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ABSTRACT

We propose a new 4–node C0 finite element for shell structures undergoing unlimited 

translations and rotations. The considerations concern the general 6–field theory of shells 

with asymmetric strain measures in geometrically nonlinear static problems. The shell 

kinematics is of the two-dimensional Cosserat continuum type and is described by two 

independent fields: the vector field for translations and the proper orthogonal tensor field for 

rotations. All three rotational parameters are treated here as independent. Hence, as a 

consequence of the shell theory, the proposed element has naturally six engineering degrees 

of freedom at each node, with the so-called drilling rotation. This property makes the 

element suitable for analysis of shell structures containing folds, branches or intersections. 

To avoid locking phenomena we use the Enhanced Assumed Strain (EAS) concept. We 

derive and linearize the modified Hu-Washizu principle for 6–field theory of shells. What 

makes the present approach original is the combination of EAS method with asymmetric 

membrane strain measures. Based on literature, we propose new enhancing field and 

specify the transformation matrix that accounts for the lack of symmetry. To gain 

knowledge about the suitability of this field for asymmetric strain measures and to assess 

the performance of the element, we solve typical benchmark examples with smooth 

geometry and examples involving orthogonal intersections of shell branches. 

KEYWORDS: EAS, LOCKING, 6–PARAMETER SHELL, SO(3), QUADRILATERAL 

SHELL ELEMENT, SHELL INTERSECTIONS

1. INTRODUCTION

We present a formulation of the new 4–node C0 nonlinear shell finite element. 

The essential feature of the formulation is the employed theory of shells, which is 
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statically and kinematically exact. Hence, kinematical hypotheses such as that of 

Reissner-Mindlin type are not introduced here. The kinematics of the shell is described 

by the field of generalized displacements, composed of the translation field and the 

rotation field that appear naturally as independent variables. Being a kinematically 

exact, the present shell theory accommodates finite (unlimited) translations and 

rotations. The presence of rotation tensor causes that the sixth degree of freedom 

appears naturally at each node of FEM mesh. Thus, the elaborated shell element is well 

suited for analysis of shell structures containing intersections. To avoid the well-known 

locking effect, we use the Enhanced Assumed Strain (EAS) concept to enhance the 

stretching strains (including also the shearing components). The bending strains are not 

enhanced. Thus, we regard the proposed finite element as semi-enhanced. The element 

is elaborated in the stationary Lagrangian formulation from the modified Hu–Washizu 

variational principle with generalized displacements and asymmetric membrane strains. 

Based on the literature we propose an enhancing field taking into account the 

asymmetric membrane strains. Such formulation combining asymmetric strain measures 

with EAS technique, to the best of the authors’ knowledge, has not been attempted 

before.

In the literature, nowadays two trends may be distinguished in formulation of shell 

elements: the degenerated shell element (e.g. [1], [2], [3], [4]) and the Reissner-Mindlin 

type shell element. The latter approach has been extensively studied by J.C. Simo and his 

co-workers who proposed modern and mathematically elegant formulation of Reissner-

Mindlin theory. In particular, they paid a special attention to the rotation tensor. In a series 

of papers, see for example, [5] a complete theory and finite elements were formulated. 

However, in [6] it has been shown that these both approaches have the same foundations: 

they require only C0 continuity and in classical formulation, they stem from the kinematical 
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assumption saying that fibers along the thickness remain straight and inextensible. When 

combined with FEM discretization both the above approaches lead to elements with five 

degrees of freedom per node: three translations and two parameters of rotations. Hence, an 

inconvenience appears when these elements are to be applied to structures of which 

geometry contains irregularities such as, for instance, orthogonal intersections of elements. 

Another way of formulating shell elements is to develop them from such theory of 

shells where all six degrees of freedom (including the rotation normal to the reference 

surface) appear on the level of mathematical formulation, see for instance [7], [8], [9], [10]

or [11]. In this paper, we employ as a point of departure the general nonlinear theory of 

shells firstly proposed by Reissner [12] and developed by Libai and Simmonds [13]. The 

main features of the underlying theory of shells may be recapitulated after [14]-[17] as 

follows:

a. The shell (or the shell-like body) is an ordinary material continuum merely of specific 

geometry. Thus, the motion and deformation of the shell are described by general 

balance laws of solid mechanics.

b. The shell-like body is represented by a base surface endowed with mechanical 

properties and internal structure.

c. The shell theory is statically exact: the exact two-dimensional equilibrium equations of 

the shell-like body are derived by direct through-the thickness integration from three-

dimensional balance laws of linear and angular momentum. The equilibrium equations 

are expressed in terms of resultant quantities. Therefore, from the computational 

viewpoint there is no necessity of integration over the element volume, typical for the 

degenerated elements.

d. The shell theory is kinematically exact: the shell kinematics is a direct implication of an 

integral identity resulting from the exact equilibrium equations derived as specified 
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above in (c). The resulting kinematic model is formally equivalent to the Cosserat 

surface. The so-called drilling dof is the natural consequence of the theoretical shell 

model. 

e. The (virtual) two-dimensional strain measures - the stretching and the bending vectors -

are implied again by the integral identity. As work-conjugate to the stress and couple 

resultants, the strain measures are the most natural ones.

f. The whole shell theory is so formulated that the only approximate feature of the 

underlying theory of results from the use of two-dimensional constitutive laws.

The present theory allows for unlimited translations and rotations and it 

accommodates naturally various geometric irregularities such as, for example, folds, 

branches and/or intersections. If these effects are to be considered, there arises a 

necessity to add suitable jump conditions to the theoretical formulation. Due to the main 

aim of the paper we do not discuss these issues here, for details see [16].

The computational aspects within the framework of this theory of shells were already 

covered in [14] where families of 4-, 9- and 16-node displacement/rotation finite elements 

named CAM were elaborated. Later in [15] and [16] mixed and Assumed Natural Strain 

(ANS technique, according to [18]) elements were developed. The summary and the recent 

advances within this shell theory and its numerical implementation may be found in the 

book [17]. Hence, the EAS element proposed here completes naturally the families of shell 

elements developed in [14]-[16].

The EAS elements stem from the so-called modified Hu-Washizu variational 

principle, with appropriate energy-conjugate strain and stress measures. Originally (cf. 

[19]), these elements were classified as hybrid-mixed elements. However, Braess [20]

showed that EAS formulation should be rather viewed as “softened” displacement model, 

due to the structure of weak formulation and resulting forms of the element matrices. 
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Therefore, in this paper we make an extensive use of the results obtained in [14]-[17] with 

regard to the displacement/rotation elements. However, the novelty of the present study, in 

comparison with [14]-[17], stems from the application of the (EAS) technique used as a 

remedy for the locking effect.

Application of EAS concept, or of method of incompatible modes (cf. [21]) in 

formulation of shell elements is already well-known in the literature, see for example [2], 

[3], [4], [9], [22], [23] or [24], to name but a few papers. What makes the present paper 

original is the combination of the semi-EAS concept with asymmetric strain measures that 

are inherent to the general theory of shells. Additionally, following [3] we apply here the 

EAS technique uniformly to all components of the stretching strain vector. This is different 

from approach utilized in, for example [2], [22], [23] where the combined elements were 

elaborated i.e.: EAS technique used for membrane strains and ANS technique for shear 

strains. 

The present paper is organised as follows. Firstly, we discuss the main necessary 

features of the underlying shell theory in Section 2. Section 3 is devoted to two-dimensional 

kinematics of the shell. Attention is paid to definition of strain measures and their virtual 

counterparts. Furthermore, the constitutive relations are discussed. Sections 4 and 5 are 

concerned with FEM interpolation, discretization and formulation of EAS elements. Special 

attention is devoted to interpolation on the SO(3) group. Based on the existing literature we 

propose the enhancing field for asymmetric strain measures. In Section 6 we briefly discuss 

the exact update procedure. In Section 7, the element is subjected to tests. This section is 

divided into two parts. The first one comprises benchmark problems with smooth geometry. 

In the second part, the examples contain orthogonal intersections of shell branches, thereby 

it is possible to ascertain that the implemented enhancing field is properly chosen for the 
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theory of shells with the drilling rotation. In both parts of Section 7 the considerations are 

confined to linear elastic thin isotropic shells in static problems.

2. GOVERNING EQUATIONS

In this section, main aspects of the underlying theory of shells are covered in the 

range necessary for FEM implementation. We refer to [14]-[17] for more detailed 

formulation.

As mentioned above a shell is a three-dimensional solid body B  with specific 

geometry (see Fig. 1). We assume that the boundary B∂  of B  is a union of three parts: 

the upper surface M + , the lower surface M −  and the lateral surface B∂ ¢ (see Fig. 1). M

denotes the base surface of the shell (which must not be necessarily the middle surface). 

The boundary M∂  of M  is a union of two parts d fM M M∂ = ∂ ∪∂  on which the 

displacement ( dM∂ ) and the traction ( fM∂ ) boundary conditions are imposed 

respectively. We also assume that upper and lower surfaces do not have any common 

points, i.e. 

, .B M M B M M+ - + -∂ = » »∂ « = ∆¢ (2.1) 

For the so defined shell, three main principles of mechanics must be satisfied: the 

conservation of mass, the conservation of linear momentum and the conservation of 

angular momentum. In static problems, the principle of mass conservation is satisfied 

identically and is not considered directly here. Two latter principles specify respectively 

to global equilibrium equations of forces and torques, defined below.

Let B be a reference configuration of the shell-like body and P be a selected but 

arbitrary part of B (see Fig. 2). Here P B⊂  is defined by surfaces Π + , Π −  and P′∂ . 

Therefore, P′∂  cuts out from M  a bounded region Π  (see Fig.2) where v  is the 
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outward unit vector normal to Π∂ . When recast into the two-dimensional formulation, 

the equations of equilibrium of forces and torques take the following forms (see for 

instance [14] and [16]):

\

\
( ) ( ) ( ) .

f f

f f

Π Π M Π M

Π Π M Π M

da dl dl

da dl dl

∂ ∂ ∂ ∩∂

∂ ∂ ∂ ∩∂

+ + =

+ × + + × + + × =

∫∫ ∫ ∫

∫∫ ∫ ∫

0

0

f n n

c y f m y n m y n

v

v v

*

* *
(2.2)  

These two equations hold for every part Π M⊂  (see Fig. 3). In (2.2) ( )f x  and ( )c x  are 

the resultant surface force vector and the resultant surface couple vector, respectively, 

y  denotes the position vector of the base surface of the shell in the deformed 

configuration. 

The local equations of equilibrium are formulated in the following steps. Let nv

and mv  be the resultant stress and the resultant stress couple vectors defined along each 

smooth internal curve Π M∂ ∈ , and *n  and *m  be the given boundary resultant 

tractions and moments, respectively (see Fig. 3). Upon applying now the Stokes theorem 

to (2.2), the local equations of equilibrium take the form:

|
β
β + = 0n f ,     | |, ,β β

β β β+ × + = 0m y n c (2.3) 

 β
β=n nv v ,     .β

β=m mv v (2.4) 

The above equations hold for every regular point of M . In (2.3) |(.) β  denotes the 

covariant derivative in the metric of the reference base surface M , which classifies the 

present development as the Lagrangian-type formulation. In the above equations 1,2β =

correspond to a two-dimensional local parametrization of M .

For the completeness, the equations (2.3) are supplemented with the mechanical 

(static) boundary conditions

*β
β =n nv ,     *β

β =m mv . (2.5) 
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For computational purposes, we assume now that the undeformed base surface M

is parametrized by arc-length coordinates 1 2( , )s s=s  with associated unit vectors 0
βt

tangent to M  and a normal vector 0t  (see Fig. 4). Formally, these vectors are defined 

by

0
β

βs

∂
=
∂

x
t ,     0 0

3≡t t ,     0 0 0
1 2( ) 0× ⋅ >t t t . (2.6) 

Notation (2.6)1 is purely formal, for from the computational viewpoint the triad 0{ }it

and x  describing geometry of M are treated as a part of input data of the problem (see 

Fig. 4). At each regular point of M 0{ }it  is defined as a transformation of some global 

fixed base { }ie

0
0( ) ( )i i= et x T x ,     0

0 ( ) ( )i i= ⊗eT x t x ,     1,2,3i = . (2.7) 

Here 0T  is referred to as the tensor of structure of the shell in the reference 

configuration. In the FEM approach the most suitable way is to assume the triad to be 

orthonormal, i.e.

0 0
i j ijδ⋅ =t t ,     0

0
i

i =t t ,     0 3
0≡t t ,     0|| || 1i =t , (2.8) 

although there is no necessity to do so. Upon this assumption 0T  becomes a member of 

the proper rotation group, 0 (3)SO∈T . Then (2.7) describes rotation of the basis { }ie  to 

0{ }it  and 0T  may be expressed in matrix form in the base { }ie  as

0 0 0
0 1 2 3( ) [ ( ) | ( ) | ( )]≡x x x xT t t t . (2.9) 

It should be noticed that the equations (2.2) are straightforward implication of 

three-dimensional balance laws of continuum mechanics. In this sense they are exact. 

Furthermore, these equations are obtained without resorting to any simplifying 

assumptions so often used in the literature in the context of various shell formulations, 
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e.g. about the magnitude of displacements or rotations, or the kinematical hypotheses of 

the Kirchhoff-Love or Reissner-Mindlin type. In particular, there is no even reference 

here to the shell thickness. Therefore, the above formulation holds for any shell-like 

shell and is independent of material composing the body in question. 

The explicit appearance of variables from the rotation group (3)SO  requires precise 

treatment of operations, since this group is multiplicative. This issue has already 

received a major attention in the literature. For instance, references [25], [26] are 

devoted to the general problems, in [27], [28], [29] beam problems are discussed and 

references [17] and [30] are concerned shells. This list is far from being complete, yet 

these papers give a decent view into the subject. Appendix 1 of this paper summarizes 

some of the facts concerning rotations that are employed here. 

3. KINEMATICS OF SHELL

Let us assume that ( )v x  and ( )w x  are: the kinematically admissible displacement 

field and the kinematically admissible rotation field respectively. These fields have to 

satisfy the homogenous boundary conditions ( ) = 0v x , ( ) = 0w x  on dM∂ . Then the 

following calculations can be performed. Firstly, the scalar products of (2.3)1 with ( )v x

and (2.3)2 with ( )w x  are computed. Secondly, the resulting expressions are summed 

and integrated over M . Thirdly, to the obtained expression the Stokes theorem is 

applied yielding the following integral identity

( ; ) ( ; )i eG M G M=w w ,     ( , )≡ v ww , (3.1) 

where 

| |( ; ) { ( , , ) , } ,

( ; ) ( ) ( ) .
f

β β
i β β β β βM

e M M

G M da

G M da dl
∂

≡ ⋅ + × + ⋅

≡ ⋅ + ⋅ + ⋅ + ⋅

∫∫
∫∫ ∫

n v y w m w

f v c w n v m w

w

w * *
(3.2) 
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Since ( ; )eG M w  has clear meaning of the work done by external loads, then by 

(3.1) the term ( ; )iG M w  is the virtual work of internal forces. It may be argued (see 

[14]) that the terms 

, ,β β βδ = + ×ε v y w (3.3) 

and 

,β β=κ w (3.4) 

should be viewed as virtual changes of some kind of strain measures. The studies of 

Reissner [12] and Simmonds [31] pointed out that the kinematical model associated 

with (3.2) is identical to the Cosserat surface. 

Typically, in the spatial representation, the configuration of the Cosserat surface 

model is described by two fields

( , ) ( , )t t= +y x x u x ,     0( , ) ( , ) ( )t t=T x Q x T x , (3.5) 

where y  is defined in (2.2), u  is the displacement vector, and t parametrizes a smooth 

curve on the configuration space. ( , ) (3)t SO∈T x  is the so-called tensor of structure of 

the shell in the current (deformed) configuration. The tensor ( , )tT x  may be viewed as 

an image of 0 (3)SO∈T  under action of the rotation tensor (3)SO∈Q . Therefore, based 

on relation (2.7) we have

0
0( ) ( ) ( ) ( ) ( ) ( )i i i i= = =e et x Q x t x Q x T x T x . (3.6) 

Hence, corresponding to the virtual displacements ( )v x  and rotations ( )w x  there exists 

a field 

( , )= u Qu (3.7) 
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composed of the displacement vector E∈u  and the rotation tensor (3)SO∈Q . It turns 

out that in regard to definitions (3.3) and (3.4) we have the following definitions of the 

stretching vector 

0 0

,

, , , , ( ) ,

β β β

β β β β β β β β

≡ −

= + − = + − = + −1

ε y t

u x t u t t u Q t
(3.8) 

and the bending vector

1 Tad ( , )β β
−≡κ Q Q , (3.9) 

where map 1ad ( )− K  is defined by (A.2). 

Let us show that the virtual changes of (3.8) and (3.9) correspond to the virtual 

measures (3.3) and (3.4). A standard calculation of directional derivatives of (3.8) and 

(3.9) leads however to strain measures which are not objective in spatial representation. 

Therefore, we use the corotational derivative

( ( ))T
β βδ δ≡ε Q Q ε ,     ( ( ))T

β βδ δ≡κ Q Q κ . (3.10)

Now, for example, by making use of (A.8) we have

( ( )) ( , , )

ad , , ad

, ad ,

, , ,

T T T T T
β β β β β β

β β β β

β β

β β

δ δ δ δ δ δ
δ δ

δ

≡ = + − −

= − + + − =

= −

= + ×

ε Q Q ε Q Q y Q y Q t Q t

w y y w t t

y w y

v y w

(3.11)

i.e. the result exactly as in (3.3). Therefore, the strain measures (3.8) and (3.9) are 

natural in the sense that their corotational virtual changes result exactly from principle 

of virtual work. Both pairs of vectors ( )βδε x  and ( )βδκ x  have three components each. 

In the following FEM formulation the vector-matrix notation is introduced. Let us 

define the following energy conjugated objects:
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= 
 

v

w
w ,     

 
= 
 

f

c
p ,     

*
*

*

  = 
  

n

m
s , (3.12)

0
1 11

0
2 2 2

1 T
1 1

1 T
2 2

, ( )

, ( )

ad ( , )

ad ( , )

β

β
−

−

 + − 
    + −     = = =     

      
      

u Q tε
ε ε u Q t

κ κ Q Q
κ Q Q

e%

1

1
,     

1

2

1

2

β

β

 
 

    = =   
    

 
 

s

n

n n

m m

m

. (3.13)

The components of stress vector s  are interpreted graphically in Fig 5. In (3.13)1 by 

tilde we express the explicit dependence of strains on generalized displacements (3.7). 

With this notation, the virtual strain measures read

1 1 11

2 2 22

1 1

2 2

, ( )

, ( )

,

,

δ
δ

δ
δ
δ

+ + ×  
   + + ×   = =   

   
      

v t ε wε
v t ε wε

κ w

κ w

e% .     (3.14)

We also define a vector corresponding to the surface deformation gradient

1

2

1

2

,

,

,

,

δ

 
 
  =  
 
 
  

v

v

w

w

w

d . (3.15)

Therefore, in compact form we have

( ) ( )δ =e u B u w% ,     δ =d D w ,     2( ( ))T Tδ δ δ=e u s d G d% , (3.16)

where the following matrices (operators) are introduced

1 1 1

2 2 2

1

2

(.), ( ) (.)

(.), ( ) (.)
( )

(.),

(.),

+ × 
 + × =
 
 
 

t ε
t ε

B u

1

1

0 1

0 1

,  

1

2

1

2

(.),

(.),

(.),

(.),

 
 
 
 =
 
 
  

D

1 0

1 0

0 1

0 1

0 1

, (3.17)
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1

2

1

2

1 2

(.)

(.)

( ) (.)

(.)

(.) (.)

 − ×
 − × 
 = − ×
 

− × 
 × × 

n

n

m

m

n n

G u

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 H

, (3.18)

with ( ) ( ) ( ( ) )β β
β β β β= ⊗ + − ⋅ +H 1u n t ε n t ε .

If the field ( , )=u u Q  satisfies the kinematical boundary conditions

{ | along }A dU U M= ∈ = ∂u u u* (3.19)

and the field ( , )=w v w  satisfies the homogenous kinematical boundary conditions

{ | along }A dW W M= ∈ = ∂w w 0 , (3.20)

then with the introduced notation the weak formulation (3.2) may be rewritten as the 

principle of virtual displacements

*

[ ; ] [ ; ] [ ; ]

( ( ) ) ( ( ))
f

i e

T T T

M M M

G G G

da da dl
∂

≡ − =

= − −∫∫ ∫∫ ∫
u w u w u w

B u w s e u w p w s% %  (3.21)

with the constitutive relation given in the general form 

=s Ce , (3.22)

where C represents some constitutive matrix operator.

When linearized and approximated using FEM, the equation (3.21) leads to the 

displacement/rotation CAM finite elements (cf. [14]). The results obtained with the aid 

of these elements will serve as the reference here.

4. CONCEPT OF EAS FORMULATION

The EAS formulation is based on the assumption that the strain field may be 

expressed as the sum (cf. [19])
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ˆ( )= +e e u e% , (4.1) 

where ( )e u%  is the compatible strain defined by (3.13)1 and ê  is some independent 

enhancing part.  Taking into account (3.16)1 the virtual strains (4.1) may be written as

ˆ ˆ( )δ δ δ δ= + = +e e e B u w e% . (4.2) 

Suppose now that there exists a strain energy function ( ) ( , )β βΦ Φ=e ε κ  chosen 

so, that when differentiated with respect to the strains it yields the constitutive relation 

(3.22), that is ( )Φ e  should be of the form 

1
( )

2
TΦ =e e Ce . (4.3) 

Assuming for convenience that there exists a potential, i.e. a functional [ ; ]V u w  such 

that [ ; ] [ ; ]eδV G= −u w u w  we may derive, with the help of (4.1), the modified Hu-

Washizu variational functional 

( )
( )

ˆ ˆ ˆ ˆ( , , ) ( ) ( ( ) ) ( )

ˆ ˆ ˆ( ( ) ) ( ) ( ) .

T

M

T

M

W Φ da V

Φ da V

= + − +

= + + − +

∫∫
∫∫

u e s e s e u e u

e u e s e u

%

%
(4.4) 

The first variation of (4.4)2 reads

( )
ˆ ˆ ˆ ˆ[ , , ; , , ]

ˆ ˆ ˆ ˆ( ) ( ) ( )

[ ; ] .

T T T

M

δW δ δ

Φ δ Φ δ da

δV

=

∂ + ∂ − −

+

∫∫ e e

u e s w e s

Bw e s s e

u w

(4.5) 

The solution of (4.5) satisfying 0δW =  is usually found numerically with the help of the 

Newton-type method and takes the form

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , , ; , , , , , ] [ , , ; , , ] 02δ W δ δ ∆ ∆ ∆ δW δ δ+ =u e s w e s u e s u e s w e s . (4.6) 

Equation (4.6) requires linearization. i.e. computing of directional derivative of the 

respective functional which leads to
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(

)

( )

2

2 2

2

2

( ( )) ( ( )) ( )

ˆ ˆ( ) ( ) ( ( ))

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

[ ; , ]

ˆ ˆ ˆ ˆ ˆ( )

[ ; ] 0 .

T T

M

T T

T T T

T T T T

M

δ Φ δ Φ

δ Φ δ Φ

δ Φ δ δ da

δ V

Φ δ Φ δ δ da

δV

∆ ∆

∆ ∆

∆ ∆ ∆

∆

∂ + ∂ +

∂ + ∂ +

∂ − − +

+

∂ + ∂ − − +

=

∫∫

∫∫

e ee

ee ee

ee

e e

e u e u e u

e e u e u e

e e s e e s

u w u

Bw e e s s e

u w

% % %

% %

 (4.7) 

We now invoke some important facts concerning the EAS elements. To ensure the 

stability of the enhanced strain approximation and to satisfy the patch-test, it is required 

(cf. [19]) that the so-called orthogonality conditions should hold

ˆ ˆ 0T

M
δ da =∫∫ s e ,     ˆ ˆ 0T

M
δ da =∫∫ e s . (4.8) 

Consequently, the underlined terms involving variations of the strains and stresses drop 

out from (4.7). With the relations

2 Φ∂ =ee C ,     ˆ( ) ( ( ) )Φ∂ = = +e s e C e u e% (4.9) 

the three-field functional (4.4) reduces to the two-field functional with ˆ( , )u e  as the 

independent variables. Therefore, from (4.5) we have 

( )
ˆ ˆ[ , ; , ]

ˆ ( ) [ ; ] .
TT

M

δW δ

δ da δV

=

+ +∫∫
u e w e

Bw e s e u w
(4.10)

In the sequel, due to the main goal of the paper, we confine our attention to dead loads, 

thereby 2 [ ; , ] 0δ V ∆ =u w u  and from (4.6) and (3.16)3 we have

(
)

( )

ˆ ˆ ˆ ˆ ˆ[ , ; , , , ] [ , ; , ]

( ( ( )) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( )

ˆ( ) [ ; ] 0 .

2

T T

M

T T T

T T

M

δ W δ ∆ ∆ δW δ

δ δ δ

δ δ δ da

δ da δV

∆

∆ ∆ ∆

+ ≡

+ +

+ +

+ + =

∫∫

∫∫

u e w e u e u e w e

d G d e u C e

e C e e u C e e C e

Bw s e s u w

% %

% %

u

u
(4.11)
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The above equation forms the foundation of the proposed EAS element.

5. FEM DISCRETIZATION 

5.1. INTERPOLATION

From the above development it is seen that we have four main types of variables 

belonging to: the vector space E , the rotation group (3)SO , and the space of skew-

symmetric tensors (3)so . In addition, we have the enhanced strain variables. Each type 

of the variables undergoes different way of interpolation. Below, we remind the 

interpolation schemes for each type of the variables.

5.1.1. INTERPOLATION OF VECTOR VARIABLES

Following the standard FEM approach, we approximate the base surface of the 

shell as a sum 

( )
1

eN

h e
e

M M Π
=

≈ =∑ , (5.1) 

where eN  is the number of finite elements. A typical finite element ( )eΠ  is defined as a 

smooth image of the so-called standard element ( )eπ . Here  ( ) [ 1, 1] [ 1, 1]eπ = − + × − +  is the 

element in the parent (natural) domain 1 2( , )ξ ξ=ξ . Within each 4-node element the 

vector-type variables x , y  and v  are interpolated using the Lagrange polynomials 

4

1
( ) ( )a aa

L
=

=∑x ξ ξ x , (5.2) 

where 

1 1 2 2 1 2

3 1 2 4 1 2

1 1
( ) (1 )(1 ), ( ) (1 )(1 ) ,

4 4
1 1

( ) (1 )(1 ), ( ) (1 )(1 )
4 4

L ξ ξ L ξ ξ

L ξ ξ L ξ ξ

= + + = − +

= − − = + −

ξ ξ

ξ ξ
 (5.3) 

are the standard shape functions of bilinear quadrilateral element. 
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In our approach, every node of FEM mesh in the reference configuration is defined by 

the position vector ax  and the rotation tensor 0( )aT . Both ax  and tensor 0( )aT  are 

treated here as independent input data.

Since definitions of the strain measures require the derivatives with respect to the 

arc-length parameters { }βs , we have to calculate such derivatives. In view of (2.6)1

from the chain rule we have 

0 ( ) ( )
( ) α
β

β α β

ξ
s ξ s

∂∂ ∂
= =

∂ ∂ ∂
x ξ x ξ

t ξ . (5.4) 

However, we also have 0
0( ) ( )i i= et ξ T ξ  so by forming the scalar product we arrive at

0 0 0
0

( ) ( )
( ) ( ) ( ) ( )λ λ

α β β β αβ
α λ α λ

ξ ξ δ
s ξ s ξ
∂ ∂∂ ∂

⋅ = ⋅ = ⋅ =
∂ ∂ ∂ ∂

e
x ξ x ξ

t ξ t ξ t ξ T ξ . (5.5) 

In the matrix form, for two vectors of the surface base we have

0 0
1 1 2 1 1 1 1 2

0 0
1 2 2 2 2 1 2 2

1 0( ) ( )

0 1( ) ( )

ξ , ξ , / ξ / ξ
ξ , ξ , / ξ / ξ

 ∂ ∂ ⋅ ∂ ∂ ⋅   
=    ∂ ∂ ⋅ ∂ ∂ ⋅     

x t x t

x t x t
. (5.6) 

Since the terms

0, ( / )α β β αs ξ= ∂ ∂ ⋅x t (5.7) 

follow from the initial geometry through (5.2), the solution of (5.6) with respect to 

[ , ]β λξ  does not create a problem. Now, the derivatives of the shape functions with 

respect to { }βs  are given by

1 2
1 2

( ) ( ) ( )
( ), , ,α α α

a β β β
β

L L L
L ξ ξ

s ξ ξ
∂ ∂ ∂

= = +
∂ ∂ ∂
ξ ξ ξ

 (5.8) 

and the area element is transformed using

1 2 1 2( )da ds ds α dξ dξ= = ξ , (5.9) 
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where  

0 0
1 1 1 2

0 0
2 1 2 2

( / ) ( / )
( ) det

( / ) ( / )

ξ ξ
α

ξ ξ
 ∂ ∂ ⋅ ∂ ∂ ⋅

=  ∂ ∂ ⋅ ∂ ∂ ⋅ 

x t x t
ξ

x t x t
. (5.10)

5.1.2. INTERPOLATION ON SO(3) GROUP

The interpolation of elements from (3)SO  group is more complex. This is due to 

the fact that relation (5.2), when applied to objects from (3)SO , takes the object out of 

this group. Therefore such interpolation can not be applied directly here and additional 

steps are required to ensure that an interpolated object belonging to the rotation group 

would always remain in that group after interpolation. Such schemes have been already 

proposed. Reference [14] provides the straightforward approach, while in [15] (see also 

[32]) the details of the more precise procedure are given. This is completely general 

procedure applicable to any manifold. In particular, it may be specified for arbitrary 

parametrization of the rotation group. The approach first presented in [15] practically 

removes the singularity of parametrization within a finite element due to some 

transport-type operation to the neighborhood of the neutral element (3)SO∈1 . Here, we 

particularize the procedure for the canonical parametrization of Q  and ,βQ  (see (3.9)) 

used in this paper.

1) At each element, from the discrete nodal set ( )a a=Q Q ξ , 1, 2,3,4a = , of 

function ( )Q ξ ( )( )eπ∈ξ , we select some representative tensor (3)SO∈Q . In this 

work, we assume that the best representative from four nodal tensors is that found 

as a result of orthonormalization of the mean values (over element nodes) of the 

components of vectors a
ijt , a a a

j ij i jt= ⇒e tt  from the set 1 2 3[ ]a a a a
a a⇒ ≡ ≡Q t t t tQ | | . 

The normal vector 3 3
a a⇒ tt  is always distinguished. 
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2) With the help of (3)SO∈Q  we transform the nodal element tensors to the 

neighborhood of the neutral element of the group (3)SO∈1  (where in the 

canonical parametrization the error of interpolation is the smallest) by computing 

at each node a tensor 

T
a a=R Q Q ,     const=Q . (5.11)

3) Since the tensors aR  belong to the neighborhood of (3)SO∈1 , at each node we 

compute in a nonsingular manner the components of the axial vectors aφ  by 

making use of (A.6) and (A.7), i.e. 

1
acos ( 1)

2a aφ tr
 = − 
 

R ,     11
ad ( )

2sin
T

a a a
aφ

−= −φ R R . (5.12)

4) We interpolate ( )%φ ξ  as elements of 3R  using 

1 1
4 4

2 21 1

3 3

( )

( ) ( ) ( ) ( )

( )

a

a a a aa a

a

φ φ
φ L φ L

φ φ
= =

   
   → = =   
   
   

∑ ∑
%

% %

%

ξ
φ ξ ξ ξ ξ φ

ξ
, (5.13)

and derivatives ,βφ  according to

1 1
4 4

2 21 1

3 3

( ),

( ), ( ), ( ), ( ),

( ),

β a

β β a β a a β aa a

β a

φ φ
φ L φ L

φ φ
= =

   
   → = =   
   

  

∑ ∑
%

% %

%

ξ
φ ξ ξ ξ ξ φ

ξ
, (5.14)

where derivatives ( ),a βL ξ  are given by (5.8). 
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5) We compute the tensors ( )%R ξ  and ( ),β%R ξ  by using ( )%φ ξ  and ( ),β%φ ξ  according 

to 

( )2
( ) ( ) ( ) ( ) ( )a b= + +1 %% % %%R ξ ξ Φ ξ ξ Φ ξ , (5.15)

( ) ( )2

( ), ( ), ( ) ( ) ( ),

( ), ( ) ( ) ( ), ( ) ( ) ( ), ,

β β β

β β β

a a

b b

= + +

+ + +

% % %% %

% %% % % % %

R ξ ξ Φ ξ ξ Φ ξ

ξ Φ ξ ξ Φ ξ Φ ξ Φ ξ Φ ξ
 (5.16)

where 

( ) ad( ( ))=% %Φ ξ φ ξ ,     ( ), ad( ( ), )β β=% %Φ ξ φ ξ ,      ( ) ( )φ = %% ξ φ ξ (5.17)

sin ( )
( )

( )

φ
a

φ
=

%
%

%

ξξ
ξ

,     
1 cos ( )

( )
( )

φ
b

φ
−

=
%%

%

ξξ
ξ

,     (5.18)

2

cos ( ) ( )
( ), ( ) ( ),

( )β β
φ a

a
φ

−
= ⋅

% %
% %%

%

ξ ξξ φ ξ φ ξ
ξ

,     
2

2 ( ) ( )
( ), ( ) ( ),

( )β β
b a

b
φ

− −
= ⋅

% %% % %
%

ξ ξξ φ ξ φ ξ
ξ

.(5.19)

6) W compute interpolated tensors ( )%Q ξ  and , ( )β
%Q ξ  by using ( )%R ξ  and ( ),β%R ξ

( ) ( )=% %Q ξ QR ξ ,     const=Q , (5.20)

, ( ) ( ),β β=% %Q ξ QR ξ . (5.21)

The tensor Q  discussed above represents not only the rotation tensor of shell 

deformation but also other proper orthogonal tensors such as 0T , T . However, for each 

of these objects, a proper representative corresponding to Q  must be selected 

individually at each element.

5.1.3. INTERPOLATION ON so(3) GROUP

The vector of virtual rotations (3)so∈w  is interpolated after transformation to 

the fixed frame ie , i.e.
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( ) ( ) ( ) ( ) ( ) ( ) ( )T
i i j j j jw w w= = =ew ξ ξ t ξ ξ ξ T ξ t ξ , (5.22)

which yields the following interpolating scheme

1 1

2 1
1

3 1

( )

( ) ( ) ( )

( )

aN

a a
a

a

w w

w L w

w w
=

   
   =   
   
   

∑T

%

%

%

ξ
ξ ξ ξ
ξ

,     ( )eπ∈ξ . (5.23)

In this way, one can easily describe the junctions of different shell branches. Of 

course, to evaluate the derivatives in (5.23) one requires to interpolate ( )T ξ  according to 

the schemes described above.

5.1.4. INTERPOLATION OF   EAS  VARIABLES 

In EAS approach, the vector of enhancing strains (4.1) and its variations (4.2) or 

increments, with the components in the base { , 1,2,3}i i =t , are interpolated within 

typical element according to

( )
ˆ ( ) ( ) e=e P ßξ ξ ,     ( )

ˆ ( ) ( ) e∆ ∆=e P ßξ ξ , (5.24)

where ( )eß  and ( )e∆ß  are the vectors collecting the enhancing strain parameters on the 

level of the parent element in 1 2( , )ξ ξ=ξ  coordinates. Matrix ( )P ξ  has the following 

form (cf. [19])

0( ) ( ) ( )
( )

Tα
α

−

=
=

0
P M H

ξ
ξ ξ ξ

ξ
. (5.25)

The transformation matrix M from (5.25) is built based on the “push–forward” 

operation known from tensor calculus. It maps the polynomial shape functions H

defined in 1 2( , )ξ ξ=ξ  domain into { }βs  domain. In order to satisfy the patch-test in the 

sense given in [21], the transformation is confined to the origin of an element (0,0)=ξ

so that the components of M are constant. In (5.25), 0α  denotes the value of determinant 
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(5.10) evaluated at the element origin. The size of M is determined by the type of 

problem and the number of components of the strain vector that are to be enhanced. 

In reference [2], it was argued that application of EAS method to bending part of 

the strain has negligible influence on the accuracy of FEM calculations and makes the 

calculations more time-consuming. The same fact was concluded in [15] and [16] in the 

context of mixed formulation yielding the semi-mixed elements, developed on the 

grounds of the same theory of shell as used here. Therefore, in this paper only stretching 

and shear strains defined by (3.13)1

11 22 12 21 1 2{ }Tε ε ε ε ε ε=ee (5.26)

are subjected to EAS technique. The bending component of strain vector (3.13)1 is not 

enhanced. Therefore, analogously to the semi-mixed formulation of [15] and [16], we 

propose a notion “semi-enhanced element”. As it may be observed, due to the presence 

of curvatures and drilling couples, the membrane strains are not symmetric in the third 

and the fourth slot of (5.26) in contrast to the majority of papers concerned with 

application of EAS method. In addition, in comparison with the original formulation 

[19], (5.26) contains also components associated with shear. This fact requires special 

attention in the forthcoming selection of enhancing strains. 

According to the order of components assumed in (5.26), the matrix M takes the 

form

1 1 1 1 1 2 1 2 1 2 1 1 1 1 1 2

2 1 2 1 2 2 2 2 2 2 2 1 2 1 2 2

1 1 2 1 1 2 2 2 1 1 2 2 1 2 2 1

6 6
1 1 2 1 1 2 2 2 1 2 2 1 1 1 2 2

1 1 1 2

2 1 2 2

, , , , , , , , 0 0

, , , , , , , , 0 0

, , , , , , , , 0 0

, , , , , , , , 0 0

0 0 0 0 , ,

0 0 0 0 , ,

s s s s s s s s

s s s s s s s s

s s s s s s s s

s s s s s s s s

s s

s s

×

 
 
 
 

=  
 
 
 
  

M , (5.27)
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where the elements ,α βs  are computed from (5.7). As in any approximating method, the 

crucial point of defining EAS element is the matrix ( )H ξ  in (5.25). In order to pass the 

patch-test, as a consequence of (4.8) (see [19] for details), this matrix should satisfy the 

condition 

( )

( )
eπ

d =∫ H 0ξ ξ . (5.28)

The appropriate choice of H  determines the properties of the EAS elements. As to 

selection of the enhancing strain field some clues may be found in the following (but 

not limited to) papers: [2], [3], [4], [19], [23], [24]. For example, in [2] two finite 

elements were proposed: EAS4-ANS and EAS7-ANS with four and seven parameters 

used respectively to enhance the symmetric membrane strains. In contrast to [3], [4] and 

this paper, to deal with the shear locking the authors used the ANS concept from [18]. 

Other authors, like for example [3], [4], [24], successfully tried to use the EAS concept 

to all components of the strain vector. Yet, as it has been already pointed out, the results 

from the literature are for symmetric membrane strains and, as such, are to be applied 

here with caution.

The proper selection and verification of various enhancing fields was the topics of 

extensive studies in Ph.D. thesis of the second author. By modifying and combining the 

enhancing fields known form the literature, four elements were proposed. By solving a 

number of examples, one element denoted EAS(14)m1 was selected and it is presented 

in this paper. In this element fourteen parameters are used to enhance strain field. 

The membrane strains 11ε  and 22ε  are enhanced as in the element EAS7-ANS 

from [2]. To enhance the shear strains 1ε  and 2ε  we follow the concept from [3], which 

is based on the derivatives of the bubble function 

Page 24 of 85

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Peer Review
 O

nly

25

( )( )2 2
1 21 ( ) 1 ( )N ξ ξ= − − . (5.29)

Finally, for the membrane strains 12ε  and 21ε  our own enhancing fields are 

proposed, extending the concept from [2] and [3]. The explicit form of the matrix H  for 

EAS(14)m1 element is 

1 1 2

2 1 2

1 1 2

2 1 2
6 14

0

( )

0

ξ ξ ξ
ξ ξ ξ

ξ ξ ξ
ξ ξ ξ

a b ab

b a ab

×

 
 
 
 

=  
 
 
 
  

H ξ . (5.30)

Here 2
1 22 (( ) 1)a ξ ξ= − , 2

2 12 (( ) 1)b ξ ξ= −  are just derivatives of the bubble function 

(5.29). 

5.2. ELEMENT MATRICES

At each node of the finite element there are six nodal dofs: three virtual 

(incremental) translations and three virtual (incremental) parameters of rotations 

referred to the global frame { }ie . These dofs compose the nodal displacement vector 

and element displacement vector, respectively, as given below

1

2

3

1

2

3

a
a

a

v

v

v
δ

w

w

w

 
 
 
    = =   

   
 
 
  

v
q

w
,     

1

2
( )

3

4

e

δ
δ

δ
δ
δ

 
 
 =  
 
  

q

q

q

q

q

. (5.31)

From the shape functions (5.3) we form the matrix

( )
( )

( )
a

a
a

L

L

 
=  
 

1 0

0 1
L

ξ
ξ

ξ
,     1 2 3 4( ) [ ( ) ( ) ( ) ( ) ]=L L L L Lξ ξ ξ ξ ξ , (5.32)
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Hence, for a single element the following interpolation scheme holds

( )

( )
( ) ( )

( ) eδ 
= = 
 

w L q
v ξ

ξ ξ
w ξ

. (5.33)

However, in the light of interpolating scheme for the vector of virtual rotations (5.22)

one arrives at

( )( ) ( ) eδ=w L qξ ξ ,     ( ) ( ) ( )=L Y Lξ ξ ξ ,     ( )
( )T

 
=  
 

1 0

0
Y

T
ξ

ξ
. (5.34)

Equations (5.34)1 are also used for incremental displacements and rotations

( )( ) ( ) e∆ ∆=u L qξ ξ . (5.35)

Since only the stretching and shear strains are enhanced, the following 

decompositions of the strain vector (3.13), the strain-displacement matrix (5.40)1 and 

the internal force vector (3.13)2 are introduced:

ˆ  
= +   
   

e e

k

e e
e

e 0

%

%
,     

 
=  
 

e

k

B
B

B
,     

 
=  
 

e

k

s
s

s
. (5.36)

By substituting (5.33), (5.35) and (5.24)2 to (4.5) and (4.11) we arrive at 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ,

,

e e e T e e
G M e e d

e e e
e e

∆ ∆

∆ ∆

+ + = −

+ = −
ßq

ßq ßß ß

K K q K ß p r

K q K ß r
(5.37)

where we have defined the following matrices:

( )

( )

e

e T
M Π

da= ∫∫K B CB ,    
( )

( )

e

e T
G Π

da= ∫∫K D GD , (5.38)

( )

( )

e

e T

Π
da= ∫∫ßßK P CP ,     

( )

( )

e

e T

Π
da= ∫∫ßq eK P CB , (5.39)

=B BL ,      =D DL , (5.40)

( )

( ) ( )
e

e T
d Π

da= ∫∫r B s u ,     
( )

( )

e

e T

Π
da= ∫∫ß er P s , (5.41)
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( )

( ) ( )
e

e T

Π
q da= ∫∫p L p . (5.42)

Since the enhancing fields require only piece-wise continuity (cf. [19]), 

analogously as the fields of generalized stresses in the semi-mixed formulation (cf.[15], 

[16]), they are eliminated on the element level by static condensation

( ) 1 ( ) ( )
( ) ( )( ) ( )e e e
e e∆ ∆−= − +ßß ßq ßß K K q r , (5.43)

which yields the classical form of the linearized equation for a typical element

( ) ( ) ( )
( )

e e e
T e∆ ∆= +K q p j ,     ( ) ( ) ( )e e e= −j p r , (5.44)

where the tangent stiffness matrix and the element residual vector (for dead loads) have 

the forms typical for mixed-type elements 

( ) ( ) ( ) ( ) ( ) 1 ( )( ) ( )e e e e T e e
T G M

−= + − ßq ßß ßqK K K K K K ,     ( ) ( ) ( ) ( ) 1 ( )( ) ( )e e e T e e
d

−= − ßq ßß ßr r K K r . (5.45)

Since the parameters ( )e∆ß  are eliminated on the element level, the resulting 

EAS(14)m1 element has six dofs as specified by (5.31). 

The global equations 

T ∆ ∆= +K q p j (5.46)

are formed from (5.44) and (5.45) in the course of standard aggregation,,

( )

1

elemN e
T Te

A
=

=K K ,    ( )

1

elemN e

e
A∆ ∆

=
=p p ,    ( )

1

elemN e

e
A

=
=j j ,    

1

2

nodeN

∆
∆

∆

∆

 
 
 =  
 
  

q
M

q

q

q

 . (5.47)

The global vector of increments of the generalized displacements ∆q  is built from a∆q

defined by (5.31)2.
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5.3. MATERIAL LAW

In this work we confine our considerations to a special case of the simplest 

material law (3.22). We generalize the classical constitutive equations for thin, 

isotropic, linearly elastic shells on the considered 6–field theory of shells. The equations 

read

11
11

22
22

12
12

21
21

11
12

12
22

11
1

22

12

21

1

2

(1 )

(1 ) 0

(1 )

(1 )

(1 )

(1 )

(1 )

(1 )

s

s

t

t

C ν εn

ν C εn

C ν εn

C ν εn

α C ν εn

α C ν εn

D ν κm

ν Dm

symm D νm

D νm

α D νm

α D νm

   
   
   
   −
   

−   
   −
   

−   
=   

   
   
   

−   
   −   

−   
   −  

1

22

12

21

1

2

κ
κ
κ
κ
κ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(5.48)

where: 0h  is the shell thickness in the reference configuration, E is the Young modulus, 

ν  denotes the Poisson ratio, 
3

0 0
2 2

,
1 12(1 )

Eh Eh
C D

ν ν
= =

− −
. The shear factor sα  is well 

established on the grounds of theories of plates and shells. Here for numerical purposes 

the value 1sα =  has been used. The torsional factor tα  is the new material coefficient 

established for the present theory of shells. It should be viewed as an analogue of the 

shear factor sα  and must not be confused with the “penalty multiplier” notion used in 

reference [23] or [34], where the authors must have misunderstood the meaning of tα .

It should be noted, however, that it was Reissner [12] who was the first to make 

an attempt to propose the constitutive equations for six-field shell theory. The 

constitutive equations for the drilling couples and, therefore, the value of tα  and its 

definition are still an open problem in the context of the discussed theory of shells. This 
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issue has been a topic of extensive studies in [14]-[16]. The studies and numerical 

simulations for 10 10[10 ;10 ]tα
− +∈  carried out there revealed that values of tα  from 0 to 1 

have negligible influence on the values of displacements and on internal energy of the 

system. In this paper, for numerical simulations we chose 0.01tα = .

6. EXACT UPDATE PROCEDURE

The translation field u is updated in the additive manner

( 1) ( ) ( 1)
1 1 1

i i i
n n n∆+ +

+ + += +u u u . (6.1) 

The update of the rotation tensor Q is more involving. As mentioned above, this 

update is performed here in the spatial representation. By making use of increment of 

the axial vector ( 1)
1

i
n∆ +

+w  at (n+1) – configuration one gets

( 1) ( 1) ( )
1 1 1

i i i
n n n∆+ +

+ + +=Q Q Q ⇒ ( )( 1) ( 1)
1 1exp ad( )i i

n n∆ ∆+ +
+ +=Q w . (6.2) 

The use of increment (correction) of the rotation vector ( 1)
1

i
n∆ +

+w  practically 

excludes the possibility of finding singular points of parametrization (A.4) at 2π , since 

in the Newton-Raphson scheme the convergence requirements rule out such large 

values of the axial vector.

The vector of parameters ( )e∆ß  of enhancing strains ˆ∆e , as an element of the 

linear space, is also updated in the additive way

( 1) ( ) ( 1)
1 1 1

i i i
n n n∆+ +

+ + += +ß ß ß . (6.3) 

Once the updates ( 1)
1

i
n

+
+u  and ( 1)

1
i

n
+
+ß  are found, the associated strains are found from (4.1) 

where the compatible strains result from (3.13) and the enhancing part is found from 

(5.24). Then the corresponding stresses are determined from constitutive equation (4.9). 
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To follow the equilibrium paths, we use load control, displacement control or arc-

length control technique, depending of the nature of the problem. The latter requires a 

brief comment. Namely, once we define in a standard way the arc length of the 

equilibrium path

2 2
1 1 1( ) ( )T

n n n∆s ∆ ∆ ∆λ+ + += +q q ,       ∆s const= , (6.4) 

we note that due to different units and orders of magnitude of the elements of ∆q , there 

may be a problem in reasonable definition (in numerical sense) of (6.4). One of the 

ways to overcome this difficulty is the technique of selective elimination or scaling (see 

[33] and [35]). 

Let dofN  be the total number of nodes and let 1 2diag[ , ,..., ]
dofNs s s=S  be a 

diagonal matrix with elements ps  such as 0 1ps≤ ≤ , where 1, 2,..., dofp N= . The 

selective elimination (or scaling) may be then written as

( ) ( )i i∆ ∆=q S q . (6.5) 

In this paper, we have decided to assess the convergence by eliminating the rotational 

part of ( )i∆q . This corresponds to calculations in the vector space ( )E  of configuration 

space ( (3))E SO× . The convergence check is performed by using the relative norm

|| ( ) ||
0.001

|| ||

δ ∆
∆

<
u

u
. (6.6) 

Thereby we avoid difficulties associated with definition of convergence on (3)SO

group.
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7. EXAMPLES 

In order to assess the performance of the proposed 4-node semi-EAS finite element, we 

have solved several representative examples. The obtained results are compared with 

our solutions obtained with the help of other types of elements and with results reported 

in the literature. 

7.1. SMOOTH PLATES AND SHELLS 

7.1.1. Clamped membrane/plate

To gain knowledge about the influence of particular enhancing fields on the 

results, we analyze a (partially) clamped cantilever of length 10L = , width 2b =  and 

thickness 0 1.0h =  (see Fig. 6). The support is located at y L= . The material parameters 

are: E = 1500, v = 0.25. The analysis is confined to linear range. This is the popular 

benchmark example for membrane problems in the presence of mesh distorsions 

(Fig. 6a, 6b). It may be found for example in [36] or [37]. Here we propose additionally 

a variant for plate/shell elements (Fig. 6c, 6d). The computed translations of the point 

(a) are set in Table 1 with the reference solutions found according to the Bernoulli beam 

theory. The obtained results are very close to the reference solution though the accuracy 

deteriorates slightly in cases with irregular mesh. 

This example shows that the enhancing fields for membrane or shear strains are 

selected properly, at least in the linear analysis. In particular, the element responds well 

to the constant bending load case (Fig. 6d).

7.1.2. Clamped skew plate
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This example is taken from [38]. It is concerned with the skew clamped plate (see 

Fig. 7) subjected to uniformly distributed dead load. Due to the irregular mesh, this 

example enables the evaluation of the element in the presence of mesh distortions. In 

comparison to the previous example, here the geometrical nonlinearity (in small range) 

is taken into account. The problem has the following data: 300L in= , 3h in= , 

73 10 /E lb in= × , 0.316ν = , o o o{0 ,30 ,45 }β = . In the computations originally, the 

double symmetry of the plate was utilized by discretizing one quarter of plate using 11 

9-node Heterosis elements. Here we have adopted the original mesh for the 4-node 

elements (see Fig. 7). As the reference, the original results from [38] and solution 

obtained with the help of CAMe4 elements [15] with uniformly reduced integration 

(URI) are used. In addition, we present results for the square plate, found according to 

Levy’s solution [38]. Figure 8 shows the obtained load-displacement paths for different 

value of angle β  with respect to nondimensional load parameter 
4

4
*

qL
q

Eh
=  and 

corresponding nondimensional deflection parameter * Cw
w

h
=  of the plate center. Good 

agreement between the reference results and the results obtained with the help of the 

proposed element has been obtained. The results show that at this level of nonlinearity, 

the element is insensitive to the mesh distortions. On examining the results from Figure 

8 it can be noticed that the results produced by EAS(14)m1 element are slightly 

“soften” than the original solution. 

7.1.3. Pinched cylinder

This example was originally presented in [39] with data: L = 3.04, R = 1.01, h0 =

0.03, E = 2.065×107, v = 0.3, Pref = 10, ( ) refP λ λP=  (see Fig. 9). In comparison with the 
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previous example, apart from geometrical nonlinearity here we deal with the single 

curvature problem. 

Our initial interest in this example was caused by the remarkably good results of 

reported in [39] obtained with the aid of S16 (FI) element. These 16-node elements, as 

well as our CAMe16 (FI) elements, should produce locked results in coarse meshes. 

This effect was not observed in [39] even in 4×4 S16(FI) discretization of the whole 

structure. Reinterpretation of the problem data (load and discretization) as for 

symmetric part of the structure reveals the source of the mistake in [39].

In reference [40] the authors showed that coarse meshes used to solve this example 

might lead to the load-displacement path with artificial limit points. Their conclusion was 

that the solution with too coarse mesh required more time to solve. In our opinion more 

important is that such solutions are simply wrong, as they show the physical phenomena 

that do not exist. We believe that it is connected with too poor discretization which is not 

able to reproduce properly the deformation wave shortening with the growth of the load 

parameter.

To solve the problem we use the mesh of 16×16 EAS14m1 elements for half of 

the cylinder. As the reference solutions, we use the original results from [39] and those 

from [4]. Additionally, the solution obtained by making use of 16-node fully integrated 

displacement/rotation based CAMe16 elements is also presented. To track the equilibrium 

path we have used the arc-length method. We have carried out the analysis going with the 

value of vertical displacement beyond the value of radius R = 1.01. The results are

compared in Fig. 10. 

The results obtained using the proposed EAS(14)m1 element are in agreement with 

the reference solutions and are close to [4] what is worthy of note in the light of using the 

same concept to enhance the shear strains.
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7.1.4. Pinched hemisphere with a hole

This benchmark problem (see Fig. 11) was proposed in [41] with data: 10R = , 

0 0.04h = , o18α = , 76.825 10E = × , 0.3ν = , 10refP = , ( ) refP λ λP= . We deal here with 

the small strains but with large translations and rotations. Additionally, here the 

geometry possesses two curvatures (cf. the previous examples). This popular example 

was the topic of extensive studies, see for instance references [4], [5], [7], [16], [17]. 

For example, in [16] the authors performed original analysis of the locking effect for 

various finite elements with full integration for increasing load level. It was found that 

for larger values of the load parameter the nonlinear convergence tends to deteriorate as 

a result of shortening length of deformation wave.

Here we compare our results obtained with the proposed EAS(14)m1 element 

used in meshes 8×8 and 16×16 elements with solutions reported in [4], [5], [7], [17]. 

The results obtained in 8×8 mesh are depicted in Fig. 12 and reported while the 

solutions with 16×16 mesh are shown in Fig. 13. The solutions obtained in 8×8 mesh 

are comparable to results of other authors, yet they are far from the reference solution 

CAMe16 8×8 (FI). When the mesh of 16×16 elements is used, our element gives the 

results practically identical to those of other researchers. However, in spite of using in 

the proposed EAS(14)m1 element the same enhancing fields for shear strains as in [4], 

we have not been able to reproduce the remarkably good results in 8×8 mesh from [4].

7.1.5. Twisted beam

The twisted beam subjected to point load (see Fig. 14) was proposed in [41]. The 

parameters of the problem are: 12L = , 1.1b = , angle of twist o90 , 629 10E = × , 
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0.22ν = . Originally, the thickness 0 0.32h =  was used (see also [42] where the linear 

convergence has been studied), however, in [43] the thickness was reduced 100 times, 

i.e. 0 0.0032h = , to invoke the locking effect. The latter reference contains also a remark 

that many elements fail when used to analyze the twisted beam problem. 

Here we confine our attention to the variant with 0 0.0032h =  subjected to load 

61 10ZP −= × , thereby we are able to compare our results with those presented in [24]. In 

that reference, the authors using the 2×24 mesh of 4-node hybrid stress and enhanced 

elements obtained in linear calculations the value of in-plane displacement to be 

0.00522, which is almost identical to the analytical solution from [43] i.e. 0.005256. 

Our results of the linear convergence analysis are presented in Fig. 15 and in Table 2. 

The number of dofs does not include the enhancing variables as they are condensed on 

the element level. We obtained good approximation (0.005223) of the analytical result 

using 6×72 mesh of EAS(14)m1 elements. This value is also confirmed by the result 

(0.0052356) obtained using 3×24 mesh of CAMe16 (FI) elements, having the same 

number of dofs.

Having obtained unsatisfactory results using mesh 2×24 of EAS(14)m1 elements, 

we have carried out the nonlinear convergence analysis. Firstly we have used only 

displacement/rotation finite elements CAMe4, CAMe9 or CAMe16. A fragment of 

load-displacement path in the vicinity of the turning point depicted in Fig. 16 shows that

the solutions converge typically as for underintegrated (URI) elements and are bound by 

CAMe16 (2×24) URI and CAMe16 (2×24) FI curves. Taking then these latter solution 

as the reference we proceeded with nonlinear convergence analysis using EAS(14)m1 

element – see Fig. 17. By refining meshes we have found that even though our result in 

6×72 mesh in the linear analysis converged to the analytical solution (and was identical 
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with the solution from [24]), in the nonlinear range our result, starting from the turning 

point, begins to differ from [24]. In Fig. 17 we also show the curve denoting trend in the 

h–convergence analysis. Coordinates of the turning points obtained in each 

discretization are set in Table 3. We have noticed negligible differences between the 

results obtained in 6×72 and 8×96 element meshes. Therefore, we have not pursued the 

analysis further. The eventual result from 8×96 mesh is shown in Fig. 18 and some 

representative values are reported in Table 4. 

7.2. SHELLS WITH INTERSECTIONS

The examples analyzed in this section are spatial forms of large constructional 

stiffness resulting from their geometrical characteristics. The response of such structures 

is often complex i.e. there appears an interaction between local and global forms of the 

buckling. The load-displacement paths are usually complex and difficult to trace. We 

also deal with large deformations of translational and rotational type. Additionally, 

depending on the boundary conditions, especially in the case of large, almost rigid 

motions of large parts of the structure, either locking effect appears with full integration 

or spurious forms with reduced integration. The above features, in conjunction with the 

multi-branched character of geometry, make this type of examples very thorough and 

reliable tests for finite elements with the sixth degree of freedom.

7.2.1 Channel-section cantilever

We analyze the channel-section cantilever subjected to the concentrated force (see 

Fig. 19). This example takes its origin in [44] where it was analyzed as a simply 

supported beam with uniformly distributed (along the web) load. The authors tested this 

Page 36 of 85

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Peer Review
 O

nly

37

example numerically within the moderate elasto-plastic strains, with the help of 4-node 

nonconforming flat finite element with six dofs at each node. Later, this example was 

undertaken in [15] in the original formulation as well as in [14], [15] and [17] in the 

cantilever setup with the concentrated force (see Fig. 19). 

Here we analyze this example in two variants. The first one is the same as 

proposed in [14] while the second variant follows from [47]. Both variants differ from 

each other in their dimensions. It is of interests therefore to examine the qualitative 

differences in the behavior of both structures.  

In the first variant, after [14], we use the following dimensions for the cantilever 

from Fig. 19: L = 36in, a = 2in, b = 6 in, hf = hw = 0.05in, E = 107lb/in2, v = 0.333, Pref =

100lb, ( ) refP λ λP= . Originally, in [14], the mesh of 5×9 of 9-node CAM elements (one 

element for the lower flange, three elements for the web, one element for the upper 

flange and nine elements along the length) with uniform reduced integration was used. 

Due to the coarse mesh, these solutions should be viewed rather as qualitative than 

quantitative ones. Later, this example was also analyzed in [9] and [22] as an elastic 

problem and in [23], [34], [45] as an elasto-plastic problem. In references [22] and [23]

the mesh of 20×72 4-node elements was used for computations. In addition, we also 

present the solution from [46]. The results are compared in Fig. 20. As the reference, we 

provide the solution obtained using 14×36 16-node CAM elements with full integration. 

The results obtained with our own element EAS(14)m1 are in very good agreement with 

the results from [22] and [46]. Nevertheless, the results obtained with the aid of our 4-

node element and taken from [22] remain slightly underestimated when compared to 

14×36 16-node CAM solution. This may be attributed, to the authors’ opinion, to 

different numbers of nodes along the cantilever length. Table 5 shows the numerical 
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results with boldface letters distinguishing values of control parameters that are the 

same for both formulations.

We have also noted some discrepancy between our solution in mesh 20×36 and 

results presented in [45] in the same mesh, despite the use of the analogical 

enhancement of the shearing strains. Yet, it is not clear from [45] how the orthogonal 

intersections are modeled with 5 dof element. 

Figure 20 shows the influence of the mesh density on the locus of the limit point –

the use of coarse mesh moves the limit point from 0.25u ≅  to 0.5u ≅ . According to 

our animation of deformation before the limit point the cantilever responses in beam-

like fashion, i.e. bending mode of deformation is prevailing. After passing the limit 

point there appears the torsional deformation. Moreover, just after passing the limit 

point there appear some local phenomena such as deformation waves in the vicinity of 

the support (see Fig. 21). These waves move along the beam during the deformation.

The second variant, as proposed in [47], has the following data L = 900cm, a

= 10cm, b = 30cm, hf = 1.6cm, hw = 1.0cm, E = 21000kN/cm2, v = 0.3, Pref = 1kN, 

( ) refP λ λP= . Fig. 22 and Table 6 show the comparison of our results obtained with 

EAS(14)m1 element and CAMe4 (URI) and CAMe16 (FI) elements with the original 

solution [47]. The discrepancies between results may stem from different ways of 

including the sixth degree of freedom. Namely, in [47] to model intersections three 

rotational dofs were used, and at the remaining parts of the structure the drilling rotation 

was eliminated. This is not the case in the present formulation where the drilling 

rotation is the natural consequence of the underlying theory of shells. 

To summarize both variants of the cantilever it should be noted that the change of 

parameters in the second case has changed the qualitative response of the structure. In 
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particular, in the second variant there is no limit point on the deformation path. The 

visualization of the deformation (see [47]) reveals that the local phenomena do not 

occur here as in the first variant - the response of the cantilever in the second variant is 

more beam-like. With the parameters proposed in [47] the example lost its “shell-like” 

character. 

7.2.2 Twisted T-shaped cantilever

Another example is the twisted T-shaped cantilever from Fig. 23. The importance 

of this example is that it generalizes the twisted (smooth) beam (see Example 7.1.5). 

The present example has already been studied in [48] in the context of formulating time-

stepping algorithm for 6-field theory of shells. The authors selected data so that the 

moment of inertia of the cross-section about x–axis is equal to that about z–axis which 

yields: 10H = , 14.0112B = , 0 0.25h const= = . The remaining parameters are: 50L = , 

o90α = , 72 10E = × , 0.3ν = , , 1000X refP = , , 1000Z refP = , ( ) refP λ λP= . 

To start with, we have carried out the linear convergence analysis (see Table 7). 

For further nonlinear calculations, we have selected only one load case , 1000X refP = . The 

results are depicted in Fig. 24 and set in Table 8. On examining the load-deformation 

paths from Fig. 24 with connection to Table 7 it is seen that though the linear results 

obtained with meshes EAS(14)m1 (12 6) 30+ ×  and CAMe16 (4 2) 10+ ×  (FI) are 

reasonable, the same is not true in the nonlinear solutions. This effect has already been 

mentioned in this paper. With more refined meshes both results coincide in the 

nonlinear calculations.

7.2.3 Critical load of torsional buckling of I-beam column
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This example is concerned with the torsional buckling of the compressed I-beam 

column. The problem is of practical significance as the open thin-walled members are prone 

to stability loss. Hence, the knowledge about the critical load is of importance from the 

engineering viewpoint. Geometry and the FEM setup are depicted in Fig. 25. The example 

has the following data: 6 22.1 10 /E kN m= × , 0.3v = , 8L m= , 0.2B H m= = , 

0 0.01h m= . 

In the FEM analysis, due to bisymmetry of the column, only a half-length of the 

column is discretized. In the non-linear stability analysis, a one-parameter dead load of 

the form ( ) refP λ λP=  (where 1ref refP q A= = MN  is uniformly distributed over the 

cross-section) is used. As the imperfection load, the torsional moment 1impfM = Nm is 

applied at point (c) on the longitudinal axis (see Fig. 25). Since we are concerned with 

the torsional buckling, the boundary conditions are so employed that the beam may only 

move and rotate along the longitudinal axis.

The path with imperfection has been traced using the load control and the arc-

length control techniques until reaching neighborhood of the secondary path, where the 

imperfection moment has been removed yielding the jump on the secondary path. Then 

using from that point the displacement control technique until the control displacement 

u at the point j was close to zero, the beam has been restored to its symmetric state at 

the bifurcation point yielding the load multiplier of torsional buckling CRλ . The results 

obtained with the aid of EAS(14)m1 element are compared with solutions from 

CAMe16(FI) elements in Table 9. Notation (a+b+c)×(d) stands for number of elements 

used to model the structure (lower flange + web + upper flange) × (half of the length).

From Table 9 it is seen that the obtained results depend on the number of elements 

used along the length of the beam. With more refined meshes the value of critical load 
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of torsional buckling converges to about 2.02 MN, which is smaller than the result 

obtained with the aid of theory of thin-walled members [49].

8. CONCLUSIONS

In this paper we have presented an extension of EAS technique to 6–field theory 

of shells with asymmetric strain measures in geometrically nonlinear static problems. 

We have elaborated new 4–node C0 finite element for shell structures undergoing 

unlimited translations and rotations. The enhancing field, accommodating the lack of 

symmetry of membrane strains, has been proposed for stretching strains (including 

shearing components). The resulting finite element, denoted EAS(14)m1, has fourteen 

enhancing parameters. From the numerical simulations presented, the following 

attributes of the elaborated element are worth mentioning 

• Combination of EAS technique and asymmetric strain measures is possible.

• In the geometrically linear analysis the proposed EAS element possesses good 

coarse mesh accuracy. In particular, the element works well in case of the 

constant bending moments.

• In geometrically nonlinear problems of flat geometry, the proposed element 

also works well, though the results seem a bit soften than the reference 

solutions. In cases of curved geometries, the results produced by the element 

are almost identical to the solutions reported by other authors or obtained with 

different element formulations. We noted, however, that in one of the solved 

examples our element exhibited slower convergence rate than those obtained 

by other researchers.
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• We have successfully employed the EAS element in the analysis of shell 

structures with irregularities of geometry, i.e. with orthogonal intersections.

The attained accuracy is comparable to other solutions known from literature 

and, in particular, to the 16–node displacement/rotation based elements 

developed within the same shell theory.

• The obtained results confirm the observation from [24] that the behavior and 

the convergence of results in the nonlinear analysis may differ from that in the 

linear analysis. This is true given the fact that in nonlinear calculations we deal 

here with propagation of the deformation wave. Hence, in order to describe 

such phenomenon properly we need a sufficiently dense mesh. Therefore, one 

may question the precision of the results obtained in coarse meshes sometimes 

reported in literature. 

Considering the above, the proposed enhancing fields are correctly adopted for the 

needs of theory of shells with asymmetric strain measures and are efficient in 

elimination of the membrane and shear locking. Yet, we are aware that the enhancement 

proposed here is “rich” in the sense that it generates the element stiffness matrix of large 

size. The search for more efficient enhancement is being carried out. In particular, we 

investigate the combination of EAS technique for membrane strains with ANS approach 

for shear locking. Some promising results have already been obtained (see [50]).
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APPENDIX 1 PARAMETRIZATION OF ROTATIONS

In this paper, parametrization of the rotations is based on the finite rotation vector in the 

spatial representation. Let E  denote the three-dimensional vector space and let Q be a 

proper orthogonal tensor, such as for example 0T  in (2.9). 

At the point = 1Q  of { }(3) : , det( ) 1T TSO = = = = +1Q Q Q QQ Q  there exists a 

tangent space (3)so  of skew-symmetric tensors defined by

(3) { : }Tso = = −W W W , (A.1)

which is isomorphic with the vector space E . A map ad(.)  understood here as

ad : (3)E so→ ,     ad( )→ =w W w ,     1ad ( )−→ =W w W , (A.2)

where w is an axial vector of W. In a given base one gets from (A.2) 

 
3 2

3 1

2 1

0

[ ] 0

0
ij

w w

W w w

w w

− 
 = − 
 − 

,     
1

2

3

[ ]i

w

w w

w

 
 =  
  

,     [ ] [ ] ad([ ])i ij iw W w→ = . (A.3) 

The tensor (3)SO∈Q  in the so-called canonical parametrization takes the form 

2a b= + +1Q W W , (A.4) 

where 

ad( ) (3)so= ∈W w ,     
sin w

a
w

= ,     
2

1 cos w
b

w

−
= ,     || ||w = = �w w w . (A.5) 

The relations reciprocal to (A.4) are given by 

1
cos ( 1)

2
w tr= −Q ,     ⇒

1
arccos ( 1)

2
w tr

 = − 
 

Q , (A.6) 
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2sin (ad ) Tw = −w Q Q ⇒ 11
ad ( )

2sin
T

w
−= −w Q Q . (A.7)

In the spatial representation the variation δQ  defined as the directional 

derivative at Q  in direction ad( )w , reads

0 0
[ ;ad( )] ( ) exp(ad ) ad .

η η

d dδ η η
dη dη= =

≡ = =Q Q w Q w Q w Q (A.8) 

The rotations are accumulated as follows. Let (3)SO∈Q send a fixed orthogonal 

frame 0{ , 1,2,3}i i =t  to another orthogonal frame { , 1,2,3}i i =t

0
i i=t Qt . (A.9)

Let us consider some increment (3)SO= ∈∆ ∆Q Q  of the rotation that carries the frame 

{ }it  to some updated frame { }i
∆t . In the spatial representation, which is used in this 

paper, such an increment is expressed by

=∆ ∆Q QQ ,     0
i i i= =∆ ∆ ∆t Qt QQt ,     exp(ad )∆=∆Q w . (A.10)

Discussion on the material representation may found, for example in [28].

Figure Captions. 

Figure 1. The shell-like body

Figure 2. An arbitrary part of the shell-like body in the reference configuration

Figure 3. Resultant forces and couples

Figure 4. Formal, local, parametrization of M

Figure 5. Physical components of resultant forces and moments

Figure 6. Partially clamped cantilever membrane/plate: geometry, load, discretizations
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Figure 7. Clamped skew plate: geometry, discretization

Figure 8. Clamped skew plate: load-displacement paths

Figure 9. Pinched cylinder: geometry and load

Figure 10. Pinched cylinder: load-displacement paths 

Figure 11. Pinched hemisphere with a hole: geometry and loads

Figure 12. Pinched hemisphere: load-displacement paths, mesh 8x8

Figure 13. Pinched hemisphere: load-displacement paths, mesh 16x16

Figure 14. Twisted beam, geometry, loads

Figure 15. Twisted beam: linear convergence analysis

Figure 16. Twisted beam: nonlinear convergence analysis, CAM elements

Figure 17. Twisted beam: nonlinear convergence analysis, EAS element

Figure 18. Twisted beam: nonlinear solution

Figure 19. Channel section cantilever: geometry, load

.Figure 20. Channel section cantilever: variant 1, load-displacement paths

Figure 21. Channel section cantilever: variant 1, deformed configuration 1.01397λ =

Figure 22. Channel section cantilever: variant 2, load-displacement paths

Figure 23. Twisted beam: geometry and loads

Figure 24. Twisted beam: nonlinear solutions

Figure 25. I-beam column: geometry and loads
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Table 1. Clamped membrane/plate, displacements of point (a) 
Load case 

A B C D
displacement (a )u (a )u (a )w (a )w

100.000 102.600 268.660 20.000 Reference*
Element REGULAR MESH 
EAS(14)m1 99.900 101.57 262.06 19.818 

IRREGULAR MESH 
EAS(14)m1 95.069 97.136 264.03 20.533 
*according to Bernoulli beam theory 
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Table 2. Twisted beam, linear convergence analysis 
 

Mesh (nodes)
Result 

3×25 5×49 7×73 9×97 

Belytschko et al.[1989] reference: 0.005256 
4-node elements 

Sansour and Kolmann [2000] 0.00522 ––– ––– ––– 
EAS(14)m1 0.0040746 0.0051192 0.0052230 0.0052418 

16-node elements 
CAMe16 (2×24) ––– ––– 0.0052356  
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Table 3. Twisted beam, nonlinear analysis, coordinates of the turning point 
 

EAS(14)m1 CAMe16 FI 

Mesh (nodes) PZ u PZ u
3×25 0.00348911 2.45071 ––– ––– 
5×49 0.00300835 2.20462 ––– ––– 
7×73 0.00296481 2.17898 0.00303012 2.19422 
9×97 0.00292308 2.17351 ––– ––– 
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Table 4. Twisted beam, nonlinear analysis, some representative values 
 

CAMe16 (2×24) (FI) EAS14m1 (8×96) 
Pz –u v w Pz –u v w

2.72911e–04  5.0000e–01 –1.0944e–01  1.4092e+00 2.72076e–04  5.0000e–01 –1.0922e–01  1.4075e+00 
5.78864e–04  1.0000e+00 –4.5506e–01  2.8552e+00 5.77085e–04  1.0000e+00 –4.5448e–01  2.8529e+00 
9.81323e–04  1.5000e+00 –1.1135e+00  4.4120e+00 9.79042e–04  1.5000e+00 –1.1144e+00  4.4137e+00 
1.73438e–03  2.0000e+00 –2.4262e+00  6.3546e+00 1.74384e–03  2.0000e+00 –2.4523e+00  6.3874e+00 
1.87743e–03  2.0500e+00 –2.6544e+00  6.6180e+00 1.89484e–03  2.0500e+00 –2.6933e+00  6.6638e+00 
2.35728e–03  2.1537e+00 –3.3505e+00  7.3370e+00 2.45456e–03  2.1527e+00 –3.4939e+00  7.4760e+00 
2.91717e–03  2.1931e+00 –4.0349e+00  7.9454e+00 2.77445e–03  2.1715e+00 –3.8891e+00  7.8281e+00 
3.07715e–03  2.1942e+00 –4.2081e+00  8.0867e+00 2.93441e–03  2.1736e+00 –4.0714e+00  7.9814e+00 
3.23713e–03  2.1922e+00 –4.3724e+00  8.2165e+00 3.09437e–03  2.1720e+00 –4.2442e+00  8.1219e+00 
3.79708e–03  2.1668e+00 –4.8858e+00  8.5980e+00 3.25433e–03  2.1673e+00 –4.4082e+00  8.2511e+00 
4.54703e–03  2.1070e+00 –5.4509e+00  8.9803e+00 4.13420e–03  2.1052e+00 –5.1760e+00  8.8079e+00 
5.59548e–03  2.0050e+00 –6.0707e+00  9.3608e+00 4.68500e–03  2.0500e+00 –5.5643e+00  9.0627e+00 
7.70772e–03  1.8000e+00 –6.9442e+00  9.8395e+00 6.98846e–03  1.8000e+00 –6.7109e+00 9.7294e+00 
1.33176e–02  1.4000e+00 –8.1792e+00  1.0427e+01 1.17788e–02  1.4000e+00 –7.9492e+00  1.0336e+01 
2.41266e–02  1.0025e+00 –9.1866e+00  1.0853e+01 1.96495e–02 1.0289e+00 –8.8894e+00  1.0741e+01 
3.71766e–02  7.7169e–01 –9.7444e+00  1.1076e+01 2.99995e–02  7.7499e–01 –9.4972e+00  1.0988e+01 
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Table 5. Channel-section cantilever (variant 1), some representative values 
 

CAMe16 (4+6+4)×36 (FI) EAS14m1 (4+12+4)×72 
λ u −v −w λ u −v −w

0.0 0.0000 0.0000 0.0000 0.0 0.0000 0.0000 0.0000
0.2 2.4564e−02 2.9690e−03 5.3276e−02 0.2 2.4489e−02 2.9399e−03 5.3225e−02
0.4 5.2699e−02 6.1359e−03 1.1783e−01 0.4 5.2537e−02 6.0759e−03 1.1770e−01
0.6 8.6438e−02 9.5435e−03 1.9838e−01 0.6 8.6155e−02 9.4499e−03 1.9810e−01
0.8 1.2966e−01 1.3239e−02 3.0303e−01 0.8 1.2916e−01 1.3106e−02 3.0242e−01
1.0 1.9074e−01 1.7228e−02 4.4723e−01 1.0 1.8973e−01 1.7043e−02 4.4583e−01
1.1 2.3383e−01 1.9252e−02 5.4464e−01 1.1 2.3221e−01 1.9037e−02 5.4212e−01

1.11466 2.4140e−01 1.9537e−02 5.6169e−01 1.12747 2.4643e−01 1.9561e−02 5.7410e−01
1.14588 2.6758e−01 1.9909e−02 6.3773e−01 1.15640 2.8066e−01 1.9583e−02 6.8452e−01
1.13975 2.8616e−01 1.9076e−02 7.2201e−01 1.14814 2.9770e−01 1.8619e−02 7.6278e−01
1.11591 3.2276e−01 1.6269e−02 8.9368e−01 1.13363 3.2059e−01 1.6871e−02 8.6823e−01
1.10785 3.3500e−01 1.5118e−02 9.4908e−01 1.12444 3.3500e−01 1.5586e−02 9.3281e−01
1.09839 3.5000e−01 1.3596e−02 1.0152 1.11527 3.5000e−01 1.4127e−02 9.9819e−01
1.07073 4.0000e−01 7.8050e−03 1.2225 1.08860 4.0000e−01 8.5634e−03 1.2028
1.00180 6.0000e−01 −2.2436e−02 1.9009 1.02336 6.0000e−01 −2.0606e−02 1.8713
0.97146 8.0000e−01 −5.8720e−02 2.4298 0.9946 8.0000e−01 −5.5850e−02 2.3922
0.95809 1.0000 −9.8497e−02 2.8721 0.98260 1.0000 −9.4550e−02 2.8270
0.95183 1.4000 −1.8464e−01 3.5951 0.978357 1.4000 −1.7855e−01 3.5365
0.95586 1.8000 −2.7695e−01 4.1795 0.984610 1.8000 −2.6881e−01 4.1088
0.96427 2.2000 −3.7461e−01 4.6770 0.99592 2.2000 −3.6410e−01 4.5915
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Table 6. Channel-section cantilever (variant 2), some representative values 
 

CAMe16 (4+8+4)×36 (FI) EAS14m1 (4+12+4)×72 
P u −v −w P u −v −w

2.0 2.9784 0.065037 0.54108 2.0 2.9760 0.064967 0.53648 
4.0 6.0276 0.1201 1.8041 4.0 6.0214 0.11997 1.7858 
6.0 9.3627 0.15666 5.0186 6.0 9.3438 0.15682 4.9459 
8.0 16.531 -0.10533 20.978 8.0 16.208 -0.080111 20.195 
8.2 19.234 -0.32128 26.613 8.2 18.666 -0.27134   25.461 
8.5 26.871 -1.0552 39.115 8.5 25.672 -0.93167   37.414 
9.0 46.824 -3.3933 60.378 9.0 45.285 -3.200 59.138 

10.0 84.163 -8.8482 83.116 10.0 82.829 -8.6484 82.668 
14.0 185.75 -30.821 106.66 14.0 184.81 -30.613 106.84 
16.0 223.24 -41.986 109.16 16.0 222.36 -41.759 109.70 
20.0 286.29 -65.271   110.46 20.0 285.40 -64.944 110.76 
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Table 7. Twisted T-shaped cantilever, linear convergence analysis 
 

, 1000X refP = , 1000Z refP =Displacements 
Discretization 

u(a) v(a) w(a) u(a) v(a) w(a) 
(2+1) ×5 EAS(14)m1 0.15812 0.0018519 –0.040874 –0.041199 –0.015200 0.081936 

(6+3)×15 EAS(14)m1 0.15173 0.0013349 –0.026003 –0.026003 –0.0012001 0.095162 
(12+6)×30 EAS(14)m1 0.15718 0.0013416 –0.024884 –0.024884 –0.0012470 0.097961 

(24+12)×60 EAS(14)m1 0.15820 0.0013343 –0.024501 –0.024501 –0.0012806 0.098709 
(2+1)×5 CAMe16 (FI) 0.13651 0.0011721 –0.023632 –0.023632 –0.0010145 0.087561 

(4+2)×10 CAMe16 (FI) 0.15597 0.0013331 –0.024582 –0.024582 –0.0012590 0.097407 
(8+4)×20 CAMe16 (FI) 0.15835 0.0013302 –0.024379 –0.024379 –0.0013015 0.098886 
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Table 8. Twisted T-shaped cantilever, nonlinear analysis, some representative values 
 

CAMe16 (8+4)×20 (FI) EAS14m1 (24+12)×60 
λ u v w λ u v w

0.00000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.00000e+00 0.0000e+00 0.0000e+00 0.0000e+00 
5.00000e+00 8.6618e-01 1.7916e–03 1.1258e–01 5.00000e+00 8.6437e-01 1.7377e–03 1.1364e–01 
1.00000e+01 1.9989e+00 3.0985e–02 1.9455e–01 1.00000e+01 1.9787e+00 3.0025e–02 1.9922e–01 
1.22164e+01 3.1842e+00 1.0078e–01 2.8898e–01 1.25704e+01 3.1688e+00 9.8104e–02 2.8710e–01 
1.30519e+01 4.7384e+00 2.4801e–01 4.8789e–01 1.34741e+01 4.7245e+00 2.4489e–01 4.8565e–01 
1.36829e+01 7.4242e+00 6.3348e–01 8.6721e–01 1.40982e+01 7.4130e+00 6.3125e–01 8.7256e–01 
1.39112e+01 9.3153e+00 1.0079e+00 1.1692e+00 1.42887e+01 9.3073e+00 1.0088e+00 1.1929e+00 
1.39846e+01 1.0170e+01 1.2054e+00 1.3157e+00 1.43783e+01 1.0588e+01 1.3145e+00 1.4279e+00 
1.36326e+01 8.5903e+00 8.4866e–01 1.0653e+00 1.35643E+01  6.9995E+00 5.5115E-01   8.4744E-01 
1.27755e+01   6.0903e+00   4.0821e-01   7.3007E-01      1.31209E+01 5.9995E+00 3.9379E-01 7.2459E-01 
1.18491e+01 4.9542e+00 2.5134e–01 6.4655e–01 1.19555e+01 4.7583e+00 2.2465e–01 6.4879e–01 
1.13895E+01  4.7698E+00  2.2355E-01   6.8436E-01 1.16304e+01 4.6792e+00 2.1094e–01 6.8508e–01 
1.09884E+01  5.2291E+00  2.6498E-01  8.9130E-01 1.13341e+01 4.8302e+00 2.2088e–01 7.8037e–01 
1.09901e+01 5.7291e+00 3.2404e–01 1.0377e+00 1.12157e+01 5.2502e+00 2.6376e–01 9.2421e–01 
1.11360e+01 6.6291e+00 4.4884e–01 1.2719e+00 1.13345e+01 6.3502e+00 4.0448e–01 1.2222e+00 
1.14405E+01  7.9291E+00  6.6723E-01   1.5813E+00 1.16808e+01 7.8502e+00 6.4882e–01 1.5739e+00 
1.19496e+01 9.9291e+00 1.0888e+00 2.0237e+00 1.24256e+01 1.0850e+01 1.3095e+00 2.1912e+00 
1.27110e+01 1.2929e+01 1.9176e+00 2.6371e+00 1.31353e+01 1.3850e+01 2.2016e+00 2.7260e+00 
1.42809e+01 1.8929e+01 4.3181e+00 3.5786e+00 1.45425e+01 1.9850e+01 4.7235e+00 3.3919e+00 
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Table 9. Critical load of torsional buckling 
Discretizations for half-length of the beam 

 
Load multiplier [MN] element EAS(14)m1 λ λ element CAMe16 

EAS14m1(4+4+4)×15 2.0478 ––––– ––––– 
EAS14m1(4+4+4)×30 2.0356 ––––– ––––– 
EAS14m1(4+4+4)×60 2.0349 ––––– ––––– 

EAS14m1(6+6+6)×120 2.0263 2.0344 CAMe16(2+2+2)×40 
EAS14m1(12+12+12)×240 2.0233 2.0249 CAMe16(4+4+4)×80 

Theory of thin walled members 
2.0472 
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Figure 1. The shell-like body 
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Figure 2. An arbitrary part of the shell-like body in the reference configuration 
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Figure 3. Resultant forces and couples 
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Figure 4. Formal, local, parametrization of M 
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Figure 5. Physical components of resultant forces and moments 
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Figure 6. Partially clamped cantilever membrane/plate: geometry, load, discretizations 
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Figure 7. Clamped skew plate: geometry, discretization 
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Figure 8. Clamped skew plate: load-displacement paths 
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Figure 9. Pinched cylinder: geometry and load 
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Figure 10. Pinched cylinder: load-displacement paths 
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Figure 11. Pinched hemisphere with a hole: geometry and loads 
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Figure 12. Pinched hemisphere: load-displacement paths, mesh 8x8 
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Figure 13. Pinched hemisphere: load-displacement paths, mesh 16x16 
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Figure 14. Twisted beam, geometry, loads 
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Figure 15. Twisted beam: linear convergence analysis 
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Figure 16. Twisted beam: nonlinear convergence analysis, CAM elements 
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Figure 17. Twisted beam: nonlinear convergence analysis, EAS element 
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Figure 18. Twisted beam: nonlinear solution 
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Figure 19. Channel section cantilever: geometry, load 
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Figure 20. Channel section cantilever: variant 1, load-displacement paths 
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Figure 21. Channel section cantilever: variant 1, deformed configuration = 1.01397 
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Figure 22. Channel section cantilever: variant 2, load-displacement paths 
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Figure 23. Twisted beam: geometry and loads 
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Figure 24. Twisted beam: nonlinear solutions 
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Figure 25. I-beam column: geometry and loads 
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