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Abstract

In this article, we will discussed the applications of the Spectral element
method (SEM) and Finite element Method (FEM) for fractional calculus.
The so called fractional Spectral element method (f-SEM) and fractional Fi-
nite element method (f-FEM) is crucial in various branches of science plays a
significant role. In this review, we discuss over the advantages and adaptabil-
ity of FEM and SEM, which provide the simulations of fractional derivatives
and integrals and are therefore appropriate for a broad range of applications
in engineering, biology, and physics. We emphasize that they can be used
to simulate a wide range of real-world phenomena because they can handle
fractional differential equations that are both linear and nonlinear Although
many researchers have already discussed applications of FEM in a variety of
fractional differential equations (FDEs) and delivered very significant results,
in this review article we aspire to enclose fundamental to advanced articles in
this field which will guide the researchers through recent achievements and
advancements for the further studies.

Keywords: Fractional Calculus, fractional Spectral element method,
Science and Engineering, fractional finite element method

1. Introduction

1.1. Fractional Calculus

Fractional calculus is a branch of mathematics that deals with integrals
and derivatives of non-integer order. Its roots can be found in the 1695 intro-
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duction of classical calculus by Newton and Leibniz. Recently, the fractional
calculus is used in many applications in the field of science, engineering,
chemistry and biochemistry [1] for example: viscoelastic materials modelling
[2], beam theory [3, 4, 5, 6, 7, 8], physics [9, 10, 11, 12], life sciences [13],
applied mathematics [14, 15, 16, 17, 18] finance [19, 20, 21] and geophysics
[22, 23, 24]. For additional subtleties on this, see Podlubny [25], Hilfer [26],
Ahmad Jafarian, Alireza Khalili Golmankhaneh and Dumitru Baleanu [27],
Trujillo [28], Mainardi [29, 30, 31] and numerous mathematicians have been
work on the advancement of fractional calculus, including Riemann Liouville,
[32, 33, 34], Weyl [35], and Riesz [36, 37]. Fractional calculus briefly refers
to fractional integration and fractional differentiation.Based on its nomencla-
ture, fractional calculus usually refers to the Riemann-Liouville integral when
addressing fractional integration. But fractional derivatives have more than
one definition when it comes to fractional differentiation. Several definitions
of this type will be explained in the exposition that follows.

D−α
a,t f(t) = (RL)D−α

a,t f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, (1)

and

D−α
t,b f(t) = (RL)D−α

t,b f(t) =
1

Γ(α)

∫ b

t

(t− s)α−1f(s)ds, (2)

where, Γ is the Euler gamma function.

1.2. Numerical methods for fractional Calculus

Many Researchers use different numerical methods to solve fractional dif-
ferential equations (FDEs). The recent development in the field of the heat
equation for using fractional calculus [38, 39] develop a problem generated
by a non-local operator. In [40] presents a class of fractional variational
problems and offers a thorough finite element method to solve them. In [13]
for the finite difference method and by using proper orthogonal decomposi-
tion (POD) technique for the fractional diffusion equation and high accuracy
using Spectral element method (SEM) in two-dimensional by [41, 42]. The
model described attributes of lower dimensions and higher accuracy, which
resulted in a decrease in the amount of work that needed to be done compu-
tationally and a decrease in the amount of time that calculations performed.
In [43], the mechanical characteristics of one-dimensional degraded non-local
structures were investigated. This study considered the effects of scale effects
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Figure 1: A flow chart presenting various numerical techniques.

while investigating fractional non-local materials using the finite difference
method.

1.3. Finite element method for fractional calculus

By using the Finite Element Method (FEM) to solve fractional differential
equations, one can achieve stronger stability standards and more flexibility
when handling complex and inhomogeneous geometries than is possible with
other numerical techniques. FEM is a numerical method for approximating
solutions to differential equations where the domain of interest is divided
into various elements. It is applied to a variety of complex physical phe-
nomena, especially those displaying geometrical and material non-linearities
(like those frequently found in the sciences and engineering) [44]. For solv-
ing traditional differential equations, the Finite Element Method (FEM) is
a practical numerical technique. FEM is a useful and efficient tool for solv-
ing complicated problems when it comes to fractional differential equations.
Recently, some significant papers were published concerning about the FEM
for partial differential conditions [45, 46].
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Figure 2: Flow charts for various spectral element methods.

1.4. Spectral Finite element method for fractional calculus

The combination of spectral element methods (SEM) and fractional cal-
culus provides a powerful way to solve partial differential equations (PDEs)
involving fractional order derivatives. The benefits of both spectrum and fi-
nite element methods are combined in spectral element methods, a high-order
numerical methodology that works especially well for situations involving
complicated geometries or irregular domains. They become an effective tool
for solving fractional PDEs when combined with fractional calculus. Many
researcher are already investigating the involvement of SEM in fractional
calculus [47, 48, 49, 50].

2. Applications

2.1. Introduction

TBy combining the advantages of both spectral methods and finite ele-
ment methods (FEM), the spectral element method (SEM) is a method for
solving complicated partial differential equations. SEM is particularly useful
when attempting to solve complex problems related to fractional calculus, a
branch of mathematics that deals with derivatives of non-integer order. Key
steps in SEM for fractional calculus include the use of orthogonal spectral
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basis functions, the substitution of fractional derivatives for integer-order
derivatives, the division of the domain into elements, the formulation of the
problem as a weak form, the assembly of global equations, the solution, the
consideration of boundary conditions, and the use of numerical quadrature
for fractional derivatives. When modeling systems with memory effects or
anomalous diffusion, this approach is useful because it offers high accuracy
for problems involving singularities and irregular behavior. The basic idea
of f-SEM is not so different from the classical to divide the domain (geom-
etry in the sense of solid mechanics) into small but finite sized elements.
The collection of elements is called the finite element mesh. By using FEM,
a semidiscrete semigroup is obtained [51, 52, 53].In f-SEM, the domain of
equation is divided leads to a set of equations by the numerical scheme.

Figure 3: List of publications flow chart for fractional finite element methods.
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Figure 4: List of publiations flow chart for fractional spectral element methods

3. Fractional dynamic by using FEM and SEM

The Spectral Element Method (SEM) is a suitable approach for ana-
lyzing systems governed by fractional order differential equations, a crucial
component of fractional dynamics. SEM, as a numerical method, proves
effective in addressing challenges within the realm of fractional dynamics
by harnessing the advantages of both spectral methods and the finite el-
ement method (FEM). In [39] studies the fractional-spectral approach for
vibration of damped space structures. A dynamic analysis for FEM [54]
in a structural system with fractional derivative models by using finite ele-
ment formulations is presented. High-frequency dynamics is used for a struc-
tural and complex engineering system. High-frequency phenomena provide a
link between vibration theory and thermodynamics, emphasizing that high-
frequency dynamics can be thought of as both the low-frequency limit of
thermodynamics and the high-frequency extreme of vibration theory. High-
frequency dynamic properties use in many problems like in polymeric system
and polymer films [55]. Nokhbatolfoghahai [56] investigated the use of the
Finite Element Method (FEM) for the dynamic simulation of high-frequency
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Figure 5: Subject area flow chart for fractional finite element methods.

Figure 6: Subject area flow chart for fractional spectral element methods.
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vibrations in extended complex structures. Furthermore, SHOYAMA’s 2018
study [57] examined the high-frequency dynamic properties of a compressed
O-ring that was utilized to support a bearing. FEM modeling is widely used
in modern practice to predict the vibration and noise behavior of entire en-
gines or their subsystems.Finite Element Method (FEM) simulations often
leave out elastomeric components found in engines or subsystems because
of some challenges such as the absence of material properties at higher fre-
quencies. As mentioned by Lu in 2007 [58], who investigated elastomeric
properties through fractional calculus in the framework of FEM, viscoelastic
properties have been utilized to address this problem. Experimental measure-
ments were used to validate this approach. Engine covers with elastomer seals
were modeled as an example of the use of fractional FEM. To solve the par-
tial differential equations with fractional derivatives, the Fractional Spectral
Element Method (f-SEM) blends fractional calculus and the highly accurate
Spectral Element Method (SEM). f-SEM ensures stability and physical rel-
evance in the modeling of systems with fractional damping when combined
with limited damping treatment. f-FEM is a versatile method that allows us
to solve more complex problems like beams constrained [59] damping treat-
ment by f-FEM. They observed the behaviour of the damping material is de-
scribed using the fractional derivative model of viscoelasticity. In this model,
f-FEM developed is a one-dimensional beam element with three degrees of
freedom per node. The accuracy of the modal properties obtained with the
beam model is compared with those calculated from a more elaborate plane
stress finite element model. In [60] presents a nano-scale Timoshenko beam
using the integral model of nonlocal elasticity with Finite element analy-
sis. Sandwich radiates with implanted viscoelastic material utilizing partial
fractional equation by using FEM investigated by [61]. Development of the
strategy is represented by assessing the second-order measurements of the
redirection of a beam whose unbending nature changes arbitrarily along its
axis by using the FEM in [62].

3.1. Spectral element method and Finite element method on fractional visco-
elasticity

Bagley (1983), [63], discusses using fractional calculus to solve viscoelas-
ticity in his paper. Moreover, it clarifies a relationship between the macro-
scopic behavior of certain viscoelastic materials and molecular theories ex-
plaining their microscopic behavior. The Spectral Element Method (SEM)
applied to fractional viscoelasticity is a computational approach used to study
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and simulate materials or systems with viscoelastic behavior involving frac-
tional calculus. There are many methods for addressing viscoelasticity in
materials. The use of fractional calculus in the field of viscoelasticity is
noteworthy because it can precisely represent, using experimental parame-
ters, the constitutive relationships of some viscoelastic materials. Crucially,
some problems can be produced by incorporating fractional calculus into fi-
nite element formulations. The application of fractional calculus to viscoelas-
ticity is thoroughly examined in a review published in [64]. The non-local
forces as viscoelastic long-range interactions present in [65]. The expression
of the elastic and viscoelastic matrices obtained when applied formulation
of the FEM. The 3D fractional viscoelastic model [66] with the implementa-
tion of the FEM. Viscoelastic structures uses in many engineering problems
and [67] presented FEM on the viscoelastic frame. Application of fractional
calculus to viscoelasticity and also explain a link between molecular theo-
ries and macroscopic behaviour of certain viscoelasticity in [63]. In [68] give
overviews on fractional derivative viscoelasticity.

3.2. Control

There are several approaches available to solve fractional optimal control
problems. Zhou et al. (2018) [69] focuses on optimal control problems in-
volving space fractional diffusion equations and uses the finite element and
spectral element methods to solve them. Furthermore, control system-related
problems can be addressed with the Spectral Element Method (SEM). SEM
is a numerical method that combines aspects of finite element and spectral
methods, making it an effective tool for partial differential equation solu-
tions. Spectral element method (SEM) is used to study in [70] the vibration
suppression and dynamic responses of frame structures considering shear de-
formation. A nonuniform elliptic operators which consider as a state equation
by using the finite element to solve mesh points in [71]. Consider second-order
partial differential equations with Dirichlet boundary conditions to solve an
elliptic optimal control problem with FEM in [72]. By using an approxima-
tion technique [73] of optimal control problems for the fractional dynamic
system in separable Hilbert space.

In [74] presents a study that presents a method for solving fractional
optimal control problems. With this approach, the problem is discretized
using the discrete method, which works by applying finite differences. The
fractional order parabolic equations and investigation on two semidiscrete
approximation schemes the FEM and establish optimal concerning the data
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regularity error estimates for a semidiscrete FEM in [75]. Zhou (2016) [76] ex-
amines the application of finite element approximation to time-fractional op-
timal control problems. Additionally, Zhou uses the Finite Element Method
(FEM) in his 2020 work [77] to study space fractional optimal control prob-
lems. Furthermore, Dohr studied finite element approximation in the context
of optimal control problems governed by the fractional Laplacian in his 2018
and 2019 studies [78, 79]. These investigations include the use of finite ele-
ment analysis to compute an approximation for the state equation through
spatial discretization. Additionally, as discussed in [80], a piecewise linear
FEM approach is used for optimal control problems involving fractional op-
erators.

3.3. SEM and FEM approximations of fractional cable equation

A numerical method for simulating and modeling the behavior of natural
neurons or electrical cables with fractional calculus is the Spectral Element
Method (SEM) applied to the fractional cable equation. The cable equation
accounts for resistivity and capacitance when describing the propagation of
electrical signals in a structure that resembles a cable, such as the axon
of a neuron or an electrical transmission line. The cable equation takes
into consideration derivatives of non-integer order when fractional calculus
is introduced. For the fractional cable condition, a few numerical models
are available, such as finite differences orthogonal spline collocation method
and FEM[81, 82, 83]. The fractional cable condition which was inferred
from the fractional Nernst-Planck conditions was presented to show electro-
tonic properties of spiked neuronal dendrites[84]. Numerical Recognizable
proof of the fractional derivatives within the two-Dimensional fractional ca-
ble equation is present by [85]. An effective calculation for fathoming the
one-dimensional cable condition within the Laplace (recurrence) space for
a self-assertive straight film is presented by [86]. A two-grid finite element
approximation is used to solve a nonlinear time-fractional Cable equation
that is introduced in Wang’s 2016 paper [87]. The paper investigates mul-
tiple second-order time-discretization schemes using Galerkin finite element
(GFE) analysis and varying parameters. According to Liu’s 2018 discussion
[88], these schemes are intended to offer a numerical solution for the non-
linear cable equation with time-fractional derivatives. An analysis of the
fractional Cable equation’s numerical solution, as it appears in Lin’s 2010
[89] work, is also included in this study. Develop a numerical technique use
for Riemann–Liouville fractional derivatives in time-fractional cable equation
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and explore a semidiscrete scheme based on the lumped mass Galerkin FEM,
utilizing piecewise linear capacities in [90].

4. Comparison of Fractional Derivatives Over Time and Space

4.1. Finite and Spectral element method for Time differential equation

A powerful numerical method for modeling and researching dynamic sys-
tems and transient phenomena in a variety of scientific and engineering do-
mains is the spectral element method for time-dependent differential equa-
tions. It is a useful tool for precisely and effectively solving time-dependent
problems due to its high-order accuracy in both space and time. In the
fractional time model, it means there is a memory which is the past state
can affect the present state. Many scholars have been studying fractional
differential equations recently, and they frequently use the fractional Finite
Element Method (f-FEM) for their research. Several significant works in this
field have been produced by Deng in 2009 [91], Liu in 2014 [51], Ford in
2011 [92], Liu in 2014 [93], Huang in 2020 [94], and Jin in 2014 [95]. Fur-
thermore, Manimaran’s work in 2019 [96] explores the uniqueness of a weak
solution using the Finite Element Method to solve nonlocal diffusion opera-
tors for the time-fractional cancer invasion system. Furthermore, as Esen’s
2013 study [97] discusses, the diffusion wave equation and time-fractional
diffusion equations are numerically solved using the Galerkin Finite Element
Method. In Jin’s work from 2013 [98], the Galerkin Finite Element Method
is used to obtain numerical solutions of multiple time-fractional derivatives.
For solving time-fractional equations, Zeng’s 2017 study [99] presents a novel
Crank–Nicolson Finite Element Method. This procedure uses a modified L1
method to discretize the Riemann-Liouville fractional derivative. The Finite
Element Method is applied to two-dimensional time-fractional Tricomi-type
equations in Zheng’s 2010 study [100]. Jiang (2011) focused his work [101]
on the development of high-order techniques for the Finite Element Method-
based solution of time-fractional partial differential equations. A Finite El-
ement Method (FEM) approach for solving time-fractional partial differen-
tial equations is presented in Jiang’s 2013 study [102]. The Finite Element
Method is used in Esen’s work from 2015 [103] to provide a numerical solu-
tion for the time-fractional Burgers Equation. A number of works, including
those by Zhao in 2015 [104], Zhao in 2013 [105], Sun in 2013 [106], and Zhao
in 2016 [107], investigate solutions for time-fractional diffusion equations.
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This is accomplished using a semi-discrete FEM methodology. A numer-
ical approximation for a time-fractional cable equation that includes two
Riemann-Liouville fractional derivatives is developed in Al Maskari’s 2018
work [90]. Piecewise linear programming in a semidiscrete scheme based on
the mass Galerkin FEM is utilized.

4.2. Finite element method for space differential equation

In fractional space, model studied one point can affect to another point.
Present the fractional-order non local continuum for 2D model [108, 109]
and 1D Euler-Bernoulli beam by using fractional FEM (f-FEM).The space
fractional optimal control problem with integral state constraints was the
subject of a study by Liu in 2021 [110]. The problem was approached using
a finite element approximation. Using the Finite Element Method (FEM),
Zhao et al. (2017) [111] investigated optimal control problems governed by
the space fractional diffusion equation. For the space-fractional advection-
diffusion equation with non-homogeneous boundary condition solve by FEM
proposed [100]. Consider a Riesz fractional operator for space-fractional par-
tial differential equations to solve by FEM [45, 112]. In [113] present a
convergence analysis of moving FEMs for space fractional differential equa-
tions. In [114] used a Space-Fractional Diffusion Equations with Dirichlet
Boundary-Value Problems by FEM. In [115, 116] build up a quick and exact
finite element technique for space-fractional equation in two space measure-
ments, which are communicated regarding fractional directional subordinates
in all the ways that are coordinated concerning a likelihood measure on the
unit circle. Space fractional diffusion equation for finite element solutions
with a nonlinear source term is presented by [117].

4.3. Finite element method for time-space differential equation

A time-space finite element method for solving time-space fractional dif-
fusion equations has been developed. This method, which was put forth by
Feng in 2015 [118] and Bu in 2019 [119], uses the Finite Element Method
(FEM) to solve numerical problems. FEM is used to solve the space and
time-fractional Fokker–Planck equation, which is a useful tool for analyzing
processes involving both flights and traps. Deng and Li are credited for this
development in their respective works [? 120]. The Finite Element Method
(FEM) is applied to a multi-term time-space fractional diffusion equation
with a Riesz fractional operator, and its convergence and stability are exam-
ined. The works of Liu in 2019 [121] and Li in 2017 [120] both propose this
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method. Lai’s work from 2021 [122] presents a numerical solution for linear
Riesz space fractional partial differential equations using a space-time finite
element method.The Finite Element Method (FEM) has been utilized to a
multi-term time-space fractional diffusion equation with a Riesz fractional
operator, and its convergence and stability are examined. The works of Liu
in 2019 [121] and Li in 2017 [120] both propose this method.

Lai’s work from 2021 [122] presents a numerical solution for linear Riesz
space fractional partial differential equations using a space-time finite ele-
ment method. In the study by Gorenflo in 2002 [123], a discrete random
walk approach is employed to solve the time and space fractional diffusion
equation.

In the 2020 study by Gao [124], the nonhomogeneous two-dimensional
distributed order time-fractional Cable equation on complex convex spaces
is solved using the Galerkin Finite Element Method (FEM) with a weighted
and shifted Grünwald contrast estimation and Composite Trapezoid formula.
Numerical models for signal degradation in underwater or submarine trans-
mission cables are created using this cable equation. Because it can explain
non-local fading memory, the Atangana-Baleanu fractional derivative is used
in this analysis [125], as suggested by Karaagac in 2018. Wang (2016) [87]
investigated the use of the Galerkin Finite Element Method (FEM) for the
numerical solution of the nonlinear time-fractional cable equation.

5. Error Estimation

5.1. Error estimates finite element method for fractional order

They are many methods to error estimate for fractional differential equa-
tions. Such as the collocation method In [126, 101] studied the optimal
order error estimates by using high-order FEM for time-fractional PDEs.
In [127, 128] studied the error analysis of PDEs by using the finite element
method. Error estimate for a two-dimensional weakly singular integral-PDEs
with time and space fractional derivatives by using FEM proposed [129]. For
error, analysis [130] using FEM in the time-fractional biharmonic equation.
Many researchers use different fractional differentials equations for error anal-
ysis with the help of FEM like error estimate with fractional diffusion equa-
tion [131, 132, 133, 134], fractional stochastic Navier–Stokes equations [135],
and error estimate of fractional stochastic differential equations [136].

Li (2011) [137] and Li (2018) [138] discuss the development of time-
step conditions for common linearized semi-implicit schemes for nonlinear
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parabolic equations, combined with Galerkin finite element approximations.
In particular, the time-dependent nonlinear Joule heating equations are taken
into account in these studies. The study presents optimal error estimates for
the semi-implicit Euler scheme, suggesting that this method has no time-step
boundaries. The error analysis of semilinear parabolic equations is performed
out using a two-grid method with a backward Euler scheme. Unlike in tra-
ditional finite element analysis, temporal and spatial errors make up the
discrepancy between the exact solution and the finite element solution. As
suggested by Shi in 2017 [139] and Gunzburger in 2019 [140], this division is
accomplished by introducing a corresponding time-discrete framework.

6. Conclusion

Based on fractional Finite Element Method (FEM) and Spectral Ele-
ment Method (SEM), this review paper provides an extensive overview of
the noteworthy developments in engineering and scientific modeling. Re-
searchers interest in fractional FEM and SEM has increased significantly as
a result of recent developments. A few crucial things to think about for your
closing remarks are:

• The growing significance of fractional FEM and SEM in solving intri-
cate engineering and scientific problems is acknowledged.

• Researchers can effectively simulate real-world phenomena that exhibit
fractional-order behavior by using FEM and SEM, which have the ad-
vantage of providing high accuracy in approximating fractional deriva-
tives and integrals.

• The both methods FEM and SEM can capture the non-local aspects of
fractional calculus. Compared to conventional numerical methods, this
allows for a more accurate modeling of phenomena involving long-range
interactions and memory effects.

• In order to ensure the accuracy and dependability of results, mesh
generation, numerical stability, and error analysis must be properly
taken into account when using FEM and SEM for fractional calculus
problems

• The advancement of FEM and SEM applications in fractional calculus
depends on the cooperation of mathematicians, engineers, and domain
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experts. These cross-disciplinary partnerships may result in creative
fixes and breakthroughs across a range of industries.
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