
FPGA Implementation of the Multiplication
Operation in Multiple-Precision Arithmetic

Kamil Rudnicki
Department of Reconfigurable Systems

Brightelligence Inc.

Glasgow, UK

Email: kamil.rudnicki@brightelligence.co.uk

Tomasz P. Stefański
Faculty of Electronics, Telecommunications and Informatics

Gdansk University of Technology

80-233 Gdansk, Poland

Email: tomasz.stefanski@pg.gda.pl

Abstract—Although standard 32/64-bit arithmetic is sufficient
to solve most of the scientific-computing problems, there are
still problems that require higher numerical precision. Multiple-
precision arithmetic (MPA) libraries are software tools for emula-
tion of computations in a user-defined precision. However, avail-
ability of a reconfigurable cards based on field-programmable
gate arrays (FPGAs) in computing systems allows one to im-
plement MPA algorithms in hardware. Whereas addition and
subtraction operations of two n-digit numbers require O(n)
operations, the basecase multiplication is equivalent to the con-
volution computation that requires O(n2) operations. Therefore,
an efficient implementation of the multiplication operation is
crucial for application of the reconfigurable hardware in MPA
computations. In this contribution, our implementation of the
basecase-multiplication algorithm in MPA on FPGA is presented.
The method is implemented using the very high speed integrated
circuit hardware description language (VHDL) and benchmarked
on Xilinx Artix-7 FPGA. In the developed implementation of the
MPA multiplication, the multiplication of two integer 1024-bit
numbers (2048-bit numbers) takes 205 nsec (819 nsec) with the
use of 40 DSP modules. It gives two-fold speedup in comparison
to the reference results published in the literature. The developed
digital circuit of the MPA multiplier works with integer numbers
of precision varying in the range between 16 bits and 32 kbits.
Such a scalability allows one to use the developed method not only
in scientific computing, but also in embedded systems employing
encryption based on MPA.

Keywords—FPGAs, multiple-precision arithmetic, scientific
computing, parallel processing, embedded systems.

I. INTRODUCTION

Multiple-precision arithmetic (MPA) can be considered as a

new approach for solving scientific problems which are diffi-

cult in terms of convergence, ill-conditioning and precision. It

may be anticipated that MPA will be an increasingly important

research tool in the future. The approach of a new era of

computing is predicted in the literature [1], [2], in which the

numerical precision required for computations is as important

to the design of scientific codes as are algorithms and data

structures. The review of MPA applications in scientific com-

puting is presented in [1], [2]. Further MPA applications in

computational electromagnetics are presented in [3]. Currently,

MPA applications in scientific computing can be classified into

the following categories:

• Generation of special mathematical functions applicable

in the mathematical modeling.

• Solving ill-conditioned linear systems of equations.

• Difficult simulations of scientific and engineering prob-

lems (e.g., climate modeling, fluid dynamics, etc.).

• Derivation and verification of novel formulas and theo-

rems in mathematics.

Elementary algebraic operations such as addition, subtrac-

tion and multiplication are crucial for any investigations requir-

ing MPA computations. Whereas the addition and subtraction

of two n-digit numbers require O(n) operations, their multi-

plication requires O(n2) operations in the standard implemen-

tation (referred to as the basecase multiplication here). There-

fore, the main effort in the implementation of the elementary

MPA computations focuses on the multiplication operation.

Although MPA multiplication can employ the Karatsuba,

Toom-Cook and Schönhage-Strassen methods (which respec-

tively require O(n1.585), O(n1.465), O(n log(n) log(log(n)))
operations [4], [5], [6]), these algorithms are efficient for

very-high-precision operands. For small precision of MPA

operands, the extra shift and addition operations in those afore-

mentioned algorithms make them slower than the basecase

method. Therefore, for instance, GNU MPA library (GMP)

[7] switches the multiplication method from the basecase to

Karatsuba method when precision of operands is increased

over 1920 bits (30 limbs, each limb equals 64 bits). Hence,

efficient implementation of the basecase multiplication still

remains a fundamental requirement for any MPA computa-

tions, regardless of the field of application, software tools and

architecture of processing units.

There are several MPA libraries running on central process-

ing units (CPUs), e.g., ARPREC, GMP, QD, MPIR (GMP-

compatible) [3]. In the last few years, graphics processing

units (GPUs) have been applied as a low-cost architecture

for an acceleration of scientific codes. Therefore, MPA li-

braries were also implemented on GPU. There are several

MPA libraries running under this parallel architecture, e.g.,

GARPEC, GQD, CUMP (GMP-compatible) [3]. However,

the emulation of MPA computations on standard processors

provides its significant slowdown when the precision of com-

putations is increased. According to [2], computations on CPU

in double-double precision typically run 5–10 times slower

in comparison with 64-bit implementation. These slow down

at least 25 times for quad-double arithmetic, more than 100

times for 100-digit arithmetic, and over 1000 times for 1000-

digit arithmetic. These facts demonstrate the need for new

computing architectures accelerating MPA computations.

The popularity and promotion of a reconfigurable-

computing hardware (e.g., refer to [8]) encouraged us to

develop the implementation of the basecase-multiplication

algorithm in MPA on a field-programmable gate array (FPGA).

The method is implemented using the very high speed in-

tegrated circuit hardware description language (VHDL) and

benchmarked on low-cost Xilinx Artix-7 FPGA [9]. Our

results are compared with results reported in [10] demonstrat-

ing the advantages of the developed implementation. Due to

application of the low-cost FPGA hardware in the research,

the proposed multiplication method facilitates not only in-

vestigations in the area of scientific computing, but also can

be useful for the embedded-system design with cryptographic

solutions requiring MPA. For instance, modern encryption

algorithms such as RSA and AES [11], [12], [13] employ

keys whose length is higher than 256 bits. Currently, popular

RSA keys are of length 1024 to 2048 bits, even though some

experts believe that 1024-bit keys may become breakable in

the near future [13]. Therefore, it can generally be assumed

that RSA is secure if encryption keys are sufficiently long.

As a result, critical systems employ dedicated cryptographic

processors to protect information and to offload the related

computational overhead (e.g., refer to [14]). To sum up,

although the presented direction of the research is closely

related to scientific computing, the results obtained might also

be useful for development of electronic systems employing

encryption.

II. DEVELOPED IMPLEMENTATION

The VHDL code for MPA multiplication is developed for

Artix-7 FPGA using Vivado Design Suite [15]. The multipli-

cation operation is executed on arrays of MPA numbers by

the developed multiplier, which employs several multiplying

units working in parallel. Each multiplying unit consists of a

single DSP48E1 module available in this FPGA family [16].

The developed multiplier is scalable in terms of the number

of multiplying units. It means that the multiplier can consist

of a varying number of multiplying units, depending on the

required processing power. In this contribution, we present

the multiplication of two arrays of integer MPA numbers on a

single multiplier consisting of a single multiplying unit for the

sake of brevity. The multiplication operation for floating-point

numbers can be obtained similarly, taking into consideration

exponents and rounding, necessary to fit the output in fixed-

precision (i.e., fixed-length) mantissa array of the result.

A. MPA Format of Integers

In the developed implementation, the format of integer

numbers is the same as in the GMP library. It consists of

an array of bytes representing the MPA number and its size.

The absolute value of the size represents the length of the

data array, whereas a sign of the size corresponds to a sign of

the MPA number. Therefore, in the case of multiplication, the

sign of the result can be easily computed as the multiplication

of operand signs. The developed digital circuit of the MPA

multiplication works with precision varying in the range

between 16 bits and 32 kbits. Such a range is not a limiting

step for MPA applications because the basecase multiplication

for very-high-precision MPA operands is not efficient and it

is worth using in this case, e.g., the Karatsuba method of

multiplication on standard CPU.

B. Basecase Multiplication Algorithm

The basecase multiplication of two n-bit and m-bit num-

bers is a straightforward rectangular set of cross-products,

the same as long multiplication done by hand, and for that

reason sometimes known as the schoolbook or grammar school

method [5], [7]. To some extent, the basecase multiplication

of two numbers in any numerical system is equivalent to

the multiplication of polynomials, which can be considered

as a convolution computation. Hence, this is an O(n × m)
algorithm.

C. Design Considerations

When designing a module in FPGA, one should take into

account factors such as frequency of operation, resource uti-

lization, congestion, overall performance and power efficiency.

For computing applications, the overall performance is usually

the most important factor, and consequently all considerations

here are focused on achieving that purpose. Since the per-

formance of the multiplication is directly proportional to the

frequency of operation, this frequency should be kept at the

maximum level. By doing so, the maximum distance to travel

by a signal between two registers is shortened, so practically

the design requires additional registers, which extend the range

at the expense of latency. To sum up, the purpose of the design

process is to find the trade off between the frequency of FPGA

operation, and the latency.

D. Application of DSP Module

The DSP48E1 module available in Artix-7 FPGA enables

computations of several arithmetic functions, which can be

programmed into it. However, for the purpose of this project,

only operation A ·B+C+CARRY IN is employed. The

maximum width of the operands is as follows:

• A - 25 bits

• B - 18 bits

• C - 48 bits

• CARRY IN - 1 bit.

Symmetric operands are used, due to the fact that asym-

metric operand multiplier (25 × 18 bits) is difficult in con-

struction and data storage (i.e., partial results are stored in an

accumulator). Therefore, the maximum width of operands in

the multiplying unit should be set at 18 × 18 bits. However,

such a non-electronic number (i.e., different than power of 2)

lowers the utilization of the BRAM memory block available in

the FPGA chip. Consequently, the operand width is set to 16

× 16 with operand C of size 32 bits. For high performance,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

such a configuration of the DSP module sets the latency at

4 clock cycles. In order to process the data out of, and into,

the DSP module, a single additional clock cycle is required.

Furthermore, the multiplexer for the data input requires a

register in order to maintain the high speed of operation.

This sets the minimum latency at 6 clock cycles, which is

the final value of the minimum latency in the design process.

Consequently, the number of channels put through the DSP

module stems from the latency.

E. Implementation of Accumulator in BRAM

In order to multiply two numbers, an accumulator is re-

quired to store partial results. The BRAM memory [9] is used

as the accumulator for the multiplication operation. Usually,

the size of the accumulator (2 · prec) is twice the precision of

the input number (prec). This can be optimized to reach the

accumulator size equal to prec. When the partial multiplication

result is a part of the final result, such a result does not have

to be stored in the accumulator any more, and can be passed

to the output, e.g., refer to Table I. This way, when using one

BRAM of 32 kbits, the precision of the output result can be

up to 64 kbits. In the current implementation, the BRAM size

determines the maximum precision of the input (not output)

MPA numbers.

TABLE I
EXEMPLARY PARTIAL 16 × 16-BITS MULTIPLICATIONS AND SUMMATIONS

IN THE ACCUMULATOR DEMONSTRATING THE UTILISATION OF THE FPGA
RESOURCES

4732 9856 2397 5829
× 6796 5765 3454 3732

0F59 C69C 4278 7780 0702
0E8D B2E5 421A AE09 B8F4

184E 5749 12F9 BBC6 6536
1CCF 2B3E 4213 D21F E2CC

accumulator
output port

While the DSP module operates at 500 MHz (fast clock),

the channel and BRAM memory do not run at such a high

frequency. Hence, the frequency of each data unit (each

multiplexed channel containing the BRAM memory) is set at

250 MHz (slow clock). The BRAM latency is equal to 2 clock

cycles. A single extra clock cycle, needed for data processing,

sets the total latency at 3 slow clock cycles, which corresponds

well with 6 fast clock cycles.

F. Digital Circuit Design

Our digital circuit is designed to multiply numbers in

streams, so there is no overhead needed for loading and

off-loading data to and from the multiplier. Fig. 1 presents

application of the DSP48E1 module available in Artix-7 FPGA

in the designed digital circuit. As seen, the data processing

requires time multiplexed channels in order to achieve full

utilization of the multiplying unit. This is a consequence

of the fact that the multiplier has its own latency, and that

results of partial multiplications depend on the outcome of the

previous ones. The number of channels depends on the latency

introduced by the multiplying units and additional registers.

Low latency multiplication can be achieved by elimination of

extra registers for data transfer, which results from lack of

congestion (equivalent to the low number of channels, which

brings the design process to the starting point).

The basecase multiplication can be sped up by using a

wider multiplying unit. Even though the multiplication latency

is greater, and requires more additional registers to ease

congestion, the overall performance is higher. For instance,

by swapping the 16 × 16 bits multiplying unit for a 32 ×
32 bits one, the overall performance increases by 33 % (with

number of channels compensation included). What is more, the

latency per each full number operation increases by 3 times.

Furthermore, there is a computation-time quantization, which

also increases 3 times. For an 18-channel multiplying unit, the

multiplication of 19 pairs of numbers takes nearly double the

time of the multiplication of 18 pairs of numbers. The more

pairs of numbers, this extra time becomes more and more

irrelevant, so a wider multiplier should be considered when

large arrays of numbers are to be processed.

We investigate the performance of the MPA multiplication

for varying precision and number of channels in the mul-

tiplier. The precision of the multiplying unit expressed as

an electronic number (i.e., equal to the power of 2) results

in maximum efficiency of the BRAM memory usage in the

form of the accumulator. The speedup factor indicates that

the 64-bit precision of the multiplying unit should be used.

However, 34 channels create congestion in this case. Whereas

each channel could be located far away from another, there is

one focus point to which all channels must converge, i.e., the

multiplying unit. Therefore, the number of channels should

be kept to a minimum as this results in the highest possible

frequency of operation. Keeping the number of channels to the

minimum is also encouraged by the fact that it enables more

uniform power distribution. That is, the application of smaller

multipliers allows you to implement more of them in a single

FPGA chip.

III. RESULTS

The VHDL code is synthesized and implemented for Xilinx

Artix-7 FPGA. Its correctness is verified at 300 MHz with the

use of the Nexys Video board from Digilent [17]. Here, we

present performance evaluation for Artix-7 implementation at

frequency of 500 MHz with multiplication size 16 × 16 bits

and 6 channels per DSP module. These are pure execution

times of the multiplication operation. Hence, presented results

do not take into account data transfer through PCI-E bridge

and DDR4 memory, which will introduce additional latency.

Results for a varying number of DSP modules, compared to

the reference results in [10], are presented in Table II. The

reference results are obtained for Virtex-6 FPGA [18], which is

also equipped with DSP48E1 slices. Hence, such a comparison

is justified by the application of the same DSP module.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 1. Application of the DSP48E1 module in Artix-7 FPGA in the digital circuit implementing the MPA multiplication

TABLE II
EXEMPLARY EXECUTION TIMES OF MPA MULTIPLICATION IN

COMPARISON WITH RESULTS IN [10]

precision (bits) [10] (μsec) Artix-7 @ 500 MHz (μsec)
5 DSP 20 DSP 40 DSP

1024 0.41 1.6 0.41 0.205
2048 1.30 6.6 1.6 0.819

In our test, arrays of 1, 000, 000 random MPA numbers are

multiplied, and the execution time of a single multiplication is

calculated for a single output number. As seen, the developed

solution outperforms reference results [10] for a sufficient

number of DSP modules employed in the MPA-multiplication

operation. Furthermore, the execution times decrease almost

linearly with the number of DSP modules employed for the

MPA multiplication.

For the basecase multiplication, an equation can be derived

to calculate the average time needed to multiply two numbers,

i.e.

tper number =

(
prec

mult prec

)2

· 1

mult units · freq (1)

tmeasured = tper number · table size (2)

where tper number is the average time for calculation of a

single MPA-multiplication result, prec is the precision of the

numbers to be multiplied, mult prec is the precision of the

multiplying unit, table size is the number of multiplications,

mult units is the number of multiplying units working in

parallel performing multiplication operations, freq is the

frequency of operation of DSP modules and tmeasured is the

time needed to multiply two arrays.

There is also an additional dependency between mult prec,
mult units, freq and table size. The rule of thumb dictates

that the higher the mult prec, the lower the maximum number

of multiplying units available in a single FPGA chip. This is

due to the increase of latency for DSP modules, that forces an

increase in the number of channels, which results in a higher

resource utilization. Such an increase in the resource utilization

may also limit the maximum speed of operation (freq).

The higher the number of channels, the higher table size is

required in order to limit the computation-time quantization

error.

Our design efficiency per number of DSP modules is over

two times higher than for the processor presented in [10]. This

is mainly due to the fact that our design runs at two times

higher frequency (500 MHz). Furthermore, in order to run 64-

bit operations on DSP modules, the individual modules have

to exchange data, which requires additional stage registers and

this lowers the efficiency. The DSP modules in our solution

work independently, hence, the higher efficiency. However,

such a comparison has limited validity because consumption

of other resources should also be taken into account.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Application of the proposed solution requires sending a data

stream to the (e.g., memory-mapped) multiplier, whereas the

solution [10] is based on a finite-state machine, which executes

the multiplication operation depending on a micro-instruction

set. Both solutions represent completely different approaches

to the MPA multiplication and it limits the possibility of fair

comparison.

The solution proposed here offers a fine scalability, and

allows you to run MPA multiplication, even on the low-cost

FPGA chips available currently on the market, i.e., any Artix,

most of Spartan 7, and almost all Spartan 6 family chips.

Being runnable on any Zynq based platform, our solution

is suitable for embedded applications requiring the MPA

multiplication. Such a need may stem from, e.g., an application

of a demanding encryption method in a communication.

IV. CONCLUSION

Currently, there are still scientific problems that require

higher numerical precision than provided by the standard

32/64-bit arithmetic. Availability of reconfigurable cards based

on FPGAs in computing systems, allows one to implement

MPA algorithms in hardware. In this contribution, our imple-

mentation of the basecase-multiplication algorithm in MPA

on Xilinx Artix-7 FPGA is presented. In the developed im-

plementation of the MPA multiplication, the multiplication of

two integer 1024-bit numbers (2048-bit numbers) takes 205

nsec (819 nsec) with the use of 40 DSP modules. It gives an

almost two-fold speedup in comparison to the reference results

published in the literature. The developed digital circuit of

the MPA multiplier works with integer numbers of precision

varying in the range between 16 bits and 32 kbits with a step

size of the multiplying unit precision (16 bits). Therefore, the

results are hopefully useful not only in scientific computing,

but can also be useful for design of embedded systems with

cryptographic solutions requiring MPA.

ACKNOWLEDGMENT

Tomasz Stefański is grateful to Cathal McCabe at Xilinx

Inc. for arranging the donation of design software tools and

Wojciech Żebrowski at Aldec Inc. for his support. This work

was supported in part under funding for Statutory Activities

for the Faculty of Electronics, Telecommunications and Infor-

matics, Gdansk University of Technology.

REFERENCES

[1] D. H. Bailey, “High-precision floating-point arithmetic in scientific
computation,” Comput. Sci. Eng., vol. 7, no. 3, pp. 54–61, 2005.

[2] D. H. Bailey, R. Barrio and J. M. Borwein, “High-precision computation:
Mathematical physics and dynamics,” Appl. Math. Comput., vol. 218,
no. 20, pp. 10106–10121, 2012.

[3] T. P. Stefanski, “Electromagnetic problems requiring high-precision
computations,” IEEE Antennas Propag. Mag., vol. 55, no. 2, pp. 344–
353, 2013.

[4] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by
automatic computers,” Proceedings of the USSR Academy of Sciences,
vol. 145, pp. 293–294, 1962.

[5] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms., Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997.

[6] A. Schönhage and V. Strassen, “Schnelle multiplikation grosser zahlen,”
Computing, vol. 7, no. 3, pp. 281–292, 1971.

[7] T. Granlund, “The GNU multiple precision arithmetic library (Edi-
tion 6.1.2),” GMP Development Team, 2016 [Online]. Available:
www.gmplib.org

[8] SDAccel Platform Reference Design User Guide - Developer Board
for Acceleration with KU115, UG1234 (v2016.3) November 30, 2016
[Online]. Available: www.xilinx.com

[9] 7 Series FPGAs Data Sheet: Overview - Product Specification, DS180
(v2.2) December 15, 2016 [Online]. Available: www.xilinx.com

[10] Y. Lei, Y. Dou, S. Guo, J. Zhou, “FPGA implementation of variable-
precision floating-point arithmetic,” in: O. Temam, PC. Yew, B. Zang
(eds) Advanced Parallel Processing Technologies. APPT 2011. Lecture
Notes in Computer Science, vol. 6965, Springer, Berlin, Heidelberg,
2011.

[11] R. L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, 1978.

[12] J. Daemen, V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard., Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2002.

[13] A. Kalathungal, An Arbitrary Precision Integer Arithmetic Library for
FPGAs., MSc thesis, University of Cincinnati, OH, USA, 2013.

[14] IBM, System z9 Enterprise Class, System Overview, April 2009 [On-
line]. Available: www-01.ibm.com

[15] Vivado Design Suite User Guide - Getting Started, UG910 (v2016.3)
October 5, 2016 [Online]. Available: www.xilinx.com

[16] 7 Series DSP48E1 Slice User Guide, UG479 (v1.9) September 27, 2016
[Online]. Available: www.xilinx.com

[17] Nexys Video FPGA Board Reference Manual, Revised May 4, 2016
[Online]. Available: www.digilentinc.com

[18] Virtex-6 Family Overview - Product Specification, DS150 (v2.5) August
20, 2015 [Online]. Available: www.xilinx.com

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

