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A direct analysis of the task of randomness amplification from Santha-Vazirani sources using the violation
of the chained Bell inequality is performed in terms of the convex combination of no-signaling boxes required
to simulate quantum violation of the inequality. This analysis is used to find the exact threshold value of the
initial randomness parameter from which perfect randomness can be extracted in the asymptotic limit of a large
number of measurement settings. As a byproduct, we provide a tool for the analysis of randomness amplification
protocols, namely a general characterization of the probability distributions of bits generated by Santha-Vazirani
sources, which are shown to be mixtures of specific permutations of Bernoulli distributions with a parameter
defined by the source.
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I. INTRODUCTION

The question whether all processes in Nature are predeter-
mined or if there are fundamentally unpredictable events is
a most fundamental one. While it seems impossible to rule
out complete determinism at all levels, the philosophical and
practical implications such as in gambling and cryptographic
scenarios have made it a question worthy of thorough investi-
gation. In this regard, exciting new results have been obtained
by the authors of [1–5] that the correlations in quantum systems
can be used to amplify randomness. In particular, it has been
shown that the presence of a small amount of unpredictability
can be used to infer the presence of truly random events under
certain assumptions about the source of unpredictability.

Formally, the information-theoretic task is called random-
ness amplification, where the goal is to use an input source
of partially random bits to produce a perfect random bit.
The source of randomness is taken to be the Santha-Vazirani
(SV) source [6], defined by the condition that for any random
variable X = (X1,X2, . . . ,Xn) produced by this source and for
any 0 � i < n and xi = {0,1}, there holds

1
2 − ε � P (Xi+1 = xi+1|Xi = xi, . . . ,X1 = x1) � 1

2 + ε.

(1)

The interpretation is that each bit is obtained by the flip
of a biased coin, the bias being fixed by an adversary who
has knowledge of the history of the process. As such, the
conditioning variables can be any set of pre-existing variables
W that could be a possible cause of the succeeding bit Xi+1.
Each bit produced by the source is ε free in the sense that the
probability distribution is ε away in variational distance from
uniform. The goal of randomness amplification is to produce
perfect random bits, i.e., with εnew = 0. Note that randomness
amplification differs from the task of (device-independent)
randomness expansion, where it is assumed that an input
seed of perfect random bits is available and the goal is to
expand this given bit string into a larger sequence of random

bits. Quantum nonlocality has also found application in this
later task [7–9] as well as in device-independent cryptographic
scenarios [10,11].

In [6], it was shown that the randomness produced by a
single SV source cannot be amplified by classical means,
by any deterministic function. The idea behind randomness
amplification using quantum correlations in [1,2,4,5] is to
use the SV source to choose the measurement settings of
a set of spatially separated observers in a Bell test and to
obtain random bits from some function of the measurement
outcomes. In [1], the bipartite scenario of chained Bell
inequalities [12] was shown to be useful in obtaining perfectly
random bits as measurement outcomes for a limited range

of ε values (ε < (
√

2−1)2

2 assuming correctness of quantum
theory). The validity of the no-signaling principle is vital
in the protocol, no-signaling being necessary for perfect
randomness to occur in any theory. While in [1], it was
recognized that the chain inequality could not be used to
amplify arbitrarily weak randomness, an open problem was to
determine the precise range of ε from which randomness could
be amplified. This is one of the major questions we address in
the paper.

Let us also discuss the differences between the protocol
in [1] and other protocols designed for this task. In [2], a
different protocol was proposed to generate perfect random
bits from any initial value of ε < 1

2 . This later protocol differs
from [1] in at least three respects. First, it involves the use of
the five-party Mermin inequality and a corresponding noiseless
Greenberger-Horne-Zeilinger state, and hence leaves an open
question whether an analogous result (i.e., amplification of
arbitrarily weak randomness) can be derived using a bipartite
physical system. Perhaps more crucially, the major drawback
of the protocol is that it requires a large number of space-like
separated devices for its implementation, with the number of
devices growing with the randomness of the final bit obtained
and tending to infinity in the limit of a perfectly random output.
Finally, the hashing function used to compute the final random
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bit is not explicitly provided but only proven to exist. As
a result, while the protocol of [2] is of theoretical interest,
it is of limited practical value. Hence, a thorough analysis
and the determination of the exact limits of the protocol
in [1] (which we perform here) is important both from the
fundamental perspective as well as from the practical benefits
of a two-party protocol in view of the constraint of space-like
separation.

A fundamental understanding of the probability distribu-
tions of bits generated by the source of partial randomness
is also necessary to study how and when tasks such as
randomness amplification can be performed given different
strengths of the adversary. A central result of this paper is
an investigation into the structure of the SV source showing
that the extremal points of the set of probability distributions
from such a source are permutations of Bernoulli distributions.
Indeed, this fact has found application in randomness amplifi-
cation against adversaries limited to quantum resources [3].
Moreover, in the search for simpler (possibly bipartite)
protocols for generating perfect random bits from any initial
value of ε against no-signaling adversaries, it becomes vital
to derive intuitive methods that apply to arbitrary scenarios as
well as to understand the limits of applicability of currently
known protocols [1]. We address these issues, providing an
analysis of the task of amplification in terms of the randomness
present in the no-signaling boxes that appear in a convex
decomposition of the quantum box of probabilities. This is
used to derive the optimal range of ε values from which
perfect randomness can be generated using the bipartite chain
correlations as well as to extend the result to the determination
of the exact threshold value in the asymptotic limit of a large
number of measurement settings. See also [13] for a different
approach to obtaining randomness from the chain inequalities
using a trusted third party (a referee).

II. STRUCTURE OF SANTHA-VAZIRANI SOURCES

The protocol for randomness amplification from SV sources
using nonlocal correlations involves using the source to choose
the measurement settings in the Bell test. In the bipartite chain
Bell test, each party uses a string of bits from a source to
generate the measurement settings x and y, the sources held
by the parties may be correlated with each other. Our aim
in this section is to characterize the probability distributions
Q(x,y|w) which can arise from the source given any other
random variable w possibly held by an adversary Eve. We
investigate the structure of the SV sources and prove that the
distributions obeying (1) are mixtures of permuted Bernoulli
distributions. Formally, we state the following proposition (see
proof in the Appendix).

Proposition 1. Extremal points of the set of probability
distributions from a Santha-Vazirani source with parameter
ε are permutations of Bernoulli distributions with parameter
p = p+, where p+ = 1

2 + ε.
Note that not all permutations are allowed, in the proof we

provide a detailed explanation of the allowed permutations. We
apply the characterization from Proposition 1 in the following
sections to find the optimal values of ε from which randomness
can be amplified using the chain correlations.

III. RANDOMNESS AMPLIFICATION FROM NONLOCAL
QUANTUM CORRELATIONS

Consider that the bits generated by the SV source (that are
partially free with respect to any set of space-time variables
held by an adversary Eve) are used to choose the measurement
settings in a Bell test by a set of N spatially separated
observers. Upon violation of the inequality, the parties process
the measurement outcomes to obtain a perfect random bit.
The general N party Bell inequality for randomly chosen
measurement settings can be written as

β =
∑
�a,�x

α(�a,�x)P (�a|�x) � βL. (2)

Here, �x denotes a set {x1, . . . ,xN } of measurement settings
chosen by the N parties, �a = {a1, . . . ,aN } denotes the out-
comes, α(�a,�x) are a set of coefficients and P (�a|�x) denotes
the conditional probability of outcomes �a given settings �x.
The bound βL denotes the optimal (here, minimal) value
of the Bell parameter attainable in local hidden variable (LHV)
theories. A quantum state under suitable measurement settings
then generates the box BQ that leads to maximal violation of
the inequality βQ. In the scenario where the measurement
settings are not chosen freely but using an ε SV source,
one obtains a new LHV optimal value as a function of ε,
βL(ε). The adversary may attempt to simulate the value βQ

using a convex combination of no-signaling boxes B
(i)
NS which

produce values β
(i)
NS , i.e., βQ = ∑

i piβ
(i)
NS with

∑
i pi = 1.

The process of randomness amplification is then transparently
based on the randomness present in the boxes B

(i)
NS . If some

function of the measurement outcomes (in particular, simply
one of the outcomes of one party [1]) is random for all boxes
B

(i)
NS appearing in any convex decomposition, then the parties

may use this as the output free random bit uncorrelated from
Eve. It is immediately seen that to perform free randomness
amplification (εnew = 0) from any initial value of ε < 1

2 , one
requires that the maximum no-signaling violation of the Bell
inequality be achievable within quantum theory; if not, Eve
may choose a finite fraction of deterministic boxes in the
simulation. In general, for any given βQ one may write

βQ = (1 − δ)β(r)
NS + δβ

(nr)
NS , (3)

where β
(nr)
NS is the optimal violation of the inequality by boxes

without randomness and δ is the maximum fraction of such
boxes that Eve may use to simulate βQ.

IV. RANDOMNESS AMPLIFICATION
USING CHAIN INEQUALITIES

In [1], randomness amplification using chained Bell in-
equalities [12] was investigated. Two results were obtained, the
first under the assumption of correctness of quantum theory,
i.e., that the observed distribution of measurement outcomes is
as given by the theory, and the second without this restriction.

In the former scenario, it was shown that for given ε < (
√

2−1)2

2 ,
there exists a protocol that uses ε-free bits with respect to any
set of space-time variables W to obtain ε′-free bits with respect
to W for any 0 � ε′ � ε. In particular, the correlations between
the outcomes were used to show that the output bit of one
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party’s measurement is arbitrarily close to being uniform and
uncorrelated with W . Following the general considerations of
the previous section, we now formulate an intuitive and simpler
derivation of this result.

The chained Bell inequality considers the scenario of two
spatially separated parties Alice and Bob who each choose
from a set of N measurement settings: x ∈ {0, . . . ,N − 1}A
for Alice and y ∈ {0, . . . ,N − 1}B for Bob. Each measurement
results in a binary outcome a ∈ {0,1} for Alice and b ∈ {0,1}
for Bob. The inequality is written as∑

x=y or x=y+1

∑
a,b

P (a ⊕ b = 1|x,y)

+P (a ⊕ b = 0|0,N − 1) � 1, (4)

where ⊕ denotes addition modulo 2. Notice that out of the
N2 possible measurement pairs, only the 2N neighboring
pairs where x = y or x = y + 1 (sum modulo N ) forming
a chain are considered in the inequality. The LHV bound
is obtained from the fact that perfect correlations in the
outcomes for 2N − 1 pairs in the sum automatically implies
perfect correlation for the pair {0,N − 1}. Quantum mechanics
violates this inequality obtaining a value of 2N sin2( π

4N
), which

for large N tends to the algebraic limit of 0. This optimal
value is obtained by measuring on the maximally entangled
state |φ+〉 = 1√

2
(|00〉 + |11〉) with the measurement settings

defined by the bases {|α〉,|α + π〉} for Alice and {|β〉,|β + π〉}
for Bob where |θ〉 = cos θ

2 |0〉 + sin θ
2 |1〉 and the angles α ∈

π
2N

{0,2, . . . ,2N − 2} and β ∈ π
2N

{1,3, . . . ,2N − 1}. The set
of no-signaling boxes for this scenario was studied in [14],
no-signaling boxes with precisely the structure of perfect
correlations for the 2N − 1 neighboring pairs in the sum and
perfect anticorrelations for the remaining pair exist which in
addition to incorporating perfect randomness attain the optimal
no-signaling value of 0. A crucial observation is that if one
pair of measurement settings in the expression is known to
not occur, classical theories can simulate optimal no-signaling
violation of the inequality.

Ideally the measurement settings are chosen freely, how-
ever, in this scenario they are chosen by Alice and Bob each
using r := log2 N bits from an SV source with nonzero ε.
The optimal strategy by an adversary using local boxes is
then to choose the term that equals 1 in the Bell expression
corresponding to the pair of measurements that the SV source
provides with minimum probability. One therefore considers
the inequality∑

x=y or x=y+1

∑
a,b

Q(x,y|w)P (a ⊕ b = 1|x,y)

+Q(0,N − 1|w)P (a ⊕ b = 0|0,N − 1) � pmin (5)

for each w in the set of space-time variables with which the
imperfectly free SV source may be correlated (thought of as
held by Eve). Here Q(x,y|w) is the probability of a pair of mea-
surement settings x,y being chosen by Alice and Bob and we
have the normalization constraint

∑
x=y or x=y+1 Q(x,y|w) =

1. The bound pmin = minx,y Q(x,y|w) is the minimum
probability of a pair of measurement settings chosen by
Alice and Bob, ideally pideal

min = 1
2N

(for ε = 0). As in the
previous section, Eve tries to simulate βQ = sin2( π

4N
) using

no-signaling boxes with randomness which produce β
(r)
NS and

those that do not incorporate randomness and give β
(nr)
NS .

Crucially, for the chained inequalities only those boxes [14]
with perfect randomness in the outcomes (εnew = 0) violate
the chain inequality giving β

(r)
NS = 0. All other no-signaling

boxes either do not give randomness or produce β
(nr)
NS �

pmin. Therefore, the optimal violation of the inequality that
Eve can achieve using any fraction δ of nonrandom no-
signaling boxes (and fraction (1 − δ) of random ones) is given
by βsv = δpmin.

The measurement settings are chosen using 2r uses of the
imperfect SV source, say the first r bits give in binary the
setting x for Alice and the next r bits give Bob’s setting y.
The minimum probability of occurrence for any measurement
pair among the N2 pairs is p2r

− = ( 1
2 − ε)2r . From the set

of obtained settings, only those corresponding to the 2N

neighboring pairs in the inequality are retained with the rest
discarded. Therefore, the minimum probability in the sequence
of 2N pairs, pmin is given by

pmin = p2r
−

p2r− + ||Q(x,y|w)||2N−1
, (6)

where ||Q(x,y|w)||2N−1 is the (2N − 1)th Ky Fan norm of the
probability distribution Q(x,y|w) generated by the source, i.e.,
the sum of the 2N − 1 largest probabilities. The denominator
of the above expression is bounded from above by 2Np2r

+
where p+ = ( 1

2 + ε) since p2r
+ is the largest probability of

occurrence of a bit string of length 2r from the source. We
therefore obtain that the value of the Bell expression simulated
by Eve is

βsv = δpmin � δ
p2r

−
2r+1p2r+

. (7)

For consistency with the quantum value, βsv � βQ, i.e.,

δ
p2r

−
2r+1p2r+

� sin2( π
2r+2 ). The fraction of nonrandom boxes δ

approaches 0 (perfect randomness is obtained) as we increase
the number of settings N (=2r ) provided

lim
r→∞

π2

8

p2r
+

2rp2r−
= 0, (8)

giving
( 1

2 +ε)2

2( 1
2 −ε)2 < 1, thus recovering ε < (

√
2−1)2

2 ≈ 0.086.

V. ASYMPTOTICALLY EXACT
BOUNDS ON RANDOMNESS

We now show an improved estimate of pmin which gives
exact values for the range of allowed ε in the asymptotic
limit of large N . Among the joint probability distributions
that satisfy the SV conditions are the extremal ones which
as we have seen are (certain) permutations of the Bernoulli
distribution. Our goal is to find the (2N − 1)th Ky Fan norm of
the Bernoulli distribution, which being the sum of the 2N − 1
largest probabilities is permutation invariant and the same for
all extremal distributions.
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The 2N − 1 Ky Fan norm of the Bernoulli distribution B

satisfying (1) is

||B||2r+1−1 =
m∑

i=0

(
2r

i

)
p2r−i

+ pi
−, (9)

where m is chosen to obtain the 2r+1 − 1 largest probabilities.
The task of finding m can be reformulated using

m � min
c

{
cr :

cr∑
i=0

(
2r

i

)
� 2r+1 − 1

}
(10)

to finding the minimum c satisfying the inequality above.
We now state the following lemma (proof in the Appendix)

to bound ||B||2r+1−1, leading to the asymptotically exact range
of ε from which perfect randomness may be extracted.

Lemma 1. The Ky Fan norm of the Bernoulli distribution
||B||2r+1−1 with parameter p− = (1/2 − ε) for large r obeys(

2r

cr

)
pcr

− p
(2−c)r
+ < ||B||2r+1−1 < k

(
2r

cr

)
pcr

− p
(2−c)r
+ , (11)

where c is the solution to 22rH (c/2) = 2r (c ≈ 0.22) and k =
(2−c)(1−2ε)
2(1−c−2ε) .

The above lemma is now used to find when the upper bound
on δ approaches zero, i.e., when

lim
r→∞

π2

16

||B||2r+1−1

22rp2r−
= 0. (12)

The bounds in (11) imply that the limit is defined by the
behavior for large r of(2r

cr

)
pcr

− p
(2−c)r
+

22rp2r−
≈ 22rH (c/2) p

(2−c)r
+

22rp
(2−c)r
−

. (13)

For the limit to be 0, we need (1/2 + ε)2−c < 2(1/2 − ε)2−c

for c ≈ 0.22 giving ε < 21/(2−c)−1
2(21/(2−c)+1) ≈ 0.0961. We thus obtain

the result that the asymptotically exact maximal value for ε

is 0.0961. In fact, for ε larger than this critical value, free
randomness cannot be obtained in the protocol, i.e., εnew > ε

for this range as shown below.
Note that the amount of randomness εnew obtained in the

protocol is given by (1/2) + εnew = (1 − δ) × (1/2) + δ × 1,
i.e., εnew = δ/2 since for a fraction δ of the boxes we have
deterministic outputs and (1 − δ) of the boxes yield perfectly
random output. The optimal value of δ is given by βQ

pmin
. The

upper and lower bounds in Lemma 1 converge to the same
value in the limit of large N so that we have that δ → 0 only
if ε < 0.0961, above this value the violation can be simulated
with local boxes. In the scenario where the randomness is
certified by a device-independent test rather than by assuming
the correlations are as in quantum theory, a similar analysis
yields that the optimal value of ε below which randomness
may be obtained is 0.0623 which again improves the bound
in [1].

VI. CONCLUSION

Randomness amplification from quantum nonlocal cor-
relations is shown to be directly related to the fraction of
no-signaling boxes incorporating randomness which appear in

any possible convex combination of boxes simulating the Bell
violation. An intuitive and simple derivation is provided for
the range of partial randomness from which perfect random-
ness can be generated using quantum correlations violating
the bipartite chained Bell inequalities. Asymptotically exact
bounds on the minimum probability of a pair of measurement
settings from an SV source enable us to identify the exact
threshold value of the most imperfect source from which
perfect randomness can be extracted using these correlations.
We note that the results obtained here are incomparable to a
previous result in [2] which even though it obtains randomness
from an arbitrarily weak SV source, requires (i) the use of a
multiparty Bell inequality and (ii) a large number of noiseless
space-like separated devices to do so (in fact, it requires an
infinite number of noiseless no-signaling devices to obtain
a perfect random bit). Indeed, it is a major open problem
if arbitrarily imperfect random sources can be amplified in
a bipartite scenario at all. The present paper contributes to
the solution of this open problem by narrowing the region
of initial randomness in question. Finally, let us note that
the characterization of the probability distributions from the
SV source provided here is of independent interest in general
scenarios as well [3].
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APPENDIX

Here, we present the formal proof of the proposition and
lemma stated in the text.

Proposition 1. Extremal points of the set of probability
distributions from Santha-Vazirani source are permutations of
Bernoulli distributions with parameter p = p+, with p+ =
1
2 + ε.

To prove the proposition we will need the following lemma.
Lemma 2. Consider two alphabets X and Y , with |X| =

K,|Y | = M . Consider some convex sets SX and SY of the
probability distributions over the spaces X and Y , respectively.
Consider an arbitrary joint probability distribution p(x,y).
Let p(y|x) be the corresponding conditional probability
distribution and p(x) the marginal one. Suppose now that for
any fixed x, the distribution {p(y|x)}y belongs to SY , and the
distribution {p(x)}x belongs to SX. Then we can write p(x,y)
as a mixture of probability distributions of the form

p̃(x,y) = p(x)(y)r(x), (A1)

where distribution p(x) is extremal in the set SY and distribution
r is extremal in set SX.

Proof. Clearly, it is enough to prove that p(x,y) can be
written as mixture of distributions

p′(x,y) = p(x)p(x)(y), (A2)
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where p(x) is extremal in SY . Indeed, then we can decompose
p(x) into extremal points in SX, and reach the form (2).

Let p(i) run over extremal elements of SY . We define the
following distributions

pi1,...,iK (x,y) = p(x)p(ix )(y). (A3)

Clearly they are of the required form (A2). We will now show
that a suitable mixture of such distributions gives p(x,y). To
see this, note that since for each x, the distribution p(y|x)
belongs to SY , we can write it as a mixture of p(i)’s

p(y|x) =
∑

i

λ
(x)
i p(i)(y), (A4)

where ∑
i

λ
(x)
i = 1, (A5)

for each x. We will now show that

p(x,y) =
∑

i1,...,iN

λ
(1)
i1

· · · λ(N)
iN

pi1,...,iK (x,y), (A6)

which is what we need to prove, as by (A5) we have∑
i1,...,iN

λ
(1)
i1

· · · λ(N)
iN

= 1 (A7)

and pi1,...,iK (x,y) are of the required form (A2). To prove the
equality (A6), we write∑

i1,...,iN

λ
(1)
i1

· · · λ(N)
iN

pi1,...,iK (x,y)

=
∑

i1,...,iN

λ
(1)
i1

· · · λ(N)
iN

p(x)p(ix )(y)

=
∑
ix

λ
(x)
ix

p(x)p(ix )(y) = p(x)p(y|x) = p(x,y). (A8)

The last but one equality we obtain from the fact that only
for index ix the summand is nontrivial, for other indices the
summands are just λ’s, which sum up to 1. �

Now we are in position to prove Proposition 1.
Proof of Proposition 1. To prove the proposition, we will

apply the lemma iteratively. The set X will be the set of n bits,
while the set Y will correspond to a single bit. SY then has two
extremal points (p+,p−) and (p−,p+). Let us first illustrate the
lemma for the case of X also being a single bit. Then simply

{p(x,y)} = (p(0)p(0|0),p(0)p(1|0),p(1)p(0|1),p(1)p(1|1)).

(A9)

Now, for x = 0, we have decomposition

p(0|0) = α0p+ + (1 − α0)p−, p(1|0)

= α0p− + (1 − α0)p+. (A10)

For x = 1 we have some other decomposition

p(0|1) = α1p+ + (1 − α1)p−, p(1|1)

= α1p− + (1 − α1)p+. (A11)

To catch up with notation of the lemma, we have α0 =
λ0

1,1 − α0 = λ0
2, and α0 = λ

(0)
1 ,1 − α0 = λ

(0)
2 , and p(1) =

(p+,p−),p(2) = (p−,p+) are extremal points from SY . We can
directly check that

(p(0)p(0|0),p(0)p(1|0),p(1)p(0|1),p(1)p(1|1))

= α0α1(p(0)p+,p(0)p−,p(1)p+,p(1)p−)

+α0(1 − α1)(p(0)p+,p(0)p−,p(1)p−,p(1)p+)

+ (1 − α0)α1(p(0)p−,p(0)p+,p(1)p+,p(1)p−)

+ (1 − α0)(1 − α1)(p(0)p−,p(0)p+,p(1)p−,p(1)p+).

(A12)

Thus we have shown explicitly the decomposition of p(x,y)
into distributions of the form (A2). Now we further decompose
the distribution (p(0),p(1)) into extremal points of SX which
are in this case the same as those of SY : (p+,p−) and (p−,p+).
Therefore {p(x,y)} is a mixture of the eight probability
distributions

(p+p+,p+p−,p−p+,p−p−), (p+p+,p+p−,p−p−,p−p+),

(p+p−,p+p+,p−p+,p−p−), (p+p−,p+p+,p−p−,p−p+),

(p−p+,p−p−,p+p+,p+p−), (p−p+,p−p−,p+p−,p+p+),

(p−p−,p−p+,p+p+,p+p−), (p−p−,p−p+,p+p−,p+p+),

(A13)

where the ordering is as follows:

(p(0,0),p(0,1),p(1,0),p(1,1)). (A14)

Note that the first distribution is precisely the Bernoulli
distribution, with the probability of 0 in a single trial being p =
p+. This distribution is memoryless. The other distributions
are not memoryless, but are related to the Bernoulli distribution
by permutation of probabilities (not bits). Note that only 8 out
of 24 permutations appear.

For n bits, the lemma implies that the extremal prob-
ability distributions are created from the product of the
extremal distributions for n − 1 bits, as follows. For a given
extremal distribution (r(1), . . . ,r(K)) with K = 2n−1, we
construct the following extremal point:

(r(1)p+,r(1)p−,r(2)p+,r(2)p−, . . . ,r(K)p+,r(K)p−).

(A15)

The other extremal points can be generated from it by changing
the order of p+ and p− for each x = 1, . . . ,K independently.
This implies, that all the extremal points are permutations
of the above one. Now, by induction we assume that the
distribution [r(1), . . . ,r(K)] over n − 1 bits is a permutation
of Bernoulli distribution over n bits with parameter p = p+.
Thus, there is a permutation σ that reorders it, so that
it becomes Bernoulli. We can apply this permutation to
reorder pairs [r(i)p+,r(i)p−] in the distribution (A15). The
resulting distribution is Bernoulli for n bits with parameter
p+. Thus (A15) is a permutation of Bernoulli, and hence all
other extremal points are too since they are its permutations.
Note that not all permutations are allowed because the above
construction has the structure of a tree. �

Lemma 1. The Ky Fan norm of the Bernoulli distribution
||B||2r+1−1 with parameter p− = (1/2 − ε) is bounded for large
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r by(
2r

cr

)
pcr

− p
(2−c)r
+ < ||B||2r+1−1 < k

(
2r

cr

)
pcr

− p
(2−c)r
+ , (A16)

where c is the solution to 22rH (c/2) = 2r [H (x) denotes binary
entropy giving c ≈ 0.22] and k = (2−c)(1−2ε)

2(1−c−2ε) ≈ 0.89(1−2ε)
2(0.39−ε) .

Proof. As seen in the text, the Ky Fan norm of the Bernoulli
distribution

||B||2r+1−1 =
m∑

i=0

(
2r

i

)
p2r−i

+ pi
− (A17)

can be reformulated using

m � min
c

{
cr :

cr∑
i=0

(
2r

i

)
� 2N − 1

}
(A18)

into finding the minimum c that satisfies the inequality above.
Note that for c < 1(

2r

cr

)
<

cr∑
i=0

(
2r

i

)
< (cr + 1)

(
2r

cr

)
, (A19)

since (2r
cr) is the largest term in the sum. For large r (and

consequently large N = 2r ), by the Stirling approximation,
we have that (2r

cr) ≈ 22rH (c/2) where H (x) denotes the binary

entropy. Therefore, from
∑cr

i=0(2r
i ) � 2N − 1(≈2r ) we obtain

the condition

22rH (c/2) = 2r (A20)

giving the value c ≈ 0.22, which is asymptotically exact
because of the inequalities in (A19).

Note that then ||B||2r+1−1 is trivially lower bounded by
(2r
cr)p

cr
− p

(2−c)r
+ as these form a subset of the probabilities

appearing in ||B||2r+1−1. To derive the upper bound, we use
the observation that for 0 � i � cr

( 2r

i − 1

)
pi−1

− p2r−i+1
+(2r

i

)
pi−p2r−i

+
<

i

2r − i

p+
p−

� α, (A21)

where the constant α = c(1+2ε)
(2−c)(1−2ε) < 1 for ε < 0.39. Itera-

tively applying the inequality, for 0 � i � cr(
2r

i

)
pi

−p2r−i
+ < αcr−i

(
2r

cr

)
pcr

− p
(2−c)r
+ . (A22)

Consequently, we obtain for the Ky Fan norm

||B||2r+1−1 <

cr∑
i=0

αcr−i

(
2r

cr

)
pcr

− p
(2−c)r
+

<

(
2r

cr

)
pcr

− p
(2−c)r
+

∞∑
i=0

αi

<
(2 − c)(1 − 2ε)

2(1 − c − 2ε)

(
2r

cr

)
pcr

− p
(2−c)r
+ , (A23)

which establishes the upper bound. �
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