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Fluid structure interaction study 
of non‑Newtonian Casson fluid 
in a bifurcated channel having 
stenosis with elastic walls
Hasan Shahzad1*, Xinhua Wang1, Abuzar Ghaffari2, Kaleem Iqbal3, 
Muhammad Bilal Hafeez4, Marek Krawczuk4 & Wiktoria Wojnicz4

Fluid–structure interaction (FSI) gained a huge attention of scientists and researchers due to its 
applications in biomedical and mechanical engineering. One of the most important applications of 
FSI is to study the elastic wall behavior of stenotic arteries. Blood is the suspension of various cells 
characterized by shear thinning, yield stress, and viscoelastic qualities that can be assessed by using 
non-Newtonian models. In this study we explored non-Newtonian, incompressible Casson fluid 
flow in a bifurcated artery with a stenosis. The two-dimensional Casson model is used to study the 
hemodynamics of the flow. The walls of the artery are supposed to be elastic and the stenosis region 
is constructed in both walls. Suitable scales are used to transform the nonlinear differential equations 
into a dimensionless form. The problem is formulated and discretized using Arbitrary Lagrangian–
Eulerian (ALE) approach. The finite element method (FEM) technique is used to solve the system of 
equations, together with appropriate boundary conditions. The analysis is carried out for the Bingham 
number, Hartmann number, and Reynolds number. The graphical results of pressure field, velocity 
profile, and load on the walls are assessed and used to study the influence of hemodynamic effects 
on stenotic arteries, bifurcation region, and elastic walls. This study shows that there is an increase in 
wall shear stresses (WSS) with increasing values of Bingham number and Hartmann number. Also, for 
different values of the Bingham number, the load on the upper wall is computed against the Hartmann 
number. The result indicate that load at the walls increases as the values of Bingham number and 
Hartmann number increase.

List of symbols
�l	� Lamé coefficient
µ	� Shear modulus
τy	� Yield stress
ν	� Poisson ratio
µp	� Casson viscosity
µ∞	� Asymptotic apparent viscosity
E	� Young’s modulus
ρf 	� Fluid density
p	� Pressure
σ ∗	� Electrical conductivity
B̃	� Magnetic field
ũ = [ũ, ṽ]	� Velocity vector for fluid dimensional form
ũs = [ũs , ṽs]	� Velocity vector for solid dimensional form
u = [u, v]	� Velocity vector for fluids non dimensional form
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us = [us , vs]	� Velocity vector for solids non dimensional form
γ	� Shear strain rate
h	� Artery diameter
Ha	� Hartmann number
Re	� Reynolds number
Bn	� Bingham number
n	� Number of iterations
W	� Width of the elastic walls
ζ	� General solution component
S	� PiolaKirchoff stress tensor
C	� Elasticity tensor
ALE	� Arbitrary Lagrangian–Eulerian
FSI	� Fluid–structure interaction
FEM	� Finite element method
MHD	� Magnetohydrodynamics

Featuring the human circulatory system, the bio-fluid dynamic has grown rapidly in recent decades, particu-
larly concerning atherosclerosis diagnosis and etiology. Due to a buildup of fatty deposits like calcium, arterial 
stenosis occurs. Atherosclerotic plaque is determined by the geometry of the arteries. The most common places 
for stenosis to develop are the curvatures, crossings, and forks of the medium and large arteries. The study 
of atherosclerosis and the patterns of blood flow in stenotic or bifurcated arteries has witnessed a substantial 
increase in interest in recent years. Blood composition, cell concentrations, and artery geometry all have a direct 
impact on the arterial system’s flow characteristics. Several research has sought to better predict a flow of blood 
in a bifurcated artery by implementing Newtonian and non-Newtonian fluids. According to vein geometries 
and blood rheological behavior in the circulation, theoretical and empirical research of blood flow through 
arterioles are complex task with numerous challenges1. Blood flow’s is complex rheological dynamics that can-
not be predicted by any structural mode. Therefore to analyze blood hemodynamics, researchers formulate new 
methods2. Blood is a mixture of cells suspended in a fluid3,4. Red blood cells round the greater volume of blood5. 
According to Hunter6, the blood was assumed to be incompressible, homogeneous, and Newtonian fluid. Due 
to the elasticity of the vessel wall, blood flow was unsteady in this model. A finite difference method was used to 
calculate the blood flow. Also, a one-dimensional heat equation was used. Computed results were estimated by 
assuming that there was no heat loss around the artery.

There are many non-Newtonian fluid models, but one of the most well-known is the Casson Fluid (CF) 
model7. Shear stress and strain are nonlinearly related in the Casson model. This model is used to study the blood 
flow, paints industry, manufacturing of medicine, and synthetic lubricants. Misra and Pandey8 used CF model to 
study the peristaltic blood transport in small vessels. The CF model is also used to describe the core region of the 
blood flow in mathematical model of small vessels in their mathematical model. It is worth noting that human 
blood flow is essentially pulsed and irregular due to its cyclic nature, and this poses a unique challenge to both 
computational and experimental science. To date this CF model is the best formulation for predicting a flow 
of blood9–11. Khair et al.12 studied the pulsatile blood flow in a constricted channel. Chakravarty and Mandal13 
studied the blood flow in a stenosis of tapered artery. For further study on CF model and its application the 
readers are referred to14–16 and references therein.

Magnetohydrodynamics (MHD) is a part of fluid dynamics that does incorporate the fluid’s magnetization or 
polarization while studying fluid dynamics in the magnetic field. MHD has a wide range of potential applications 
in bioengineering and medicine17. Sharma et al.18 reported that MHD can be controlling parameter for blood 
velocity. Considering the micropolar fluid non-linear model19, Shit and Roy found that enhancing the effects of 
induced magnetic field on blood flow via a confined channel the blood flow velocity at the centerline is reduced 
and raised the pressure gradient. Diviya et al.20 studied the hemodynamics of the MHD peristaltic process of non-
Newtonian fluid with mass and heat transfer. Their studies show that an increase in variable viscosity parameters 
accelerates the flow hence bolus size increases. Pulsatile flow analysis has gained a lot of attention because of 
its applications in respiratory system, circulatory systems, microelectromechanical system, reciprocal pumps, 
vascular diseases, and internal combustion engines21–25. Malathy and Srinivas26 used perturbation method to 
investigate the MHD pulsating flow between two permeable beds. A perturbation technique was used by Srinivas 
et al.27 to study the non-Newtonian pulsative flow in a porous channel. Recent studies by Bilgi and Atalik28 have 
explored the elastic properties of blood for pulsative arterial hemodynamics and risk indicators for aneurysm 
rift to their impact on velocity, stress fields, and vorticity.

Many physiological processes in the body are influenced by the FSI. For example, pulmonary airway reopen-
ing and closure, flow-rate limitation and wheezing during forced expiration, snoring and phonation, pulse wave 
propagation in arteries, flow-induced deformation, and ultimate rupture of arterial cerebral aneurysms, etc. To 
represent the FSI in the pulmonary arteries, Liu et al.29 proposed employing a unified continuum and an inter-
disciplinary variant formula. A quasi-direct approach was used to solve the FSI problem to assess velocity and 
pressure. To compute the solid displacement and mesh motion a segregated algorithm is used. Using biological 
approaches, Foong et al.30 studied the numerical similarity of blood flow within the artery under continuous heat 
flux. The study shows that non-Newtonian blood flow changes into Newtonian blood flow properties by replen-
ishing fluid and electrolytes in the bodily arteries, which promotes the heat transfer in blood flow and causes 
blood flow temperature to be reduced. Heat transmission through oscillatory blood circulation in an incised 
permeable artery was studied by Ogulu and Abbey31. Khaled and Vafaei32 studied the concept of transport in 
biological tissue and proposed new model incorporating heat transfer and thermic biology equation. Recently, 
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Shahzad et al.33 used power-law fluid to study the hemodynamics of blood flow in a stenotic artery with elastic 
walls by using ALE approach to couple equations. The results show that there is an increase in load on the walls 
for the shear thickening case.

Casson model widely used over a long ranges of shear rates for the study of blood rheology was not imple-
mented in fluid solid interaction in an artery. In the presented study, a Casson model is considered to investigate 
the hemodynamic effects of the blood flow flowing through a bifurcated artery having elastic walls. The scope 
of the study involves testing impact the Bingham number, Reynolds number, and Hartmann number on the 
hemodynamics of the artery, stenotic region, and elastic walls. In the next section governing equations are mod-
eled and converted into dimensionless form. In problem setup section the geometry of the problem and solution 
approach is explained. In the final section, a conclusion is drawn based on the results.

Mathematical modeling
We studied the flow of two-dimensional, non-Newtonian incompressible fluid through the double stenosis 
bifurcated artery. The artery walls are considered to be linearly elastic. A magnetic field is applied toward the 
axial direction of the flow. Considering, motions of solid and fluids described by Lagrangian and Eulerian 
approaches, one can state that ALE is a more general method mixing fluid and solid domains (FSI). Governing 
equations for FSI case are written as

where f = [σ ∗
ũxB̃

2, 0] . The blood may be modeled using the original Casson fluid constitutive equation over 
a diverse range of shear rates34

where , τy , µp , and γ represents the yield stress, Casson viscosity, and shear strain rate respectively. The shear 
strain rate is defined as

The discontinuous nature of the Casson model makes it challenging to implement in numerical simulation. 
Using a strategy that was previously utilized to overcome a Bingham plastic fluid singularity35, an improved 
continuous version36 can be used

where m is model constant and µ∞ is asymptotic apparent viscosity. In37 was established that when m > 100, 
the Eq. (6) is a good approximation of the Casson model. The apparent viscosity of the Casson model can be 
defined as

Equations for the elastic structure domain are

As elastic walls are exposed to a stress tensor (caused by fluid pressure) the walls are deformed

where F =
(
1+∇d̃s

)
, J = det · (F) , S is the 1st Piola–Kirchhoff stress tensor which is related to strain ε as 

follows

where C = C(E, ν).
C is elasticity tensor and “:” is the double-dot tensor product. The boundary conditions for FSI at the wall 

surface are continuity of dynamic movement and kinematic forces.
To make the analysis more general, the governing equations are converted into dimensionless form by non-

dimensional variables u, p , and τ and choosing h and U  as reference length and reference velocity respectively. 
Because of the above discussion Eqs. (1–8) takes the form

where f = [−Ha2u, 0] and

(1)∇ · ũ = 0,

(2)ρf
((
ũ− ũs

)
· ∇ũ

)
= −∇p̃+∇ · τ + f ,

(3)
√
τ = √

τy +
√
µpγ ,

(4)γ = ∇u+ (∇u)T ,

(5)τ =
[
√
µ∞ +

√
τy

|γ |

(
1− e−

√
m|γ |

)]2
γ ,

(6)η =
τ

γ
=

[
√
µ∞ +

√
τy

|γ |

(
1− e−

√
m|γ |

)]2

(7)∇σ̃ = 0,

(8)σ̃ = J−1FSFT

(9)S = C : (ε), ε =
1

2

(
∇d̃s +∇d̃Ts +∇d̃Ts ∇d̃s

)
.

(10)∇ · u = 0,

(11)Re(u− us) · ∇u = −Re∇p+∇ · τ + f ,
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where Re = ρf hU

µ∞
 is Reynolds number, Ha = σ ∗h2B̃2

µ∞
 is Hartmann number, Bn = τyh

µ∞U  is Bingham number and 

m in dimensionless form is defined as M = mU
h  . The viscosity in dimensionless form is defined as

The dimensionless equation for elastic structure domain is defined as

A parabolic inflow velocity with umax = 0.6 is considered at the inlet and at outlets p = 0 boundary condi-
tion is imposed.

Problem setup
Flow configuration.  In Fig.  1, a prototype geometric model is considered. The computational domain 
includes a symmetrical bifurcation and stenosis. It is assumed that walls are made of isotropic and linear elastic 
materials characterized by the Poisson ratio ν and Young’s modulus E. The relationship between Young’s modu-
lus and the Poisson ratio is defined as

where ν,E,µ, and �l are Poisson ratio, Young’s modulus, shear modulus and Lamé coefficient respectively. Where 
ν = 0.49 , and E = 5× 10533.

The inner diameter of the artery h is shown in Fig. 1. It was stated that this diameter equaled 1 cm and it 
shrinks to 50% in the stenosis zone. The width of the elastic wall is constant and equals w = 0.1cm and the 
bifurcation artery is inclined at the 37 °C is the central longitudinal axis along which the pressure is tested. The 
points A and B are chosen only to predict a behavior of the velocity profile before and after stenosis respectively.

Solution methodology.  The Eqs.  (10–14) are nonlinear and canot be solved in analytical way. In this 
study the ALE method is used to solve the above problem. This approach combines the Lagrangian method’s 
facility of moving boundary domain with the Eulerian method’s facility of holding a fixed domain. Donea and 
Giuliani38, Donea and Huerta39, Kuhl et al.40, and Mazumder41 provide more information on the ALE approach 
implementation. The accuracy of the solution can be improved by using a hybrid mesh of triangular and rectan-
gular components. A Galerkin finite element technique is used to convert the FSI problem into a weak form and 
discretized. The element pair P2-P1 is chosen to approximate the pressure, velocity, and elastic walls behavior. 
The Newton’s method is used to solve the nonlinear algebraic system of equations. The nonlinear iteration con-
vergence criteria are defined as:

where ζ represents the general solution component and n is the number of iterations. Figure 1 (right) depicts the 
problem’s coarser lever mesh grid. The problem domain is subdivided into a finite number of elements. P1 and P2 
to approximate the domain’s elements. A quadrilateral and triangular grid are used to create the mesh. To ensure 
that results are independent of the number of mesh elements. A grid independence study was carried out by 
computing WSS for the upper elastic wall. The numerical values of WSS from coarser (level 1) to extremely fine 
(level 6) were computed at Re = 200,Ha = 0 and Bn = 4 . The absolute error decreases when the refinement 

(12)τ =

[
1+

√
Bn

|γ |

(
1− e−

√
M|γ |

)]2
γ ,

(13)η =

[
1+

√
Bn

|γ |

(
1− e−

√
M|γ |

)]2
,

(14)∇σ = 0.

(15)�l =
Eν

(1+ µ)(1− 2ν)
, ν =

�l

2(µ+ �l)
.

∣∣∣∣
ζ n−1 − ζ n

ζ n+1

∣∣∣∣ < 10
−6

Figure 1.   Problem formulation.
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level were increased and was minimum at level 6. Therefore, all the simulations were performed at level 6. The 
number of elements and degree of freedom at each level are shown in Table 1.

Code validation.  Once grid independence is established, the validation of code is presented against the 
results of Anwar et al.42 for contour plots and velocity magnitude and are shown in Fig. 2 and Table 2 respectively. 
The comparison demonstrated the accuracy of our results, and a good agreement among the respective results is 
obtained, which ensures that the results obtained from the present study are reliable for accuracy check.

Results and discussion
To study the hemodynamics of the flow the numerical study of non-Newtonian biomagnetic blood flow flowing 
through a bifurcated channel is carried out by using the two-dimensional CF model. The walls of the artery are 
assumed to be elastic and the stenosis region is constructed in both walls. Suitable scales are used to transform 
the nonlinear differential equations into a dimensionless form. The problem is formulated and discretized using 
the ALE approach. The system of equations is solved using the FEM technique along with appropriate boundary 
conditions. To get a better view of the problem, the numerical solution is derived for various values of parameters 
involved. The ranges of the parameters used in the study are 200 ≤ Re ≤ 1000 , 0 ≤ Bn ≤ 4, and 0 ≤ Ha ≤ 10.

In Figs. 3, 4 and 5 streamlines of blood flow are depicted for different values of Bn at Re = 200, 400, and 1000 
respectively. Increasing values of Bn , the cavity area located near the stenosis region increases due to augmented 
pressure at the walls. Also for higher Reynolds number the recirculation near the stenosis increases. From the 
physical point of view this means the viscous forces within a blood flow increase for higher Reynolds number that 
retards the velocity of the flow. Also, the velocity magnitude is maximum for Bn = 0 (Newtonian case). Figure 6 
plots the velocity for the variation of the Hartmann number for constant Re = 200 and Bn = 1 . The velocity of 
the blood is maximum for Ha = 0. WSS increases with increasing values of Ha. A reasonable deformation can 
be detected for the variation of the Ha due to the elastic nature of walls. In Figs. 7 and 8 velocity magnitude at 
locations A and B is plotted for different values of Bn and Ha respectively. Near the walls of the channel, velocity 
increases with increasing values of Bn . When the distance between the elastic wall and fluid flow increases the 
velocity starts decreasing for increasing values of Bn . Also, velocity magnitude is maximum for the Newtonian 
case ( Bn = 0 ). The same trend can be seen for the variation of the Hartmann number and is depicted in Fig. 8.

Table 1.   Mesh statistics for various refinement levels.

Level # Elements # DOF Total WSS upper wall Error

1 1904 10,871 0.44897 –

2 2467 13,731 0.44955 0.00058

3 3503 19,106 0.45012 0.00057

4 8941 48,458 0.45116 0.00104

5 24,889 132,054 0.45134 0.00020

6 27,495 145,581 0.45133 0.00001

Figure 2.   Comparison for the contour plots at Re = 300 , Anwar et al.42 (left) and present (right).

Table 2.   Velocity magnitude comparison.

Ha

Re = 300 Re = 300

Fsi case (Anwar et al.42) Fsi (present resutls)

0 0.5556 0.5554

8 0.5172 0.5170

10 0.4982 0.4980

12 0.4731 0.4731
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Mechanical features of the bifurcated channel are critical since they are directly related to flow pattern, recir-
culation area, and WSS. The distribution of WSS along the upper wall for the variation of Reynolds number and 
Hartmann number are shown in Table 3. Also, a comparison is made for FSI (elastic wall) and CFD (rigid wall). 
WSS drops in the FSI scenario compared to the CFD case where the walls of the artery are considered to be rigid. 
In case of increasing Reynolds number WSS decreases while Hartmann number has the opposite effect on the 
value of WSS. Figures 8 and 9 plots the WSS against Ha for variation of Bingham number and Reynolds number 
respectively. Also, a comparison is made between FSI and CFD cases. WSS is minimum for the Newtonian case 
( Bn = 0 ). Variations in Bn give rise to the WSS (see Fig. 9). In Fig. 10 the influence of the Reynolds number on 
WSS along the upper wall is plotted. An increase in Reynolds number increases the viscous forces inside the fluid 
which retards the velocity of the fluid hence WSS decrease with increasing Reynolds number.

Figure 11 plots the upper wall displacement field vs Hartmann number for the variation of Reynolds number. 
It is evident that a displacement field increases for increasing values of Ha . An increase in Reynolds number 
decreases the displacement field. The y component of load against Hartmann number for the variation of Bn is 
plotted in Fig. 12. We found that the y component wall load is minimum for the Newtonian case ( Bn = 0 ) and 
increases with increasing values of Bn.

Figure 3.   Velocity profile at Re = 200 for variation of Bn.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12219  | https://doi.org/10.1038/s41598-022-16213-3

www.nature.com/scientificreports/

Conclusion
This study presents results of FSI study aimed to model interaction between double stenosis bifurcated channel 
and blood flow implemented as non-Newtonian incompressible fluid described by two-dimensional CF model. 
The channel’s walls are assumed to be elastic. The magnetic field is applied along the axial direction of the flow. 
The system of differential equations is transformed into a dimensionless form by utilizing suitable scales. ALE-
based FEM is used to discretize the system of governing equations. The study’s primary findings are noted as 
follows:

•	 The WSS is higher for rigid wall scenarios than elastic wall cases.
•	 As the Reynolds number increases, the viscous forces inside the fluid increase which retards the fluid velocity 

inside the artery.
•	 The WSS decreases for increasing values of Reynolds number.
•	 WSS is minimum for the Newtonian case ( Bn = 0 ), as Bn increases so does the WSS increases.
•	 As the values of Bn and Ha increase, so does the load on the wall.

Figure 4.   Velocity profile at Re = 400 for variation of Bn.
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Figure 5.   Velocity profile at Re = 1000 for variation of Bn.
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Figure 6.   Velocity profile at Re = 200 for variation of Ha.

Figure 7.   Velocity profile for different Bn.
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Figure 8.   Velocity profile for different Ha.

Table 3.   Wall shear stresses for variation of Ha and Re.

Ha

Re = 200 Re = 400 Re = 600

CFD case FSI case CFD case FSI case CFD case FSI case

0 0.306026 0.296094 0.18397 0.180241 0.139965 0.137741

2 0.309471 0.299257 0.185416 0.181606 0.140804 0.138476

4 0.319744 0.309125 0.189908 0.185925 0.143505 0.141158

6 0.336633 0.324699 0.197262 0.192986 0.148063 0.145541

8 0.358729 0.343663 0.207165 0.202546 0.154248 0.151569

Figure 9.   WSS along the upper wall vs Ha for different Bn.
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Figure 10.   WSS along the upper wall vs Ha for different Re.

Figure 12.   Fluid load on the upper wall vs Ha for different Bn.

Figure 11.   Upper wall’s displacement field vs Ha for different Re.
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Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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