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A B S T R A C T

Floodsar is an open-source tool for automatic mapping of the flood extent from a time series of synthetic
aperture radar (SAR) imagery. Floodsar is unsupervised, however, it requires defining the parameters search
space, geographical area of interest, and some river gauge observations (e.g. water levels or discharges)
time series that overlap temporarily with the SAR imagery. Applications of Floodsar are mainly in real-time
monitoring and elaborating long-time series of historical data. Floodsar features two algorithms for flood extent
mapping. The 1D algorithm identifies a flood/no-flood threshold in one SAR polarization. The 2D algorithm
performs clustering on two SAR polarizations at the same time. Floodsar chooses the optimal threshold or the
composition of clusters by maximizing the correlation between the resulting flood area and the river gauge
observations. Floodsar was tested on three case studies with different land uses to illustrate its performance.
The 2D algorithm performed on average the best with the average kappa=0.78, yet the less complex 1D/VV
algorithm obtained similar results.

ode metadata

Current code version v1.2
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00787
Permanent link to reproducible capsule –
Legal code license MIT License
Code versioning system used git
Software code languages, tools and services used C++ 17, GDAL
Compilation requirements, operating environments and dependencies OS: Linux, Windows Subsystem for Linux (WSL). Dependencies: build-essential, g++,

cmake, ninja-build, libgdal-dev, gdal-bin
If available, link to developer documentation/manual https://github.com/ElsevierSoftwareX/SOFTX-D-23-00787
Support email for questions tomberez@eti.pg.edu.pl

. Motivation and significance

Floodsar is a software that performs preprocessing of multitemporal
ynthetic aperture radar (SAR) imagery and analyzes the imagery in
he scope of relation with river gauge observations in order to map
he flooding extent. The Floodsar software allows to identify flood
xtent, or absence of flood, in nearly real-time without supervision
pon proper initial setup. Primarily, it aims to provide a long time
eries of flood extent, which can either be used for calibration and
alidation of hydrological models, or for ecological and vulnerability
esearch. Due to the near-real-time operation, easy integration with

∗ Corresponding author.
E-mail address: tomberez@eti.pg.edu.pl (Tomasz Berezowski).

a cloud, and ability to identify a flooding extent at a considerable
distance from a river gauge (but within the same river system), Floodsar
can also be used in crisis management.

Until now, one of the algorithms used in Floodsar was used to pro-
duce flood extent maps for the Biebrza wetlands, Poland [1]. As shown
in that study, the flooding frequency map produced for the 2014–2019
period using 161 SAR imagery resembled well the flood frequency maps
obtained in other studies using a hydrodynamic model. Further, these
flood extent maps were used to validate a groundwater/surface water
hydrological model, which was used to investigate the spatially variable
vailable online 5 April 2024
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extent of the river, groundwater, rain, and snow water in the flood for
the past and future (1881–2099) climate [2].

Works on remote methods for mapping flood extent have been
primarily using optical, or visible and infrared (VIS-IR) light sensors
and SAR. While spectral features extracted from VIS-IR imagery ef-
fectively discriminates water from the surrounding land cover, the
key advantage of SAR sensors is their ability to record flood con-
ditions irrespective of weather conditions or solar illumination. Al-
though VIS-IR methods, such as the modified normalized difference
water index (MNDWI, [3]) thresholding is efficient for flood map-
ping [4], their operational applicability is limited due to reliance on
atmospheric conditions. This limitation is particularly significant for
real-time flood disaster monitoring, short-term forecasting [5], and
acquisition of continuous time series for scientific analyses.

In the past two decades, methods using digital analysis of SAR
observation, such as threshold methods [6,7], change detection [8,
9], or classification [10,11] a have become commonplace. In recent
years, increasing progress in this area has come from machine learning
tools such as Random Forest [12], convolution neural networks [13],
unsupervised [14], or hybrid [15].

Despite numerous flood classification approaches for remote sensing
data, only a few have been implemented in operational systems with
accessible data. The Global Flood Database [16] utilized data from two
MODIS sensors and ancillary elevation data to generate 250 m reso-
lution flooding extents from 2000 to 2018 [17]. The workflow in the
Global Flood Database involves automatic thresholding on multitempo-
ral reflectance bands and band ratios, followed by rule-based detection
and elevation-slope-based masking to eliminate terrain shadow. The
NOAA Global Flood Product [18] provides near real-time 375 m res-
olution data using VIIRS sensors, along with other VIS-IR sensors
and ancillary data, including a digital elevation model [19,20]. The
algorithm behind the Global Flood Product requires multiple processing
steps such as shadow removal, water detection, minor flood detection,
and water fraction retrieval to determine floods. Hasard [21] is an on-
demand solution that utilizes a Sentinel-1 SAR archive to provide data
at approximately 20 m spatial resolution and location-dependent tem-
poral resolution daily to sub-monthly. Hasard is a proprietary algorithm
based on [22], which employs a hierarchical split-base approach to
select tiles of a SAR image or of a change detection (flood/no flood)
SAR image with bimodal histograms. The selected image tiles undergo
processing with thresholding and region growth techniques to detect
floods. The limitations of the first two approaches include a complex
workflow with numerous ancillary data requirements, low spatial res-
olution, and missing data due to cloud cover. In the case of Hasard,
these limitations do not apply; however, it is not an open-source solu-
tion. Consequently, a ready-to-use, open-source solution applicable to a
specified location for creating a time series of data for scientific analysis
is currently unavailable. The software presented herein, Floodsar, offers
an original approach to overcoming the aforementioned limitations
while maintaining similar features.

2. Software description

2.1. Software architecture

Floodsar is composed of three main components: (1) data prepro-
cessing, (2) flood extent mapping, and (3) results postprocessing. The
two former components are implemented in the “floodsar” and the lat-
ter component is implemented in the “mapper” executable file. The tool
is available as source code and requires compilation. Floodsar requires
only easily accessible input data: time series of SAR imagery, time
series of river gauge observations such as water levels or discharge,
and the area of interest (AOI). As mentioned earlier, two algorithms
for automatic mapping of the flooding extent are available. The first
one is the implementation of a thresholding method [1], and the other
is a new algorithm based on clustering. The tool was developed in C++
17, with the spatial data processing implemented using the Geospatial

2.2. Software functionalities

2.2.1. Data preprocessing
Floodsar is designed to work with dual-pol Sentinel-1 data in the

interferometric wide (IW) swath mode in the ground range detected
(GRD) processing level [23]. Both VV (vertical/vertical) and VH (verti-
cal/horizontal) polarizations are used for flood mapping. The algorithm
can also process data from other sensors as long as two polarizations are
provided, however, due to high temporal resolution, currently only data
from the Sentinel-1 constellation is suitable for easy use in Floodsar.
The input data parser is designed to automatically recognize Sentinel-1
imagery prepossessed by the Alaska Satellite Facility (ASF) on-demand
Hybrid Pluggable Processing Pipeline (HyP3) [24]. The integration
with HyP3 output decreases the workload for the user as all essential
SAR processing steps, such as identification of the precise orbit, ra-
diometric calibration, speckle filtering, and geometric corrections are
done automatically by a remote machine. Alternatively, a user can
conduct their own SAR processing using, for example, the European
Space Agency (ESA) SNAP software. However, it is essential to properly
name the output files so that they can be recognized by Floodsar.

In the first step of preprocessing, the names of all SAR raster files are
parsed to identify the acquisition date and polarization. Subsequently,
the imagery is re-projected into a coordinate system selected by the
user. This re-projection is necessary because Sentinel-1 imagery from
different relative orbits often utilizes varying coordinate systems, such
as consecutive zones of the Universal Transverse Mercator coordinate
system. If multiple images with the same date and polarization are
found, they are merged into a single, continuous raster (mosaic). Fol-
lowing this, the imagery is cropped to the extent of the Area of Interest
(AOI), and the pixel values are preserved for use in the subsequent flood
extent mapping step.

Floodsar requires river water level [L] or discharge [L3T−1] time
series input data (hereinafter referred to as river gauge observations).
The river gauge observations have to overlap temporarily with the SAR
imagery time series. More river gauge observations than SAR images
can be provided, as the tool will only select those observations that
correspond to the dates of the SAR imagery.

2.2.2. The 1D algorithm for flood mapping
The first algorithm used for flood extent mapping uses only one

SAR polarization at a time, hence it was named the 1D algorithm.
The 1D algorithm is an implementation of the automatic threshold
identification method by [1]. The assumption behind the method is that
river gauge observations are proportional to the flooding extent area
visible in SAR imagery. The flooding extent is defined as SAR imagery
pixels with the backscatter coefficient 𝑏 in VV or VH polarization below
the 𝑡0 threshold. The 𝑏 units can be either linear power or dB. Both
backscatter not normalized and normalized to the incidence angle,
i.e. 𝜎0 and 𝛾0, can be used as 𝑏. The 𝑡0 threshold is estimated by
maximizing the Pearson’s correlation between a time series of a 𝑛 day
river gauge observations 𝐻 =

(

ℎ1, ℎ2,… , ℎ𝑛
)

and a corresponding time
series of flooding extent areas from binarized SAR imagery:

𝑈 (𝑡) =
(

𝑢1 (𝑡) , 𝑢2 (𝑡) ,… , 𝑢𝑛 (𝑡)
)

(1)

𝑢𝑖 (𝑡) =
𝑚
∑

𝑗=1

{

𝑎, 𝑏𝑖𝑗 ≤ 𝑡
0, 𝑏𝑖𝑗 > 𝑡

(2)

where 𝑡 is a binarization threshold for all images, 𝑖 identifies a single
SAR imagery 1 to 𝑛, 𝑗 identifies a SAR imagery pixel from 1 to 𝑚, and
𝑎 is a pixel area [L2]. Given the search space 𝑡 ∈ [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥], the optimal
threshold is estimated as:

𝑡0 = argmax
𝑡∈[𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥]

cor (𝑈 (𝑡) ,𝐻) (3)

The 1D algorithm is comparable to the frequently used Otsu [25]
2

Data Abstraction Library (GDAL). method because the differentiation between flooded and not-flooded
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areas is determined by a threshold value. Contrary to the Otsu [25]
method, the difference in the 1D algorithm is in the physically-based
assumption and applicability to multitemporal imagery. As illustrated
in [1] and in the case study examples in Section 3, the 1D algorithm
is very robust in terms of capturing the flooding extent. The advantage
of the 1D algorithm is that it requires no parameters other than the
definition of the search space, which must fall within the range of
expected floodwater backscatter values found in the imagery. The
major limitation of this algorithm is that the area of the flooding extent
has to be positively correlated to the river gauge observations. This may
not always be the case when a river bank or a floodplain margin has
a steep slope (within one SAR pixel) effectively producing the same
water extent for a range of water levels (e.g. when dikes are present).
Also, Floodsar will not identify the relationship between flood area
and river gauge observations when water is within a narrow (close
to the SAR imagery resolution) riverbed due to the low variability of
the water extent in the SAR imagery. The flat land surface features
like river ice, bare soil, etc. will also affect the functioning of the 1D
algorithm. Although these features are not correlated to the river gauge
observations, they may influence the estimated 𝑡0 value. Moreover,
these features will be labeled as flooded in the 1D algorithm output
if their backscatter is lower than 𝑡0. The conceptual limitation of the
1D algorithm is that it cannot make use of both polarizations at the
same time.

2.2.3. The 2D algorithm for flood mapping
The second algorithm used for flood extent mapping uses both

VV and VH SAR polarizations at a time, hence it was named the 2D
algorithm. Unlike the 1D algorithm, the 2D algorithm was developed
specifically for Floodsar. Similarly to the 1D algorithm, the 2D algo-
rithm identifies flooding extent based on correlation with river gauge
observation, but the flooding extent mapping is performed by selecting
a set of flood/no-flood classes from unsupervised clustering output.

The 2D algorithm requires providing 𝑛 SAR imagery in VV and VH
olarization and a temporarily overlapping time series of river gauge
bservations (𝐻). The method consists of two major steps: clustering
nd optimal cluster selection (Listing 1). First, all pixels from the
magery are transformed into a two-dimensional matrix, where the first
imension represents a flattened spatial and temporal dimension of the
magery and the second dimension represents the polarization. Then,
he k-means [26] clustering is performed on this matrix for each 𝑘
-] target class number in the [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] range, and the resulting
𝑘 centroids are saved for the next step. The 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 are input
parameters with 𝑘𝑚𝑖𝑛 ≥ 2. Next, for each clustering result, flood class
candidate mapping is performed sequentially for 𝑓 sets of classes in
the [1, 𝑘−1] range, where 𝑓 represents the number of flooded classes,
nd the remaining classes are considered as non-flooded. The strategy
f selecting classes for subsequent 𝑓 sets is based on increasing values

of the class centroids, i.e. the class with the lowest centroid values is
selected for 𝑓 = 1. The rationale behind this order of class selection
is that the water extent has the lowest backscattering coefficient in
the SAR image. After mapping the flood class candidates, the flooded
pixels in every 𝑛 imagery are summed and the Pearson’s correlation
between the river gauge observations, 𝐻 , and flood areas in each 𝑓
and 𝑘 combination is calculated. Finally, the optimal 𝑓 and 𝑘 are
selected based on the highest correlation as 𝑓𝑜𝑝𝑡 and 𝑘𝑜𝑝𝑡. In summary,
the 2D algorithm is an extension of unsupervised clustering (k-means
in our case) to automatic class labeling and the 𝑘 meta-parameter
optimization.

The multidimensional clustering in the 2D algorithm overcomes the
conceptual limitation of the 1D algorithm, i.e., using only one SAR
polarization. Therefore, the decision, of whether to label a certain
location as flooded or not flooded is based on more data. Yet, the
disadvantage of the 2D algorithm is that the results are sensitive to the
[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] range. This usually requires setting a broad [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]

to the 1D algorithm. A solution to this could be using a Floodsar option
which allows to estimate the cluster centroids based on a random
fraction of pixels given that the fraction is not too small and the AOI is
representative for the flood dynamics.

2.2.4. Results post-processing and the cache
The output of processing steps is stored in the cache. Therefore

time-consuming steps, such as SAR image mosaicking, clipping, and
reprojecting or k-means clustering does not have to be repeated if one
wants to test Floodsar with the same data set, but different parameters.
If one decides that the cache should not be used then it is erased at the
beginning of a new run of application.

The cached data is also used by the “mapper” executable for post-
processing the SAR images into flood extent raster maps. The “mapper”
binary automatically chooses the best thresholding or clustering param-
eters produced by “floodsar”. However, one can analyze results from
the entire search space [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] if an appropriate option is set during
the “mapper” run. After the post-processing step, the flood maps for
each input SAR imagery date are saved to individual GeoTIFF files in
the coordinate system as specified during the Floodsar run.

input : VV, VH as 𝑛 dual-pol SAR imagery
input : H as 𝑛 river gauge observations
input : 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥 as a range of k-means target clusters to

search
output: 𝑘𝑜𝑝𝑡 and 𝑓𝑜𝑝𝑡 as an opidentifiedtimal numbers of the

total k-means clusters and the flood clusters
1 Pixels = two column empty matrix;
2 DateIndices = empty list of vectors;
// all VV and VH data are stored in a two colum

matrix
3 for date 𝑖 = 1 to 𝑛 do
4 Pixels[1].append(flatten(VV𝑖));
5 Pixels[2].append(flatten(VH𝑖));
6 DateIndices[𝑖] = the Pixel matrix indices corresponding to

the date 𝑖;
7 end
8 Centroids = empty list of vectors;
9 CorMatrix = empty matrix;
10 for 𝑘 = 𝑘𝑚𝑖𝑛 to 𝑘𝑚𝑎𝑥 do
11 Centroids = kmeans(Pixels,𝑘);
12 for 𝑓 = 1 to 𝑘 − 1 do

// store flood areas for 𝑛 days given 𝑘 and 𝑓
13 FloodArea = 𝑛 element vector with zeros;
14 for date 𝑖 = 1 to 𝑛 do

// mapping of VV and VH pixels to cluster
IDs given the k-means centroids

15 FloodMap = kmeansMap(Centroids, Pixels[1:2,
DateIndices[𝑖]]);

16 foreach 𝑝 in floodMap do
17 FloodID = a set of 𝑓 cluster IDs with lowest

centroid values if 𝑝 ∈ FloodID then
18 FloodArea[𝑖]++;
19 end
20 end
21 end
22 CorMatrix[𝑓 , 𝑘] = correlation(FloodArea, H)
23 end
24 end
25 return Optimal 𝑘𝑜𝑝𝑡, 𝑓𝑜𝑝𝑡 as indices of the CorMatrix where:

CorMatrix == max (CorMatrix)
Listing 1: Pseudocode of the 2D algorithm.

3. Illustrative examples

To illustrate the Floodsar performance we have chosen three case
3

range, which considerably increases the computation time in reference studies varied by climate, land use, and character of flooding. The first
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case is a series of two floods that occurred in California, USA, in the
period December 2022 to March 2023 (32 images). There, we have
chosen the section of Sacramento River located east of Sacramento
city (121.6◦W, 38.6◦N). The climate is warm-summer Mediterranean
and land-use is urban and agricultural. The second case is a flood
that occurred southwest of York, UK, in the period December 2015
to January 2016 (43 images). There, we have chosen a location near
the confluence of Ouse River and Wharfe River (1.1◦W, 53.8◦N). The
climate is oceanic and land-use is predominantly agricultural land with
small cities and an airport. The third case is the Biebrza River, where
flooding occurs each year and is desired to sustain the ecology of
the area. We have chosen the spring flooding event that occurred
in 2017 (37 images). Out of the entire floodplain we have chosen a
section upstream the outlet of Biebrza River (22.5◦E, 53.3◦N). The
climate is humid continental and the land-use is a natural riverine fen
wetland with small villages and agricultural fields located outside the
floodplain. The flooding event in the Biebrza site is the only one that
was triggered directly by snowmelt rather than by rainfall.

3.1. Data

We used the Hyp3 on-demand processing feature provided by ASF
to obtain Sentinel-1A/B 10 m VV and VH polarization images with
speckle filtering, radiometric calibration to 𝛾0 in linear power, pixel
spacing of 10 m, and geometric calibration with digital elevation model
matching (See details in [27]). We used imagery from both ascending
and descending orbits, which were not limited to any particular orbit
number.

We used various river gauge observations provided by the respective
national agencies in the daily resolution. For the Sacramento case, we
used discharge in cubic feet per second in a gauge located about 45
km downstream the Sacramento city [28], for the Ouse case, we used
discharge in cubic meters per second for a gauge located at the Ouse
River about 20 km upstream of the Ouse and Wharfe confluence [29].
For the Biebrza case, we used local water height in centimeters for a
station located directly in the study area [30].

To verify the Floodsar results against independent data sources
we used a MNDWI thresholding as in [31] for cloud-free images of
Sentinel-2A/B satellite sensor during the extensive flooding for each
site. Based on the MNDWI flood maps and the Floodsar results we have
calculated the (1) kappa index, which quantifies agreement between
these data sets with the maximum kappa=1 indicating perfect agree-
ment and kappa≤0 for no agreement, (2) precision is the fraction of
Floodsar flood pixels among all flooded pixels in an MNDWI flood map,
and (3) sensitivity is the fraction of Floodsar flood pixels that agree with
MNDWI flooded pixels among all Floodsar flood pixels.

3.2. Floodsar mapping results and discussion

The correlation between river gauge observations and flooding ex-
tents vary depending on the algorithm and SAR polarization used
(Table 1). The correlation between flooding areas identified by Floodsar
and river gauge observation was the highest for the 2D algorithm in
Biebrza and Ouse cases and for the 1D algorithm with the VH data in
the Sacramento case. In each study site, the 2D algorithm optimized to
more than one flood cluster, however, in the Floodsar runs where the
search space was limited to a smaller number of all clusters (𝑘𝑚𝑎𝑥 ≤ 4),
he 2D algorithm identified one flood cluster as optimal (result not
hown). Needless to say, our preliminary test showed that both 1D
nd 2D algorithms can run with a much lower number of satellite
mages than used in this study. For example, in the Ouse case, Floodsar
dentified the flood extent correctly with five SAR images, which were,
owever specially selected to reflect the water level variability.

It is worth mentioning, that the correlation between flooding area
nd river gauge observations ( Table 1) cannot be interpreted as the
uality of flood mapping. This is because Floodsar does not use an

Table 1
The VV and VH polarization 𝛾0 thresholds 𝑡0 (in linear power) optimized using the
1D algorithm and the optimal number of flood clusters 𝑓𝑜𝑝𝑡 accompanied by the total
number of clusters 𝑘𝑜𝑝𝑡 optimized using the 2D algorithms. The optimal clusters and
thresholds are accompanied by the correlation coefficient (cor.) calculated between the
flooding areas and the river gauge observations.

Case study 1D 2D

VV VH
𝑓𝑜𝑝𝑡/𝑘𝑜𝑝𝑡 cor.

𝑡0 cor. 𝑡0 cor.

Biebrza 0.0256 0.74 0.0068 0.77 4/11 0.78
Sacramento 0.02197 0.66 3.00E−05 0.75 4/10 0.69
Ouse 0.0313 0.61 0.0024 0.64 2/11 0.65

absolute flood area, but its variance to determine the correlation. As
long as the variance of time-dependent flooding area will match the
variance of river gauge time-series the correlation will be strong. This
is the best highlighted by the 1D/VH results for the Sacramento case,
which has a very high correlation, but the optimized threshold is two
orders of magnitude lower than for the remaining cases. Effectively
the 1D/VH flooding area for Sacramento is much underestimated (cf.
Table 1 and Fig. 1).

The 2D algorithm and 1D/VV algorithm results matched the total
flood area from the reference flood maps, with the values being under-
estimated by 2% to 8% of the total area in Ouse and Sacramento cases
(Fig. 1). The 1D VH results matched the reference flood area only for
the Biebrza case. Although the 1D/VH algorithm results captured well
the temporal variation of the flood area in the Sacramento and Ouse
cases (see Table 1), the magnitude of the flood area was underestimated
by up to 48% of the total area (Fig. 1). Overall, the 2D and 1D/VV
algorithms performed very similar one to another in the Ouse and
Sacramento cases while the only difference between the two was in
the short-term variability of the flood area. The resulting flood area
was smoother for the 2D algorithm compared to the 1D/VV algorithm.
In the Biebrza case the 1D VV algorithm underestimated the total flood
area by 8% while the 1D/VH and 2D algorithm results matched the
flooding area better with 4% and 5% underestimation respectively.

Overall, the highest agreement of Floodsar results with the reference
flood extent maps is observed for the 2D algorithm, which achieved
an average kappa index of 0.780 across three case studies (Fig. 2).
However, in the Sacramento case, the Kappa index for the 1D algorithm
using VV data is 0.022 higher than for the 2D algorithm. The average
precision across all case studies is greatest for the 1D/VV results (kappa
index of 0.916), which was only marginally higher (by 0.005) than
that for the 2D algorithm. The highest mean sensitivity across all case
studies is observed for the 1D/VH results (0.997), surpassing the 2D
algorithm by 0.008 and the 1D algorithm with VV data by 0.013. In
summary, the pattern of the validation figures shows that the 1D/VV
and 2D algorithm performed similarly for the Ouse and Sacramento
cases while for the Biebrza case, the 2D algorithm performed better
in terms of the kappa index.

The spatial pattern is similar for the Ouse and Sacramento cases
with the most continuous flooding extent and the most false positives
in the 1D/VV algorithm, the least continuous flooding extent with the
least false positives in the 1D/ VH algorithm, and the 2D algorithm
results in between the two latter (Fig. 3b and c). In the case of
Biebrza (Fig. 3a) the 2D algorithm results exhibited less noise and
discontinuities than both 1D/VV and VH results. Also in the Biebrza
case Floodsar failed to identify a water patch visible in the MNDWI
image (Figure 3a, Easting=2.2 km, Northing=4 km). This was the most
likely due to dry vegetation remaining above the water surface, what
increased the backscatter, but had a relatively low influence on the
reflectance observed from near-nadir.

The different level of false positive detection is observable in the
airport located in the southeastern part of the Ouse case (Fig. 3c) .
The airport and surrounding flat areas of false positives comprise more
4
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Fig. 1. Normalized river gauge observations in daily resolution (top panels) and normalized flooded area (bottom panels) identified by 1D and 2D algorithms of Floodsar in 2-12
ays (2-3 days in majority) temporal resolution with the area from the reference flood maps indicated as black dots.

Fig. 2. The agreement of Floodsar results with the flood reference maps calculated using MNDWI thresholding. Kappa index, precision, and sensitivity were calculated for the
reference flood map dates, as indicated in Fig. 1.

area in the 1D/VV and 2D results than in 1D/VH, where only isolated
sections of the tarmac were labeled as flooded.

Lack of continuity in the 1D/VH flooding extent is visible the most
in the Sacramento case (Fig. 3b), where a large part of the floodplain
was sparsely covered by dry vegetation. Contrary to the Biebrza and
Ouse cases, where the vegetation cover was dense, the VH backscatter
in the Sacramento case was much weaker, similar to the VH backscatter
of the open water.

Similar results obtained for the 1D/VV and 2D algorithms suggest
that the two-dimensional algorithm regresses to one dimension, namely
VV. This phenomenon may occur in sites where VH backscatter is too
low to accurately identify floods, or where other objects in the study
exhibit VH backscatter similar to open water, such as in the Ouse
and Sacramento cases. However, as illustrated in the Biebrza case, VH
backscatter carries information that is not redundant to VV and proves
valuable in identifying flood extent (Fig. 4). In the Biebrza case, the
2D algorithm distinctly defines a flood/no flood boundary that neither

aligns with the VV nor VH threshold values. The flood/no flood bound-
ary of the 2D algorithm is in some sections almost perpendicular to
the first principal component (PC) axis. This observation suggests that
dimension reduction techniques with 1D thresholding could potentially
be employed instead of the 2D algorithm. Nevertheless, the use of the
2D algorithm is justified in case studies like Biebrza because the 2D
algorithm’s boundary is not entirely perpendicular to PC1. Additionally,
PC2 explains 13% of the variance with clear variability within the flood
clusters.

Floodsar does not discriminate between origins of open water,
therefore initial water in the study area, permanent water, and time-
variable flood water were identified in the case studies. This is well
illustrated in the Sacramento case study, where at the beginning of
the analysis discharge was lower and flooded area was higher than
at the end of the analysis period. This is due to a large amount of
initial water storage at the beginning of the analysis period. Such a
situation decreases the correlation between the flooding area and river
5
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Fig. 3. Floodsar flood maps from 2D and 1D algorithms, reference flood map calculated using MNDWI thresholding, and the color-infrared (CIR, R = near-infrared, G = red, B
= green) composition of Sentinel-2 bands in each case study (a-c). In the flood maps white pixels indicate flood (open water) and black pixels indicate not flood. Images were
selected for the reference flood map dates, as indicated below the panels and in Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

gauge observation. Yet, the relation between the flooding extent and
discharge was identified by Floodsar, because the flooding extent was
considerably higher during the two flood events than in other periods.

Both Floodsar algorithms produced false positives. Less false pos-
itives were produced when VH data was used and more when the
algorithm relied only on the VV data. The false positives were due
to low backscatter for both flat objects and open water. The solution
to this problem is usually to perform post-processing, e.g. with the
Height Above Nearest Drainage (HAND) method [32], which masks
areas where flooding is unlikely.

To account for the nonlinear character of the relationship between
the flooded area and river gauge observations, given the topography
of the river valley, we initially tested the Spearman’s rank correlation
coefficient along with Pearson’s correlation. However, unlike Pearson’s
correlation, these tests showed that the Spearman’s correlation is maxi-
mal for very small 𝑡0 threshold values, leading to a vast underestimation
of the flood area. The Pearson’s correlation approach proved superior,
likely because under steady-state conditions for a river valley with a
trapezoidal-like cross-section, the relationship between water level and
flood area is linear.
6
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Fig. 4. The VV and VH backscatter data (points) for the Biebrza case study (37 SAR
images 2017-03-01 to 2017-06-26) with annotated flood/no flood boundaries computed
by the 1D/VV and 1D/VH algorithm (red lines) and by the 2D algorithm (blue lines).
The side indicated by the diagonal sections on the red and blue boundary lines points
on the “flooded” data points. The point color indicates membership to the k-means
clusters in the 2D algorithm. Data is also annotated by the two principal component
(PC) axes (dashed lines). Only randomly sampled 0.2% of data points are shown for
clarity. The data were clipped to −3 dB before clustering. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Both Floodsar algorithms are influenced by the study site’s AOI.
A proper selection of the AOI is essential for Floodsar to identify
thresholds or clusters. In general, it is required that the AOI is focused
on the floodplain. If the flooding area is considerably smaller than the
AOI area there is a possibility that the area of false positive pixels will
be greater than the area of flood pixel. In such a case a relation between
river gauge observations and the flooding area will not be identified.

4. Impact

Floodsar effectively captures the flooding extent during high wa-
ter levels, close to the flood peak, but also during low water level
conditions. This makes Floodsar suitable for investigating full flood
dynamics, not only the high water level events. Histogram separation
techniques, such as [25], which are often used for SAR flood mapping,
yield good results when a flood covers a considerable fraction of an
image because the backscatter histogram is bimodal. In Floodsar, the
flood threshold (1D), or the flood clusters (2D) are determined based
on ancillary physical observations, not the histogram. As a result,
during low water levels, Floodsar gives much more realistic results than
e.g. Otsu [25] method and therefore, may be used to replace algorithms
based on histogram separation or be used as a member of an ensemble
prediction.

We see the applicability of Floodsar in two types of applications,
which require investigation of dynamic flood behavior, from low water
levels to a flood peak. First, Floodsar can be implemented in real-time
monitoring. In this case, Floodsar should be integrated with early access
data storage, such as provided by the ASF and ESA. Optimally, an
instance of Floodsar should run on a cloud that has direct access to

near real-time Sentinel-1 data. An example of a platform with com-
putation and storage capabilities is the Amazon Web Service (AWS),
which currently operates the Sentinel-1 data archive used by the ASF
OpenSarLab. Floodsar recognizes filenames processed by the ASF Hyp3,
therefore integration with this cloud is straightforward.

The second type of application in which Floodsar can be used
is processing long time series of SAR data for research or analytic
purposes especially when flood extent maps are not available. An
example of such an application could be producing flooding frequency
maps as predictors for vegetation modeling [33,34]. In [1,2] a Floodsar
application is presented where a long-time-series of flood maps was
used for hydrological model validation. Further, the hydrological model
output was used to predict vegetation development for two centuries of
past and future climate [35].

A similar type of application in which Floodsar can be used is to
generate flood extents for assimilation or validation in hydrological or
hydrodynamic models. These are important fields because if assimila-
tion is properly scheduled in the forecast time it can improve the model
projections [36]. Also, using flood extent maps for model validation
leads to optimal model selection [37].

Yet another type of application related to the former aspect is
the hydrological model calibration. This field is particularly important
because it leads to more reliable models, which can offer better flood
susceptibility analysis [38,39]. Yet, Floodsar has not been tested in
this field and currently, if a small number of flood maps are enough
for a calibration problem, a cloud-free MNDWI thresholding offers a
reasonable solution.

The case studies have shown that the 2D algorithm results overall in
better agreement of the identified flood extent with the reference maps
than in the 1D algorithm. Also, the 2D algorithm is more universal
by providing valid results in all case studies. Yet in most cases the
difference between 2D and 1D/VV algorithms is negligible. Given the
greater complexity and longer computation times in the 2D algorithm,
a user should test the performance of each algorithm in a study site
before using Floodsar in a production instance.

Finally, Floodsar software offers an example of a physically in-
formed machine learning model [40], which has attracted more and
more attention recently. Although Floodsar uses relatively basic al-
gorithms (clustering, thresholding, optimization), it shows that time-
variable phenomena can be identified on a series of images given
a summarizing variable (river gauge observations in our case) and
physical constraints (water extent increases with increasing river gauge
observations). Therefore, the Floodsar algorithm can potentially be
used for identifying other time-variable problems, such as land-cover
change given e.g. population data.

5. Conclusions

In this study, we presented the details of Floodsar software and
demonstrated its performance is three case studies. Floodsar features
two algorithms for automatic flood detection on SAR dual-pol VV+VH
imagery. Except for the time series of SAR imagery, Floodsar requires
also corresponding river gauge observations, such as water levels or
discharges, to correlate the flooding extent to a physical phenomenon.
The first algorithm (1D) uses one SAR polarization at a time. The 1D
algorithm identifies the flooded/not flooded threshold based on the
correlation of the flooded area with the river gauge observation(s). The
second algorithm (2D), which was introduced here, uses two polar-
izations at the same time. The 2D algorithm uses the same principle
but performs clustering of the imagery to choose the total number of
clusters out of which the flood clusters are indicated.

The main limitation of methods used for flood mapping in Floodsar
is that they are not capable of identifying flooding extent obscured by
vegetation, in the radar shadow of other objects, or when a double-
bouncing effect is present such as flooded buildings. Another limitation
concerns false positive detection in arid regions or flat surfaces. In
7
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either case, post-processing techniques exist that can be implemented
but are out of the scope of the current version of Floodsar.

Floodsar is an example of physically informed machine learning.
Therefore we plan to include more complex machine learning algo-
rithms in Floodsar, such as deep neural networks, capable of capturing
spatial and temporal patterns from the imagery to detect floods.
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