameters that existed in NSGT vary in light of several cases, such as the type of end 

supports. In general, the values of these factors are not constant or an associated value for 

each material [63-66]. 

Putting Eq. (14) and (27, 28) into Eqs. (9-11), and combining the obtained relations 

with Eq. (29), then, respectively, the components of magnetic induction, axial stress, and 

shear stress can be obtained as 

2 2
2 31 31 31

312 2
33

1 1xxz

q f z fd d d
l g

a dx hdx dx


 

      
             

      

                                         (30) 

22 2
2 31 31

11 112 2
33

1 1xx

q qd d du d
l C z C

dx a dx hdx dx


 

     
               

       

                                (31) 

2 2
2

2 2
1 1xz

d d dw
l GA

dxdx dx
  

      
                  

                                                                        (32) 

Nonlocal stress resultants can be obtained by substituting Eqs. (30-32) into Eqs. 

(19-22) [67-75] 
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2 2
2

1 42 2
1 1x

d d du
N l I I

dx dx dx


    
       

    

                                                                                (33) 

 
2 2

2

2 32 2
1 1x

d d d
M l I I

dx dx dx




    
       

    
                                                               (34) 

2 2
2

442 2
1 1x

d d dw
Q l H

dx dx dx
 

     
         

     
                                                                       (35) 

2 2
2

5 62 2
1 1xxz

d d d
T l I I

dx dx dx




    
       

    

                                                                     (36) 

in which the numerical expressions bring about  

   
/2 /2 /22 2

2 31 31
1 2 11 3 4

33/2 /2 /2

/2 /2 /2

31
5 31 6 44

/2 /2 /2

, 1, , , ,

, ,

h h h

h h h

h h h

s

h h h

q z q
I I C z dz  I dz I dz  

a h

f
I g dz  I dz  H k GAdz

h





  

  

  

  

  

  
 

After implementing Eq. (17a) and (24) in Eq. (15), the equations which govern the 

PFM beam-shaped solid can be developed by which the beam behaves statically in a local 

domain 

0xdN

dx
                                                                                                                         (37) 

2
0

2
0x

x

dQ d w
N

dx dx
                                                                                                            (38) 

0x xxz
x

dM dT
Q

dx dx
                                                                                                                     (39) 

This is the time to simplify Eqs. (33-36) in the nonlocal domain. To do this, by 

way of Eqs. (37-39), one can derive 

2
2

1 42
1x

d du
N l I I

dx dx

  
    

  

                                                                                        (40) 
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3 2 2

0 2

5 2 33 2 2
1x x

d d w d d
M I N l I I

dx dx dx dx

 

    

         
    

                                          (41) 

3 2
0 2

443 2
1x x

d w d dw
Q N l H

dx dx dx
 
     

          
     

                                                         (42) 

2

5 62
1xxz

d d
T I I

dx dx




  
    

  

                                                                                                               (43) 

Let us re-write Eqs. (37-39) based on Eqs. (40-42) as 

2 2
2

12 2
1 0

d d u
l I

dx dx

  
   

  
                                                                                                                        (44) 

2 2 2 2
0 2

442 2 2 2
1 1 0x

d d w d d d w
N l H

dx dx dx dx dx




        
            

        
                                          (45) 

 
2 2 2 2

2

5 2 3 442 2 2 2
1 1 0

d d d d dw
I l I I H

dx dx dx dx dx

 
 

      
               

      
                    (46) 

It is quite clear that Eq. (44) is independent of Eqs. (45) and (46). Therefore, to 

compute the system's stability capacity, Eqs. (45) and (46) will be solved. It is vital to 

remember that if we consider l  , or 0, l 0   , the local analysis is performed. 

Now, the pre-buckling compressive axial forces can be written as  

0 Mec ag
x

h MN N N                                                                                                    (47) 

for which one can dedicate the magnetic and mechanical parts as MagN  and 
MechN  

respectively. 

Mech

crN P                                                                                                                                     (48) 

31

MagN q                                                                                                                        (49) 

3. Solution process 
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Buckling equations are solved based on various methods. In between these solution 

techniques, well-known ones can refer to the Galerkin weighted residual method 

(GWRM), which is a simple one involving a fast solution time [56]. To proceed with this 

method, the unknown functions  w x  and  x  can be chosen as 

   
1

N

m

m

w x a x


                                                                                                             (50) 

   
1

N

m

m

x b x


                                                                                                                (51) 

The existed functions  ma x  and  mb x  based on the GWRM are expanded as 

 
0

L

m m ma W x X dx                                                                                                                       (52) 

 
0

L

m m mb x X dx                                                                                                                      (53) 

Pertained to simple end conditions (SS), mW  and m  are trigonometric functions 

as 

  sinmW x x
L

 
  

 
                                                                                                                (54) 

  cosm x x
L

 
   

 
                                                                                                                 (55) 

Manipulating and simplifying Eqs. (45) and (46) and combining it with Eq. (23), 

then based on Eqs. (50) and (51) and associating m=1, the linear analytical stability 

equation of the PFM beam-like nano solid can be achieved. 

4. Discussion and numerical results 

4.1. Results validation 
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The verification section is here conducted to devote the exactness of the solution 

process. This part of the study is divided into two divisions. The first validation (Table 1) 

corresponds to Euler-Bernoulli (EB) and Timoshenko (TB) common nanobeams based 

on nonlocal effects only. The TB results are then compared with the EB ones in Table 2 

owing to the PFM nanoscale beams by comparing results of EB small size beam with TB 

on the basis of substituting physical quantities in Table 3 [43, 44].  

The listed results in Table 1 represent that the difference between TB with EB tends 

to be shorter while increasing the value of the nonlocal parameter. What is more, no one 

can see any conflicts between present TB with those of [76]. In another investigation 

adjusted by Table 2, it is mentionable that the difference between the stability amounts of 

TB versus EB has become smaller. This smaller difference is observed while µ is 

increasing and the structure is PFM. In fact, the nonlocal parameter effect except 

decreasing the stiffness of the nanostructure deactivates the influence of shear 

deformations and then brings the EB and TB close to each other. Ultimately, on the basis 

of these prepared Tables, one can say that a very good accuracy and agreement are 

revealed for the employed solving technique.  

Table 1. Comparison of critical buckling load ( 11C =1TPa, υ= 0.3, l=0 nm, ψ=0 mA, SS, 

2

11

Cr
Cr

c

P L
P

C I
 ) 

CrP  

L/h 

e0a=0 nm e0a=0.5 nm e0a=1 nm e0a=1.5 nm e0a=2 nm 

EB[76],  

TB[76] 

TB-

Present 

EB[76],  

TB[76] 

TB-

Present 

EB[76],  

TB[76] 

TB-

Present 

EB[76],  

TB[76] 

TB-

Present 

EB[76],  

TB[76] 

TB-

Present 

10 
2.4674 

2.4056 
2.4056 

2.4079 

2.3477 
2.3477 

2.2457 

2.1895 
2.1895 

2.0190 

1.9685 
1.8685 

1.7690 

1.7247 
1.7247 
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30 

 

2.4674 

2.4603 
2.4603 

2.4606 

2.4536 
2.4536 

2.4406 

2.4336 
2.4336 

2.4079 

2.4011 
2.4011 

2.3637 

2.3569 
2.3569 

Table 2. Comparison of the critical buckling load of the piezomagnetic-flexomagnetic CFO 

nanostructure for EB and TB (l=1 nm, ψ=1 mA, SS) 

PCr (nN) 

L/h 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

EB TB EB TB EB TB 

10 3.2828 3.2111 3.0489 2.9832 2.8536 2.7928 

12 2.4074 2.3734 2.2946 2.2627 2.1954 2.1652 

14 1.9007 1.8825 1.8398 1.8225 1.7845 1.7679 

16 1.5803 1.5697 1.5446 1.5344 1.5115 1.5016 

18 1.3645 1.3579 1.3422 1.3358 1.3212 1.3150 

20 1.2121 1.2078 1.1974 1.1933 1.1835 1.1794 

22 1.1003 1.0974 1.0903 1.0875 1.0807 1.0779 

24 1.0159 1.0139 1.0089 1.0069 1.0021 1.0001 

26 0.9506 0.9491 0.9455 0.9440 0.9405 0.9390 

28 0.8990 0.8978 0.8951 0.8941 0.8914 0.8903 

30 0.8575 0.8566 0.8546 0.8537 0.8517 0.8509 

Table 3. Properties of the magnetic nanoparticle 

 

 

4.2. Buckling analysis 

In this article, the static linear buckling analysis of a piezo-flexomagnetic (PFM) 

nanobeam is probed to understand the flexomagnetic property more. We will determine 

the effectiveness of FM for a shear deformable structure in the ultrasmall size. The values 

of small scale parameters have been gotten as 0.5 nm<e0a<0.8 nm [77], and 0<e0a≤2 nm 

CoFe2O4 (CFO) 

11C =286 GPa 

ν=0.32 

31q =580.3 N/A.m 

33a =1.57×10-4 N/A2 
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[78, 79]. The value of the strain gradient parameter has been estimated as same as the 

lattice number of the examined nanostructure as l=1 nm. 

In the results section, by maneuvering on the dimensionless relationship of length to beam 

thickness (L/h), we try to evaluate the difference between the results of EB and TB beams 

in both local and nonlocal phases. Since this dimensionless ratio directly determines the 

importance of shear deformations (It was seen that in small values of this coefficient, the 

beam is thicker and the shear deformations are further important), the aim is to determine 

the effect of shear deformations on beams with FM property to know whether FM will be 

more important considering the shear deformation. 

First, in order to evaluate the different cases, Figs. 2 and 3 represent the problem by 

focusing on the nonlocal parameter and the strain gradient, respectively. With the help of 

Fig. 2, it is quite obvious that the thinner the beam, the less important the shear 

deformation in the smart beam. However, the process of reducing the results in the local 

beam (e0a=0) will be on a steep slope. In fact, the nonlocal parameter and the shear 

deformation effect directly impressed each other. When the value of the nonlocal 

coefficient is other than zero (e0a=2nm), the difference between the results of EB and TB 

decreases. Thus, it can be stated that the local solution (e0a=0) of the nanostructures will 

lead to a more gap in the difference between the results of EB and TB. In Fig. 3, it can be 

seen that by increasing the value of the strain gradient parameter, the stiffer the material, 

the greater the difference between the EB and TB results. From these two diagrams, it can 

be concluded that the stiffer the material and its structure, the more important the shear 

deformations seem.  
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Fig. 2. Nonlocal parameter vs. EB and TB for COF nanostructure (l=1 nm, ψ=1 mA) 

 

Fig. 3. Strain gradient parameter vs. EB and TB for COF nanostructure (e0a =0.5 nm, 

ψ=1 mA) 

Fig. 4 is based on changes in the value of the strain gradient parameter. Both EB and TB 

consist of two modes. The first mode is the PM beam, and the second mode is the PFM 
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beam. The result of the critical load for the EB-PFM at l = 0 is 2.836 nN and at l = 2nm 

is 3.6876 nN. Also, for TB-PFM is 2.7757 nN and 3.6055 nN, respectively. But we see 

that for PM beam in EB mode is 2.7373 nN and 3.5889 nN, respectively, and in TB mode 

is 2.6821 nN and 3.5119 nN. Therefore, considering the large values of the strain gradient 

parameter, we see that the difference between the results of EB-PM and TB-PM will be 

less than those of the EB-PFM with TB-PFM. It can be said that the strain gradient 

parameter affects the PFM beam more than the PM beams. A physical reason may be that 

the piezo-flexomagnetic material is stiffer than the piezo material. 

 

Fig. 4. Strain gradient parameter vs. EB and TB for COF nanostructure (e0a=1 nm, 

L=10h, ψ=1 mA) 

According to Fig. 5, we have tried to compare EB and TB in piezo and piezo-

flexomagnetic modes by considering the numerical changes of the slenderness parameter 

(L/h). For this purpose, we assessed the beam in the thicker zone. It shall be reminded 

that the results of TB are not accurate enough in the very thick range, and TB theory is 
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often suitable for beams with 6<L/h, and also in the case of EB for 10<L/h. According to 

the diagram and in the thicker mode of the beams, it is observed that the critical load for 

the EB-PM beam is 12.615 nN and for the TB-PM is 11.471 nN, in contrast to EB-PFM 

is 13.009 nN and for TB-PFM beam is 11.793 nN. Therefore, it can be stated that the 

difference between the results of EB and TB in piezo-flexomagnetic mode is greater than 

those of piezomagnetic mode. Of course, the literature [43-52] reported that FM is 

dominant in thinner structures. However, as a result of this study, one can conclude that 

the flexomagnetic effect will lead to the greater importance of shear deformations in 

thicker nanobeams. 

 

Fig. 5. Slenderness ratio vs. EB and TB for COF nanostructure (l=1 nm, e0a=0.5 nm, 

ψ=1 mA) 

Fig. 6 is drawn to show a pure mechanical response of the nanoscale beam (NB) compared 

with PM and PFM for both EB and TB. The NB excludes magnetic and also the FM 

properties. It is tried to sketch the beams from a thick beam up to a moderately thick 
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beam. As seen, the NB has the least mechanical stability in comparison with the PM and 

PFM nanobeams. Interestingly, in an analogy between NB with PFM, and PM, it can be 

observed that the results of the EB-NB would be matched with those of TB-NB sooner 

than other cases. From L/h=11, the results of EB and TB for NB are so closed to each 

other. However, this does not apply to magnetic cases. It means the importance of shear 

deformation will be increased in piezomagnetic-flexomagnetic domains. 

 

Fig. 6. Slenderness ratio vs. EB and TB for different nanostructure (l=1 nm, e0a=0.5 

nm, ψ=1 mA) 

5. Conclusions 

This work aimed to extend the shear deformation effect on the flexomagneticity 

response of a piezomagnetic ultrasmall scale elastic beam. We established the governing 

equations by using the Timoshenko beam. The nonlocal mechanics of the nanobeam was 

concerned with the nonlocal strain gradient approach by which we are able to transfer the 

discretize atomic lattice into a continuum region. The solution of the obtained equations 
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corresponded to a closed-form solution within which the numerical results were reported 

for simply supported end support. We organized some tabulated verifications to 

corroborate the numerical results. Based on the detailed parametric study and from an 

engineering perspective, this work provides some new attainments and outcome remarks 

as 

 The stiffer structure leads to the further remarkable of shear deformations. 

 The lesser the values of the nonlocal parameter, the more marked the shear 

deformations. 

 The larger the values of the strain gradient parameter, the more considerable 

the shear deformations. 

 For the smart nanobeams, the FM will affect the existence of shear 

deformations, and the effect is to increase its importance. 
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