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Abstract. The paper presents the essence and investigation of the efficiency of weight averaging of a pulse output signal of 
voltage-to-frequency converter. The effect of sampling errors and the interference in the input signal during voltage-to-
frequency conversion on the result of weight averaging is analyzed. A general form of the dependence of the averaging result on 
the signal value, interference level and the used weight function is derived. It is shown that from the point of view of sampling 
error reduction, the best are polynomial weight functions. In the case of high interferences whose frequencies are unstable or 
may change over a wide range, the specified level of their suppression, together with the reduction of the sampling effect, can be 
achieved using weight functions, such as trigonometric, with an appropriate level of side lobes. The level of interference 
suppression both in the narrow and wide frequency ranges, as well as the sampling error when using selected weight functions, 
have been tested by both simulation and experimentally. The obtained results show very good convergence with the values 
calculated from theoretical formulas. 
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1. Introduction

A frequency-modulated impulse signal is widely used in measuring systems due to its simple 
conversion and high immunity to the noise and interferences occurring in transmission channels. Voltage-
to-Frequency Converters (VFC) are easily available because they are produced in the form of integrated 
circuits by many electronic companies [1 - 7]. Such converters are widely used due to their low price and, 
what is very important, due to high metrological parameters [1 - 7]. 

Various aspects concerning the construction, technology and application of such converters and the 
processing of frequency-modulated signals are presented in a number of publications [8 – 19]. Often VFC 
must meet specific requirements, such as low input voltages, very low consumption, etc. In [8] a circuit for 
a bipolar differential voltage-to-frequency converter is described. The system was implemented using 
Zetex transistor array circuits. In [9] a clock-controlled voltage-to-frequency converter is presented, in 
which the output frequency is proportional to the square root of the input voltage. Accuracy of 
approximately 0.02% of full scale for the 1 mV to 10 V input voltage range was achieved using 
commercially available CMOS components. A paper [10] presents an innovative thermal flow sensor with 
a frequency output. The sensor generates a series of output pulses whose frequency depends on the rate of 
fluid flow around the self-heating thermistor. The article [11] presents the problem of using multi-channel 
measuring systems of sensors converting the input value to the frequency of the impulse signal. Algorithms 
for digital processing of pulse frequency signals in offline and online modes are presented, which allow the 
acquisition of samples in selected regularly spaced moments of time. 

In [12] the VFC that designed and implemented in 130 nm CMOS technology is proposed. The 
presented VFC can be used in complex ultra-low-voltage systems for the input range of 0 – 10 mV. In [13] 
a VFC designed using unipolar metal-oxide thin film transistor is proposes. This VFC can be used in 
flexible low-voltage sensor interfaces. Some fabricated aspects and also metrological parameters of the 
current-to-voltage-to-frequency converting current transducer, which can be effectively applied to bio-
sensing devices requiring a compact area and low power consumption are presented in [14]. In [15] the 
sensor prototype for volt-second sensing based on the concept of an analog synchronous voltage-to-
frequency converter, which can be used to built measuring technique for precise volt-second sensing that 
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combines the advantages of analog circuit technology with the performance of an FPGA, is presented and 
working principle is demonstrated by simulations and validated by measurements. 

VFC can also be used in measuring systems with non-electrical sensors. For example a system of 
high-accuracy temperature measurement based on thermistor and voltage-to-frequency converter is 
designed and analyzed in [16]. 

In [17] presented the construction and experimental results of a power supply of range 0 - 5 volts 
which is further supplied to a voltage to frequency converter circuit built on 555-analog timer. The VFC 
can be used also to build the power supply for AC loads. For example, in [18] a new VFC that converts 
both voltage and frequency to the required level of voltage and frequency in low voltage networks used as 
a universal power supply for sensitive AC loads, is presented and describes in detail. 

VFC can also be used in so called insulation amplifiers, in which input and output parts are 
electrically separated. For this purpose often the voltage-to-frequency to transmit the analog signals as 
frequency form through the digital optical fiber is used. Namely, in [19] the design of the hardware and the 
parameters of the circuit structure based on the AD650 chip are analyzed and discussed in detail and 
experimental results are given. 

In this paper, the impact of periodic interferences occurring during the integration of the input 
voltage in VFC is analyzed, along with the examination of the use of weight averaging (windowing) of the 
output impulse signal to ensure that the required resolution of frequency measurement is preserved and the 
impact of the abovementioned interferences reduced.  

When processing the frequency-pulse modulated output signal, two important features must be 
ensured: 

1) the desired limit of the maximum relative pulse counting error, and 
2) the desired reduction level of the interferences existing in the signal during the frequency-pulse 

modulation. 
If the usual measurement method is used, then the number of counted pulses is: 

( )TffloorN xx ⋅= ,                                                                (1) 

where T is the pulse counting time. The two above features are ensured by assigning an appropriate 
counting time T. Usually, if the maximum counting error is δc,max and the approximate value of the 
measured frequency is fx, then the minimum counting time should meet the condition: 

max,

1

cxf
T

δ
≥ .                                                                         (2) 

For example, if δc,max= 0.01 % then the minimum number of counted pulses is Nx = 104, and at 
fx = 10 kHz (often it is the highest precision range of VFC) the minimum counting time is T = 1 s, which is 
too much for frequency measurement. Reducing the time will immediately reduce the number of counted 
pulses and increase the counting error accordingly. 

If the measured input signal is distorted by harmonic interference: 

( ) )2cos( ϕπ += tfUtu nmn ,                                                                (3) 

where Um, fn, and φ are the amplitude, frequency, and initial phase of interference, respectively, then to 
reduce the effect of such interference, usually as minimum one or more (m) interference periods Tn are 
used to count the input pulses: 

n
n f

mTmT =⋅= .                                                                         (4) 

For example, if the interference caused by a power supply with frequency close to the nominal 50 Hz 
(60 Hz in North America), then the pulse count time is a multiple of 20 ms (16.667 ms in North America). 
This simple method is effective for a known and stable interference frequency. If the interference 
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frequency deviates from the nominal value by a relative value δf, then the suppression factor (NMRR – 
normal mode rejection ratio) of such interference is: 

( )











∆
⋅=

m

m

U
UNMRR

max

lg20 ,                                                              (5) 

where ( )mU
max

∆  is the maximal absolute value of the error caused by the interference of amplitude Um, is 

about ( )fNMRR δlg20−≈ .  
Due to the European standard EN 50160 (1999) [20], the power frequency is the mean value 

measured over 10 s with maximal deviation δf = ± 1% (49.5 - 50.5 Hz) for 99.5% of week, and - 6% ...+4% 
(47 - 52 Hz) for 100% of week. For example, if δf = 1% (0.01), then the effect of the interference on the 
result of frequency measurement is about 1% of Um (NMRR = 40 dB). That is, even if the amplitude of the 
interference is about 10% of the value of the information component Ux, then such interference may cause 
an error of about 0.1%.  

At the interference amplitude of 100% of the information component Ux, this error can be about 1 %. 
With the deviation of interference frequency amounting to about -5%, the rejection coefficient decreases to 
NMRR ≈ 25.6 dB, i.e., the error can reach large values ≈ 5.24% of Um. In power supply systems for 
aircraft and other mobile vehicles with nominal network frequency of 400 Hz, the frequency instability is 
even greater, namely the frequency tolerance is ± 5% [21], and the maximum deviation can be up to 
360 Hz (-10%). In practice, the interference can often be caused by the operation of electronic equipment, 
where the frequency of signals can vary over a wide band.  

The aim of this paper is to examine the application of weight averaging (windowing) of the output 
pulses of voltage-to-frequency converter to provide a given counting error and suppress periodical 
interference in a wide range of frequencies in the shortest possible measurement time interval. 

2. The essence of weight averaging (windowing) of a pulse frequency modulated signal 

In this Chapter, the voltage – to - frequency conversion (U/f conversion) based on integration of the 
input signal is analyzed. It is assumed that VFC is unipolar, i.e., the input signal is always positive: 
( ) 0>tu . When UR is the nominal range of VFC, then the input signal Uin with harmonic interference ( )tun  

(3) can vary in the range: 

( ) ( ) Rnminnin UtfUUtuUtu ≤++=+=< )2cos(0 ϕπ .                                          (6) 

When the input informative voltage Ux is positive, i.e., Rxx UU ≤≤0 , where URx is the range of the 
informative voltage, then, taking account of the interference amplitude Um, the constant offset voltage U0 
in the input signal must be used to satisfy condition (6). Therefore, when the information input voltage 
takes two extreme values: Ux - 0 and Ux = URx two conditions should be met: 

mUU −< 00  & RmRx UUUU ≤++ 0 .                                                       (7) 

Therefore, the value of the offset voltage U0 should comply the condition: 

mRxRm UUUUU −−≤< 0 .                                                             (8) 

When the input informative voltage Ux is bipolar, i.e., RxxRx UUU ≤≤− , then for two extreme 
values: Ux = -URx and Ux = URx the value U0 of constant offset voltage should comply the condition: 

mRxRmRx UUUUUU −−≤<+ 0 .                                                           (9) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


   

If the interference amplitude Um does not exceed, approximately, 100 % of the range of informative 
voltage URx: Rxm UU ≤<0 , then the value of U0 can be assumed as function of URx: RxUU ⋅=α0 , where, 
from (8) and (9), 1>α  for positive input voltage and 2>α  for bipolar input voltage. When the sensitivity 
of VFC is RRf UfS = , where fR is the frequency range, then, at the absence of both the information 
voltage (Ux = 0) and the interference (Um = 0), the output frequency f0 and period T0 depend on U0: 

Rxff USUSf ⋅== α00 ,  
Rxf USf

T
⋅

==
α

11

0
0 .                                             (10) 

In the frequency measurement time interval T, the number N0 of pulses at VFC output is TfN ⋅= 00 . 
However, in the presence of the informative voltage (Ux ≠ 0) and the absence of interference (Um = 0) the 
frequency fx,0, period Tx,0, and number of pulses Nx,0 are equal, respectively, to: 









+⋅=

0
00, 1

U
Uff x

x , 
x

x UU
UTT
+

=
0

0
00, , 








+⋅=

0
00, 1

U
UNN x

x .                                   (11) 

At the presence of an interference, even with the constant informative voltage Ux, the output pulses 
are not regularly distributed over time. The modulation of their positions depends on the amplitude and 
frequency of the interference. The times ti and ti-1 of successive pulses are determined from non-linear 
equations: 

( ) ( )( )∫∫
−−

⋅=+++= i

i

i

i

t

t nmx

t

t
TUdttfUUUdttu

11
000 2cos ϕπ , xNi ,..,1= .                        (12) 

The maximum influence of harmonic interference on the result of processing occurs at the initial 
phase φ=0 in relation to the middle of the time interval T. Conversely, when the initial phase (for cosine) 
will be φ=±π/2 (i.e., sine model), the effect of interference will be equal to zero. Therefore, for the next 
analysis steps, the cosine model of interference has been assumed: )2cos( tfU nm π . 

To ensure a given suppression level of the interference with frequency varying in a wide range, 
weight averaging (windowing) [22] can be used: 

( )∫− ⋅=
2

2
)(

T

Tx dttgtuM ,                                                                  (13) 

where Mx is the result of weight averaging (windowing), and ( )tg  is the so-called weight function or 
window [23], which is symmetrical around the middle (t = 0) of the time interval T. The essence of weight 
averaging of the frequency modulated signal is based on the representation of the integral of the product of 
two functions (13), by the Stieltjes integral [24], with its further approximation by a sum [24]. Using the 
Stieltjes representation of the integral (13) gives: 

( ) ( ) ( ) ( ) ( ) ( ) ( ),)(
1

2

22/

2

2

2

2 ∑∫∫∫∫
=

−−−−
∆≈==⋅=

x
wf

wfwf

wf

wf

wf

wf

N

i
ii

T

T

t

T

T

T

T

Tx tytgtdytgdudtgdttgtuM ττ    (14) 

where: 

( ) ( ) ( ) ( ) ττ dutytyty i

i

t

tiii ∫
−

=−=∆ −
1

1                                            (15) 

is the integral increment. If this increment is constant in (15): ( ) constCyty i ==∆=∆ 0 , then the result of 
averaging in (14) is:  

( ) ∑∑
==

=≈
xx N

i
i

N

i
ix gCtgCM

1
0

1
0 ,                                                                (16) 
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where Nx is the number of VFC output pulses over the duration of the weight function Twf.  
Therefore, according to (16), the result of signal weight averaging is the sum of samples gi of the 

weight function (window), taken at times ti of the appearance of pulses at VFC output. The essence of 
signal weight averaging is shown in Fig. 1. 

 
Fig. 1. The essence of averaging the frequency at VFC output. 

If the function (window) g(t) is normalized, i.e., ( ) 1
2

2
=∫−

wf

wf

T

T
dttg  and when the input voltage is U0 

and output frequency is f0 (10), then the sampling g(t) (with sampling period 0TTs =  (10)) gives 

( ) 11 00

101
0

2

2
≈=≈ ∑∑∫

==
−

N

i
i

N

i
i

T

T
g

f
Tgdttg . From this we obtain: 

0
1

0

fg
N

i
i ≈∑

=

.                                                                         (17) 

It follows from (17) that the frequency f0 measured by the weight averaging method is equal to the 
sum of samples gi of the weight function (window) g(t) taken at times ti of the appearance of pulses at VFC 
output. For an arbitrary value of the informative voltage Ux (input voltage U0+Ux) determined by the 
weight averaging method, the informative frequency is equal to: 

0
1

fgf
xN

i
iMx −≈ ∑

=

.                                                                     (18) 

The approximations in (17) and (18) depend on the used function (window) g(t), the number Nx, and 
the irregularity of pulses at VFC output.   

3. Dependence of the result of weight averaging of the pulse frequency modulated 
signal at VFC output 

3.1 Mathematical model of pulse frequency modulated signal 
As can be seen from Fig. 1 and from (12) - (18), to analyze the effectiveness of weight averaging it is 

necessary to know an explicit dependence of times ti of the appearance of successive impulses at VFC 
output on the values of the input voltage (U0+Ux) and the interference un(t). This can be presented as the 
modulation of a sequence of non-modulated pulses of the offset U0, the input informative Ux voltages 
(U0+Ux), and the interference (un(t)) within the period T0 (10). This modulation takes the form of the time 
shift ( )tτ  of the next pulse to time t [22] (Fig. 2). The time shift ( )tτ  is not constant because it depends on 
the value of variable interference un(t). The value of ( )tτ  can be determined from the relationship (Fig. 2): 

( ) ( )( )∫∫ −

−

−
++=

t

T mx

tt

T
dtftUUUdtU

2/ 02/ 0 2cos π
τ

.                                            (19) 

Solving (19) gives: 
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( )( ) ( ) ( ) ( )( )
2

2sinsin2)(
0

0 T
U

TtUTtUUtt mx −
++++

=−
ωωωτ .                                  (20) 

 

Fig. 2: Pulse shift ( )tτ  of information signal (Ux < 0) and interference un(t)  ≠  0; t0 = -T/2, Q is constant. 
 
It is known from [25] that if the shift ( )tτ  of the δ -pulse varies, then the sequence of δ-modulated 

pulses can be described by: 

( ) ( )( ) ( )[ ] ( )( )∑∑
∞

∞−

∞

−∞=








−

−
=−=

ki
M tt

T
k

dt
ttd

T
tttu τπττδδ

00

2cos1 .                              (21) 

Since:  

[ ]
0

0 )cos()(
U

tUUU
dt

ttd mx ωτ ++
=

−
,                                           (22) 

then the frequency modulated pulse sequence given by (21) takes the form: 

( ) ( ) [ ]

( ) .
2

sin2sin22cos

)cos(2)cos(

1 0000000

0

0

0
00

0
0

00

0

∑
∞

=














⋅+⋅+⋅+⋅

+
⋅×

×+++++=

k

mxmx

mxmxM

T
U
U

T
k

U
U

T
kTt

U
U

T
kt

U
UU

T
k

tUUU
UT
CtUUU

UT
Ctu

ω
ω
ππω

ω
ππ

ωωδ

        (23) 

Assuming 1000 =UTC  when the interference is absent (Um=0) in (23), the relation is obtained for the 

sequence of δ-pulses with a fixed period (11) 
x

x UU
UTT
+

⋅=
0

0
00, : 

( ) ( )∑
∞

=








⋅+⋅

+
⋅+++=

1 000

0

0
000,

2cos2
k

xx
xxM U

U
T
kTt

U
UU

T
kUUUUtu ππ

δ .                       (24) 

3.2 Weight averaging of the frequency modulated signal 

Let us use a normalized frequency Tfv ⋅= . Then (23) takes the form: 

( )

( )∑
∞

=
















++






+⋅

+
×

×













+++






++=

1 00
0

0

0

0

0
0

00

sin2sin2cos

2cos22cos

k

mxmx

mxmxM

v
v

U
U

U
Ukn

T
tv

U
U

v
kn

T
t

U
UUkn

T
tvUUU

T
tvUUUtu

π
ππππ

ππδ

.            (25) 
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The cosine in the sum component in (25) can be presented as a series using the first order Bessel 
functions ( )xJi  [24]: 

( )

( ) .sin2cos

2cos22cos

1 00
0

0

0
0

0

0

00

∑∑
∞

=
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−∞= 
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v
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T
tvUUU

T
tvUUUtu

π
πππ

ππδ

          (26) 

Weight averaging of (26) gives: 
( ) ( )

( ) ( )

( ) ( ) ,11
2
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mx

mx
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T Mx

π
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δ

     (27) 

where: 

( ) ( )∫− 





=

2

2
2cos

T

T
dt

T
tvtgvG π                                                             (28) 

is the spectral characteristic (Fourier transformation) of the weight function. 

For the Bessel function, the relation ( ) ( ) ( )xJ
x
lxJxJ lll

2
11 =+ +−  is fulfilled [24], hence the last part of 

(27) can be regrouped to the form: 

( ) ( )

∑

∑
∞

−∞=

∞

=
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1 00
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                       (29) 

The values of the Bessel function for indexes larger than the values of the arguments disappear very 
quickly: i.e., at xi >  ( ) 0→xJi  [24] (Fig. 3). For example, at x= 20 and for i >25 ( ) 01.0<xJi , and when 
x= 50, this condition is already met for i > 57. Therefore, by selecting the factor 25.1..1.1≅β , which takes 
into account the disappearance of the function ( )xJi  (the higher the value of x , the closer the value of β to 
1), we define the condition for index numbers (i) for which the values of the Bessel function are negligibly 
small: 

0

0
0 U

U
v

kNxii mββ =⋅≈> .                                                           (30) 

 
Fig. 3. Weight averaging properties of the frequency modulated signal. 
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The condition for suppressing the interference is that the interference frequency of harmonic 

components caused by the modulation does not reach the width 0v±  of the main lobe G(v) (28). Therefore, 
the parameters of the frequency modulator should be chosen in such a way that the amplitudes of harmonic 
components (determined by the level of the function ( )xJi ) do not overlap in the worst case with the 
width of the main lobe of the weight function spectral characteristic (Fig. 3). If the value of the main lobe 
of the weight function transformation G(v) is v0, then, to meet the above condition, the influence of the 
harmonic components caused by the interference modulation should be below the set level (Fig. 3): 

0
0

0
0 ν>⋅+







 + vi
U

UUkN x .                                                           (31) 

The worst case of modulation takes place when Rxx UU −=  and Rxm UU =  (the lowest frequency of 

output pulses and the highest interference impact). Then 
α
111

00

0 −=−→
+

U
U

U
UU Rxx , and 

α
1

00

=→
U
U

U
U Rxm . 

When including (29), the condition (31) for negative index values, can be given as: 

0
0

0
11 vkNkN >−





 −

α
β

α
 , or    

0

011
kN
v

>
+

−
α
β .                                           (32) 

With positive k ≥ 1 and N0>>1 in (31), we obtain the required value of α, which determines the value 
of the constant offset voltage U0: 

ββα +≈
−

+
>= 1

1

1

0

0

0

kN
vU

U
Rx

.                                                        (33) 

If ≅β 1.25, then for extreme values: Rxx UU ≤  and Rxm UU = , correct operation of the VFC (with 
the possibility of further interference suppression with the weight averaging method) requires meeting the 
condition >≈α 2.25 for the bipolar input signal. For the unipolar positive input voltage ( 0≥xU ), this 
condition is slightly different: 

≈≈
−

> ββα

0

01
kN
v 1.25.                                                             (34) 

In general, when the interference is integrated, its amplitude decreases in proportion to the frequency 
f: ( ) ( )πνπ 22 mm UfTU = . When 0vv ≥  and ν0=1 (uniform window) the interference influence decreases at 
least 2π times. With weight averaging, ν0≥ 2 is usually applied, therefore the influence of the interference 
decreases at least 4π times. Therefore, the conditions (33) and (34) may be slightly less restrictive. 
However, for an arbitrary initial phase of the interference with the minimum signal value Ux,min and the 
maximum amplitude of the interference Um,max, the inequalities 0max,min,0 ≥−+ mx UUU  or Ux = -URx, 
Um,max = URx should always be met, which means meeting the condition RxUU 20 ≥  or 2≥α . 

4. Effectiveness analysis of the frequency modulated signal weight averaging  

4.1 The impact of the weight function (window) shape on the maximum pulse count error  
The use of weight averaging provides two important advantages: it reduces the impact of the weight 

function sampling effect (i.e., pulse counting caused quantization of the result) and ensures the desirable 
level of suppressing interfering components in the given frequency band. These two important features of 
weight averaging depend on the shape and durability of the weight function. Therefore, there are two main 
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criteria for selecting the weight function (window). The 1st one refer to ensuring that the used weight 
function can reduce the counting effect to a given level, the 2nd concerns the ensuring that the used weight 
function can suppress of the interference components in the given frequency band to a given level. 

As a result of sampling the weight function with period Ts=Tx, the area under the weight function is 
approximated, even if the integer numbers Nx of the sampling period Ts=Tx fall exactly in the durability of 
the weight function T, i.e., TTN xx = . It is known [24] that when using the trapezoidal method for 
integration, the maximum error of function area determination is given as: 

( ) ( )
max3

3

max

3

,1 1212
tg

N
TtgT

x

x
s ′′=′′≤∆ ,                                               (35) 

where ( )tg ′′  is the second order derivative of the weight function. 
The second component, which is also related to sampling, is caused by the lack of sampling 

synchronization with the durability of the weight function, i.e., TTN xx ≠ . If the beginning of the weight 
function formation is synchronized with the next pulse from the modulator output, then the maximum 
difference xxTNT −  must not exceed the value xx NTT ≈ , i.e. 

( ) xxx TTNT <− max .                                                        (36) 

Then the maximum error in determining the surface under the weight function is: 

( )∫ −
<∆

2

2,2

T

NTTs
x

dttg .                                                          (37) 

When Nx >> 1, the application of the trapezoidal method to (37) gives: 
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.                             (38) 

Since the surface under the normalized weighting function (window) is equal to 1 ( ( ) 1
2

2
== ∫−

T

Tg tgs ), 

the error values given by (35) and (38), and also the relative errors (in relation to the surface under the 
weight function), are: 

s
g

s
ss

g

s
s ss ,2

,2
,2,1

,1
,1 , ∆=

∆
=∆=

∆
= δδ .                                             (39) 

The absolute error values (in hertz) are equal to: 

T
N
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N
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⋅
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⋅
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δ

δ
δ

δ .                                      (40) 

On the other hand, the error values normalized to the nominal range RfR USf =  of the informative 
frequency component are equal to:   

R

xs

R

f
f

R
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R

f
f N

N
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N
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⋅
=
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=

⋅
=

∆
= ,2,2

,2
,1,1

,1 ,
δ

δ
δ

δ .                                      (41) 

where TfN RR ⋅=  is the nominal number of pulses (range) corresponding to the nominal informative 
range fR of the frequency component. 

Uniform (rectangular) weight function (window). If there is the requirement to reduce only the 
sampling effect, the simplest conventional counting, i.e., the uniform (rectangular) weight function 
(window) is used: 
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 ≤

=
otherwise.,0

,2/,11)(
Ttif

T
tgU                                                              (42) 

For this function ( ) 0=′′ tg , and therefore the error component (34) is equal to zero: 0,,1 =∆ Us , while 
the second component in (39) takes the well-known value: 

x
Us N

1
,,2 ≈δ .                                                                          (43) 

According to (40), it follows from (43) that the relative and absolute errors caused by sampling are: 

x
Uf Nn

%100
,,2 ≈δ ,  

TU
1

,2 ≈∆ , Hz.                                                             (44) 

Triangular weight function (window). The triangular weight function (window) is described by: 



 ≤−

=
otherwise.,0

,2,212)(
TtTt

T
tgT                                                                (45) 

For this function ( ) 0=′′ tg , and therefore the error component (35) is also equal to zero: 0,,1 =∆ Ts . 
For the triangular window the second component in (38) is: 

2,,2
2

x
Ts N
=δ .                                                                          (46) 

According to (40), it follows from (46) that the relative and absolute errors caused by sampling are: 

2,,2
%200

x
Tf Nn
≈δ .  

TNx
T ⋅
≈∆

2
,2 , Hz.                                                (47) 

For example, if xN =100, then the maximum relative counting error for conventional measurement 
(i.e., using the uniform window) is 1% and for the triangular function this error is only 0.02%. If 

1000=xN , the maximum relative counting error for conventional frequency measurement is 0.1%, and for 
the triangular function it is essentially lover: 0.0002%. As we can see, the effectiveness of the triangular 
function is very significant.  

4.2. Choosing the weight function that provides the desired level of interference suppression  

Unfortunately, due to the presence of variable-frequency interference in the VFC input, the 
distribution of time positions of successive pulses after modulation is significantly irregular and therefore 
the use of a triangular or parabolic function will not provide the desired level of interference suppression 
when its frequency is not stable and may change in a wide range. For this purpose, it is necessary to use 
other functions (windows) that provide the most important averaging parameters: the specified level of 
suppression (NMRR) of the harmonic components, and the smallest possible width of the main lobe (v0) of 
the spectral characteristic that determines the time interval of averaging at the specified minimum 
frequency (flow) of interference: lowav fvTT 0== . In addition, these functions should provide the specified 
minimum sampling error and should be easily calculated online when the next pulse arrives. 

From the calculation point of view, the simplest weight functions are trigonometric functions, e.g., 
those proposed by Hamming, Blackman, Harris, and others [23]. It is worth noting here that the direct use 
of the optimal (in terms of the width of the main lobe v0) Dolph - Chebyshev function (window) [23] 
causes a problem, related to the fact that this function is discrete, i.e., not continuous, and its use requires 
interpolation, which leads to additional inaccuracies.. The parametric Kaiser function (window) [23], 
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whose parameters can be changed depending on the averaging parameters specified, requires calculating 
the modified Bessel function when the new pulse arrives, which results in additional calculation efforts. 

The application of several trigonometric weight functions will be analyzed below from the point of 
view of effectiveness of frequency modulated pulse weight averaging. In these analyses, normalized 
weight functions will be used for which the surface area is equal to 1. 

The normalized Hamming weight function (window) [23], which is one of the simplest weight 
functions, is defined as: 

( )






≤≤





+=

.othewise,0

,
2
10,2cos

54.0
46.011

T
t

T
t

T
tgH

π                                  (48) 

This function provides harmonic suppression (NMRR_H) of over 42 dB. In many cases, this 
suppression may be sufficient. The width of the main spectral lobe is v0=2, i.e., for suppression of 
harmonic components starting from the frequency flow, the time interval equal to a minimum of 2 
interference periods Tlow is needed: lowlowH TfTT 22 === . 

For this function, the relative sampling error is reduced linearly to Nx: ( 12 <<xNπ ): 

( )
xx

x

x
Hs NN

N
N

15.0
2
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,,2 ≈







⋅−=

π
πδ .                                       (49) 

According to (40), it follows from (49) that the relative and absolute errors caused by sampling are, 
respectively: 

x
Hf Nn

%15
,,2 ≈δ .  

TH
15.0

,2 ≈∆ , Hz.                                                    (50) 

Considering the error values (49) caused by the sampling effect, the Hamming function is not 
sufficient to realize weight averaging of VFC output frequency pulses. 

The normalized Blackman weight function (window) [23] is given as:  
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ππ                    (51) 

This function provides harmonic suppression (NMRR_B) of over 70 dB. The width of the main lobe 
is v0=3, i.e., for the suppression of harmonic components in the band starting from the lower frequency flow, 
a minimum of 3 periods of interference is needed: lowB fTT 3== . For this function, the relative and 
absolute errors caused by sampling are about 13 times smaller compared to the value for the Hamming 
function, and about 90 times smaller compared to conventional pulse counting. The relative sampling error 
decreases with increasing Nx: 

x
Bs N

0116.0
,,2 ≈δ .                                                                 (52) 

According to (41) and (52), when the Blackman function is used, the relative and absolute errors 
caused by sampling are equal to: 

,%16.1
,,2

x
Bf Nn
≈δ .    

TBf n

0116.0
,,2 ≈∆ , Hz.                                         (53) 

The normalized Blackman-Harris weight function (window) [22]. There are several variants of 
this function. One of them, the four-component function is given by the normalized relationship: 
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( )
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This function provides harmonic suppression (NMRR_BH) of over 90 dB. The width of the main 
lobe is v0=4, i.e., for suppression of harmonic components in the band starting from the lower frequency 
flow, a minimum of 4 periods of interference is needed: lowBH fTT 4== . 

When using this function, the relative sampling error is significantly smaller than those for the 
previous functions, namely, at Nx>200 the asymptotic error value is: 

x
BHs N

00017.0
,,2 ≈δ .                                                                  (55) 

According to (41) and (55), when the Blackman-Harris function is used, the relative and absolute 
errors caused by sampling are equal to: 

,%017.0
,,2

x
BHf Nn

≈δ .    
TBHfn

00017.0
,,2 ≈∆ , Hz.                                     (56) 

We can see that the Blackman-Harris function provides high (90 dB) interference suppression and 
very small sampling error (56). However, the averaging durability is relatively high - 4 harmonic periods 
with the lowest frequency are needed. 

Fig. 4 shows the dependence of relative (a) and absolute (b) errors on the number Nx of pulses for 
different weight functions. The averaging time is T=60 ms, the same as for the Blackman function. 

 
Fig 4. Normalized (to the range fR of the frequency information component) errors for the number Nx of pulses: a) 

relative, b) absolute. Weight functions: 1 - rectangular, 2 - triangular, 3 - Hamming, 4 - Blackman, 5 - Blackman-Harris. 

As shown in Fig. 4, with NR > 100 the specified error level of 0.01% associated with sampling of the 
weight function can be achieved using the Blackman and Blackman-Harris weight functions as well as the 
triangular function. However, the triangular function does not provide a sufficient level of suppression of 
harmonic interference in the wide frequency range - the level of the spectral side lobe is about 27 dB.   

When using the Blackman weight function, for which the weighting time equals 3 harmonic periods 
with the lowest frequency ( lowB fT 3= ), relatively good interference suppression is provided 
(NMRR_B=70 dB). When Nx ≥ 1000 at the minimum value of the information signal (Ux = -URx), the 
sampling error (53) is ≤ 0.00116%. Even when Nx ≥ 100, the sampling error (53) is ≤ 0.0116%. Therefore, 
using the Blackman function is recommended when measuring the frequency with weight averaging. 

4.3 Results of weight averaging tests  

4.3.1. Study of the error caused by VFC pulse sampling of the weight function (window) 

The parameters of the performed study were:  
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VFC: Un=10 V, fn =10 kHz, Sf=1 kHz/V. Averaging functions (windows): uniform (U), triangular 
(T), Blackman (B), Blackman-Harris (BH). Averaging times: 1) TU = 20 ms, TT = 40 ms, TB = 60 ms, 
TBH = 80 ms; 2) TU = TT = TB = TBH = Tav = 80 ms. 

Input unipolar voltages: Uin1= 4.551167 V, Uin2=4 .548833 V; output frequencies 
fx1= 4.551167 kHz, fx2= 4.548833 kHz; periods: Tx1= 0.19724 ms, Tx2= 0.19837 ms. For these values, the 
products Tav∙fx1= 364.093, Tav∙fx2= 363.907 are close to each other, but the total number of periods in the 
weight averaging duration differ by 1 (Nx1= 364, Nx2= 363), which results in averaging error values close 
to the maximal values.  

In the simulation, each start of weight averaging is shifted by dT = 1 μs, giving Tx/dT = 220 times in 
total. The relative errors of weight averaging of frequency pulses obtained for the input voltages 
Uin1= 4.551167 V and Uin2= 4.548833 V are presented in Table 1. This Table also includes the theoretical 
values of these errors calculated from (44), (47), (53) and (56). Comparing the maximum weight averaging 
errors obtained from the simulations with those calculated theoretically, we can see that they are very close 
to each other. 

Table 1. Maximal relative errors (δUx, %) of weight averaging of frequency pulses obtained from simulation and theory. 
Window Uin =4.548833 V Uin =4.551167 V 

δUx, simulation δUx, theoretical δUx, simulation δUx, theoretical 
Uniform (20ms) 1.074 % 1.10% 1.073% 1.10 % 
Triangular (40ms) 0.268∙10-3% 6.04∙10-3% 0.262∙10-3% 6.04∙10-3% 
Blackman (60ms) 3.95∙10-3% 4.25∙10-3% 3.94∙10-3% 4.25∙10-3% 
Blackman-Harris (80ms) 4.16∙10-5% 4.07∙10-5% 4.17∙10-5% 4.67∙10-5% 
Uniform (80ms) 0.249 % 0.275% 0.249 % 0.275% 
Triangular (80ms) 1.31∙10-4% 1.51∙10-3% 1.28∙10-4% 1.51∙10-3% 
Blackman (80ms) 2.88∙10-3% 3.19∙10-3% 2.88∙10-3% 3.19∙10-3% 

 
If, during the averaging, the total number of signal periods at VFC output changes very little from the 

duration of the weight function (window), then the maximum error will be very close to the maximum 
theoretical value for each window. 

4.3.2. Study of periodic interference suppression by weight averaging  
When studying the interference suppression, there are two basic error components to consider: the 

first is related to direct influence of the interference, and the second to the influence of the window 
sampling (weight function) analyzed above. Therefore, for each window, the normal mode rejection ratio 
(NMRR) depends not only on the frequency and initial phase of the interference but also on the sampling 
effect of the window.  

The parameters of the study were: VFC: Un=10 V, fn = 10 kHz, Sf = 1 kHz/V. Input voltage 
Uin1= 4.551167 V, the same as above. Interference: amplitude Um= 2.5 V, nominal frequency fi.n= 50 Hz, 
nominal period Tn=1/fi.n= 20 ms; frequencies: 48 Hz, 49 Hz, 49.5 Hz, 50 Hz, 50.5 Hz, 51 Hz, 52 Hz; phase 
shift: from 0 to 360o with 2o step. Averaging functions (windows): uniform (rectangular) (U), triangular 
(T), Blackman (B). Averaging time: TU = Tn= 20 ms. TT = 2Tn = 40 ms, TB = 3Tn= 60 ms. The theoretical 
minimal values of NMRR in the interference frequency range from 48 to 52 Hz which were obtained using 
the uniform, triangular and Blackman weight functions (windows) are given in Table 2. From this Table 
we can find that the minimal theoretical values of NMRR are near the frequency limits 48 and 52 Hz. 

In the presence of interference, the conversion of voltage into pulse frequency by (12) with further 
application of weight averaging causes nonlinear effects, which means that the NMRR does not depend 
solely on the value of the interference amplitude. Theoretically, at the interference frequency 50 Hz, the 
value of the NMRR goes to infinity (Tab. 2). However, due to the influence of the sampling effect of the 
weight function, as shown above in (44), (47), (53), and (56), the sampling errors are not equal to 0. 
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The variability of the frequency error 
xf,2∆ , converted into voltage: ffU

S
x

/,2∆=∆  (V), and the 
NMRR has been analyzed for three interference amplitudes: 2.5 V, 0.25 V, and 0.025 V, in the frequency 
interference range from 48 Hz to 52 Hz. The results are given in Table 3.  

 
Table 2. Theoretical values of NMRR in the frequency range 48 Hz – 52 Hz. 

f, 
Hz 

NMRR, dB 
Uniform window Triangular 

window 
Blackman window 

48 27.6  55.3 59.9 
49 33.8 67.6 68.3 
49.5 39.9 79.8 75.5 
50 ∞ ∞ ∞ 
50.5 40.1 80.2 78.2 
51 34.2 68.3 73.7 
52 28.3 56.6 70.9 

 
Table 3. Frequency weight averaging errors converted into voltage |Δ|U (mV) and NMRR values (dB) at interference 

amplitudes 2.5 V, 0.25 V, and 0.025 V. 

f, 
Hz 

Window Um=2.5 V Um=0.25 V Um=0.025 V 
|Δ|U, mV NMRR, dB |Δ|U, mV NMRR, dB ||Δ|U, mV NMRR, dB 

48 Uniform 101 27.9. 51.2 13.8 48.8 -5.8 
Triangular 4.33 55.2 0.433 55.2 0.043 55.3 
Blackman 2.51 60.0 0.341 57.3 0.193 42.2 

49 Uniform 51.2 33.8 51.2 13.8 48.8 -5.8 
Triangular 1.04 67.6 0.12 66.4 0.017 63.5 
Blackman 0.97 68.2 0.244 60.2 0.183 42.7 

49.5 Uniform 48.8 34.2 48.8 14.2 48.8 -5.8 
Triangular 0.329 77.6 0.034 77.3 0.0093 68.5 
Blackman 0.498 74.0 0.219 61,2 0.181 42.8 

50 Uniform 48.8 34.2 48.8 14.2 48.8 -5.8 
Triangular 0.0091 108.7 0.012 86.2 0.012 66.3 
Blackman 0.179 82.9 0.179 62,8 0.179 42.9 

50.5 Uniform 51.2 33.8 48.8 14.2 48.8 -5.8 
Triangular 0.328 77.6 0.025 80.0 0.0097 68.2 
Blackman 0.393 76.1 0.180 62,8 0.180 42.8 

51 Uniform 51.2 33.8 48.8 14.2 48.8 -5.8 
Triangular 0.963 68.3 0.099 68.9 0.015 64.2 
Blackman 0.557 73.0 0.180 62.8 0.180 42.8 

52 Uniform 101 27.8 48.8 14.2 48.8 -5.8 
Triangular 3.70 56.6 0.384 56.7 0.042 55.4 
Blackman 0.798 69.9 0.183 62.7 0.183 42.7 

 
At the interference frequency of 50 Hz, the error is caused mainly by the sampling effect and is 

practically independent of the interference amplitude (Tab. 3). For the parameter values: 
Uin1 = 4.551167 V, Sf = 1 kHz/V, TU = 20 ms, TT = 40 ms, TB = 60 ms, and in the absence of 
interference, the minimal values of the error |Δ|min (mV), determined from (44), (47) and (53) and 
converted into voltage, are equal to: ΔU,U_max≈ 50 mV (uniform window), ΔU,T,max ≈ 0.012 mV (triangular 
window) and ΔU,B,max ≈ 0.18 mV (Blackman window). Therefore, at the interference frequency of 50 Hz, 
the errors of the averaged pulse values at VFC output for different interference amplitudes should 
practically be equal to these values Since the amplitude of the interference decreases sequentially by 10 
times, therefore, the NMRR decreases by about 20 dB. Namely, at the amplitude of 0.025 V, the error 
caused by uniform window sampling is almost twice the amplitude, so the NMRR is negative and equal to 
about – 6 dB in this case. When the interference frequency deviates from 50 Hz, the effect of interference 
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amplitude is magnified compared to that of sampling, especially when using triangular and Blackman 
windows. 

4.3.3. Study of NMRR in wide frequency range 
Since the triangular window does not provide satisfactory interference suppression over a wide 

frequency band (Fig. 5), therefore, only interference suppression using the Blackman window was further 
analyzed.  

 
Fig. 5. Theoretical minimal NMRR values in wide frequency band 40 – 160 Hz (b), using Blackman (NMRR_B(f)) and 

triangular (NMRR_T(f)) windows.  
 
The interference amplitude assumed in the simulation was Um = 2.5 V. The following frequencies 

were selected from Fig. 6: 52.5 Hz, 61 Hz, 74.2 Hz, 110 Hz, 125 Hz, 141.7 Hz, 158.3 Hz, (with 
corresponding normalized frequencies v = f∙Tn= 3.15, 3.66, 4.45, 6.6, 7.5, 8.5, 9.5). For these frequencies, 
the NMRR_B(f) of the Blackman windows had the (minimal) levels of: 70.9 dB, 71.3 dB, 72.0 dB, 
77.6 dB, 74.1 dB, 72.9 dB, 72.5 dB, respectively. When the normalized frequency was v > 10, then 
NMRR_B(f) tended to increase above 72 dB. The averaging time was: TU = Tn = 20 ms, 
TT = 2Tn = 40 ms, TB = 3Tn = 60 ms. 

The results of NMRR_BS(f) obtained from the simulations are compared in Fig. 6 with the 
corresponding theoretical values NMRR_BT(f).  

 
Fig. 6. Comparing NMRR_BS(f) values obtained from simulation with theoretical values NMRR_BT(f) 
 
From Fig. 6 we can see that using the Blackman window for averaging pulses at VFC output when 

the input voltage is distorted by interference of any frequency above the minimum value niff ,min = , the 
obtained suppression (NMRR_B) of the influence of these interferences is close to the theoretical level. 

4.3.4. Study of the influence of random deviations of times of appearance of VFC output pulses  

An additional factor influencing the result of weight averaging is random deviations of the times of 
appearance of pulses at the VFC output. These deviations are caused by the external noise in the input 
signal and the internal noise of VFC chain elements. Since this effect occurs both in the presence and 
absence of regular interference, a decision was made to investigate it for the input signal without regular 
interference.  
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It was assumed that random deviations it∆  of adjacent impulses are independent of each other, and 
have zero expected value and standard deviation tσ . Then, as a result of the appearance of deviation it∆  of 
i-pulse at time ti, the value of the weight function is changed by: 

( ) iii ttgg ∆⋅′≈∆ ,                                                                      (57) 

where ( )itg′  is the weight function derivative.  
Assuming the independence between the random deviations, the sum of the values of the weight 

function (5) will have a random component with variance:  

( )( )∑
=

′≈
xN

i
itg tg

1

222 σσ .                                                                  (58) 

From (58) we can see that the variance 2
gσ  depends on the sum of squares of the derivative weight 

function values. It can be easily shown that for the trigonometric weight functions considered above, this 
sum is proportional to the number of pulses: 

( )( ) x
g

N

i
i N

T
C

tg
x

⋅≅′ ′

=
∑ 4

1

2 .                                                                (59) 

where gC ′  is the constant depending on the coefficients of the used weight function. In particular, for the 
Blackman and Blackman-Harris functions, this constant is:  

 

( ) ( )
( ) ( ) .00.4903256.0939381.0436109.1
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2
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C
.                    (60) 

Therefore, standard uncertainty caused by random deviations of the output pulses is: 

( ) xg
t NC

T
fu

t
⋅= ′2

σ
σ .                                                                (61) 

In the absence of noise and regular interference, the number of output pulses in the weight function is 
xx fTN ⋅= , i.e. TNf xx = . Hence, relative standard uncertainty caused by this effect is: 

( ) %100⋅= ′

x

gt
rel N

C
T

fu
t

σ
σ .                                                            (62) 

For example, when the Blackman weight function is used (T = 60 ms, BgC ′ =30.06) for the VFC: 
Un=10 V, fn =10 kHz, Sf=1 kHz/V, and for the input voltage V52/ =≈ nx UU and output frequency 

≈xf 5 kHz, i.e., 300=⋅= TfN xx , assuming that the standard deviation tσ  is about 1 μs (0.5 % of period 
To), the relative standard uncertainty from (62) is: 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


   

( ) %0005.0%100
300

06.30
s06.0
s101 6

≈⋅
⋅

=
−

t
furel σ . 

Comparing this value with that obtained from (53) %004.0/%16.1,,2 ≈≈ xBs Nδ , we can see that the 
uncertainty component caused by random deviation of pulses is significantly smaller than the error 
obtained from (53): 0.004% at Nx=300. Even when the standard deviation tσ  is of about 2% of period Tx 
( tσ =4 μs), the relative standard uncertainty (62) ( ) %002.0≈

t
furel σ  is still less than the error from (53). 

In other words, if the standard deviation of random variations in pulse timing is not more than a few 
percent of the pulse period, then its effect on the averaging result is relatively small.  

5. Experiments 
5.1. Test stand 
In order to practically verify the results of theoretical analysis and simulations, a suitable test stand 

was built and a series of experiments were carried out to process and analyze the output signal of the actual 
voltage to frequency converter (VFC). Fig. 7 shows a block diagram of the measurement system used. The 
implemented VFC converter was based on LM331 IC, in accordance with the application circuit 
recommended by the manufacturer [26]. The LM331 converter converts negative voltage in the range of –
 10 V ... 0 V to the frequency: 

 ( ) ( )
( ) ( )




<≤−⋅
≥

=
.0V10,
,0,0

tutuS
tu

tf
xxf

x
x  , (63) 

where: fx(t) is the converter output frequency, ux(t) is the test input voltage of the converter, and Sf  is the 
sensitivity of the converter. Note that the sensitivity of the LM331 converter has a negative value: Sf = –
1 kHz / V.  

 
Fig. 7. Block diagram of the measuring circuit with weight averaging of pulse frequency signal. 

 
The source of the test signal ux(t) was a programmable function generator Agilent 33220A [27]. The 

test signal was the sum of the DC component and the AC component:  

 ( ) )2cos( nnmDCx tfUUtu ϕπ ++=  , (64) 

where: Um is the amplitude of the test signal AC component, fn is the frequency of the test signal, and φn is 
the initial phase of the test signal. Note that the sum of the DC component and the AC component must 
always be negative. The measurements of the output pulse signal of the VFC converter were carried out 
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using a pulse counter and the on-the-fly reading method. For this purpose, the NI USB-6341 measurement 
board [28] and a program written in LabVIEW environment were applied.  

The system works as follows [29]. The function generator, programmed according to relation (64), 
generates a signal that is the sum of the component UDC and harmonic distortion (3). The signal from the 
generator is passed to the input of the VFC converter, the output of which is a modulated pulse frequency 
signal fx(t) (63). The VFC output signal is then passed to the GATE input of the counter. The counter is 
configured to operate in the "Finite Buffered Edge Counting" mode [28]. In this mode, the 32-bit counter 
counts continuously the signal from the reference generator with frequency fref = 100 MHz [29].  

The current contents of the counter generate a linear time scale with the resolution equal to the period 
of the reference signal Tref = 1 / fref = 10 ns. Each time when applied to the counter’s input GATE, the VFC 
output pulse snaps the current counter state into the FIFO register. The large capacity of the counter and 
the appropriately chosen reference frequency ensure that the counter overflow during the measurement. An 
overflow of the counter would occur only after 43 s of continuous operation. The program reads Nx counter 
states stored in the FIFO register and calculates the positions t1, t2, ..., tNx of the FVC output signal pulses, 
with the time distance between the first and last pulse having to be at least as large as the duration of the 
averaging window T, i.e., tNx - t1 >= T (Fig. 1).  

Then the values of the weight function g1, g2, ..., gNx for times t1, t2, ..., tNx and the result of 
measurement of the VFC converter output frequency constant component f0 are calculated (17). The 
measurement is repeated J times (J = 100) and the NMRR (5) is calculated, with the maximal value of 
error module ( )mU

max
∆  caused by interference of amplitude Um calculated from the standard deviation of 

σf0:  

 ( )∑
=

−
−

=σ
J

j
jf ff

J 1

2
000 1

1 , (65) 

where 0f  is the average value of the J-series of the performed measurements, and f0j is the j-th 
measurement result. Finally, the NMRR suppression coefficient of the signal data chain processed with 
weight averaging is calculated from the relation:  

 









=

02
lg20

f

mf US
NMRR

σ
, (66) 

where σf0 is the standard deviation (65), UAC is the amplitude of the test signal AC component, and 2  is 
the peak factor for the sinusoidal waveform.  

Fig. 8 shows a complete block diagram of the test stand setup. In addition to the already discussed 
VFC converter, function generator, and counter, a Tektronix TDS210 digital oscilloscope and a PC2 were 
used to control the output voltage from the function generator and the pulsed output signal from the FVC. 
The function generator and the measuring card NI USB-6341 with counter were controlled via USB 
interface by the software realized in the LabVIEW environment installed on PC1. 

 
Fig. 8. Block diagram of the test stand for investigating weight averaging of pulse frequency modulated signal. 
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The actual appearance of the test stand is shown in Fig. 9. The use of two independently operating 
computers allows convenient control of correct operation of the apparatus and verification of the 
measurement algorithm.  

 
Fig. 9. Real view of the test stand for investigating weight averaging of pulse frequency modulated signal: 1 - function generator 

Agilent 33220A, 2 - digital oscilloscope Tektronix TDS210, 3 - voltage-to-frequency converter based on LM331 integrated 
circuit, 4 - Data Acquisition Card NI USB-6341, 5 - PC with LabVIEW software, 6 - PC for digital oscilloscope control. 

 
Fig. 10 shows exemplary signals recorded during the tests.  
 

 
Fig. 10. Exemplary waveforms recorded during the test: top - output signal from functional generator Agilent 33220A, bottom - 

pulse output signal from voltage-to-frequency converter LM331. 
 

In the first channel CH1, the DC component of the test signal UDC= –5 V, the peak-to-peak value of 
the AC component 6 V = 2Um (that is, the amplitude of the AC component Um= 3 V), and the frequency of 
the test signal fn = 280 Hz are measured, while in the CH2 channel, the output waveform from the VFC 
converter is observed. It can be noted that the oscilloscope has measured the value of the average 
frequency f0 = 3.521 kHz, while the correct value determined by the weight averaging algorithm was 
5 kHz. 

5.2 Software control of measurements and data processing  
Fig. 11 shows the block diagram of the algorithm that controls the operation of the test bench when 

weight averaging the frequency signal. The software was prepared in LabVIEW environment.  
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Fig. 11. Block diagram of the measuring algorithm for investigating weight averaging of pulse frequency modulated signal. 

 
The sequence of tasks performed by the measurement algorithm is as follows:  
1. Entering the input data into the algorithm:  
(a) amplitude Um of AC interference, and UDC component of the signal, 
b) initial frequency fn min of the interference, tuning step ∆fn of the function generator, and number of 

points of the suppression characteristic, 
(c) sensitivity Sf of the VFC converter,  
(d) type and duration T of the weight function g(t),  
(e) number J of repeated measurements for each value of interference frequency fn; 
2. For a fixed value of interference frequency fn, making a counter measurement of times t1, t2, ... ti, 

..., tNx, for successive pulses of the VFC output signal; 
3. Calculating the values gi=g(ti) of the weight function (Fig. 1) and summing them (17) to obtain the 

value of the weight averaged VFC output frequency f0;  
4. Repeating J times the points 2, 3 and calculating NMRR (66);  
5. Increasing the interference frequency fn by step ∆fn and repeating steps 2, 3, and 4 until the 

maximum value fn max is reached;  
5. Repeating steps 2, 3, 4,… for each successive value of interference frequency fn;  
6. Plotting the characteristics of NMRR as a function of frequency fn, saving the results to a file, and 

comparing with the theoretical characteristics. 
It should be noted that the frequency signal has a peculiar property which manifests itself in the fact 

that for the same periodically repeated values of the VFC converter input signal, different positions of 
pulses in successive periods of interference are obtained, i.e., a different sequence of times ti at which the 
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VFC output pulses appear. Therefore, for each successive value of the disturbance frequency fn, a series of 
measurements must be made and the results averaged to determine the NMRR.  

The most important part of the presented algorithm is weight averaging of the frequency signal. 
Fig. 12 shows an exemplary diagram of the averaging algorithm with the Blackman-Harris weight 
function. The algorithm calculates the values gi=g(ti) of the weight function according to relation (54) 
based on the values of the measured times ti contained in the Pulse time [s] matrix. The weight averaged 
measurement result is calculated by summing up all gi coefficients. Fig. 13 shows the control panel of the 
virtual instrument realized in the LabVIEW environment for the presented research. 

 
Fig. 12. Exemplary LabVIEW diagram for Blackman-Harris weight averaging (54). 

 

 
Fig. 13. Panel of the virtual instrument for investigating of weight averaging of pulse modulated frequency.  

 
5.3 Results of measurement 

Three series of measurements were performed: (1) over a wide frequency range from 2 Hz to 
1000 Hz with step of 2 Hz, at constant amplitude Um and constant DC component UDC, (2) over a narrow 
frequency range from 48 Hz to 52 Hz with step of 0.02 Hz, at constant Um and UDC, and (3) for different 
values of Um and UDC falling within the VFC processing range. A selection of most representative 
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measurement results is discussed in the paper, while all realized measurements are available in the 
repository [26]. 

5.3.1. Measurement results over wide frequency range from 2 Hz to 1000 Hz  

In the wide frequency range from 2 Hz to 1000 Hz, four series of measurements were performed 
with step of 2 Hz (500 points), at constant amplitude Um = 2.5 V and constant DC component UDC = –5 V. 
The amplitude and DC component were selected so that the test signal was between 25% and 75% of the 
full measurement range of the VFC converter. Each series of measurement was carried out for a different 
averaging window with appropriately selected averaging time: uniform (rectangular) window, time 20 ms, 
triangular window, time 40 ms, Blackman window, time 60 ms, and Blackman-Harris window, time 
80 ms. Each measurement point on the graph was calculated by averaging 100 measurements, which took 
about 15 seconds. Calculating one complete series of measurements of 500 points took about 2 hours. The 
resulting NMRR values are shown in Fig. 14.  

a) b) 

 
c) d) 

 
Fig. 14. NMRR as function of interference frequency - measurements in the range of 2 Hz-1000 Hz, step 2 Hz (500 points), 
amplitude Um = 2.5 V, DC component UDC = –5 V: a) uniform (rectangular) window, time 20 ms, b) triangular window, time 40 
ms, c) Blackman window, time 60 ms, d) Blackman-Harris window, time 80 ms. 

 
When analyzing the results presented in Fig. 14, good agreement with the results of the theoretical 

analysis and the earlier presented simulations is observed. However, some differences are also visible. In 
Fig. 14a for the uniform (rectangular) window, large suppression can be observed for the frequency close 
to 50 Hz and its integer multiples. This effect can be explained by the large value of the quantization error 
for the uniform (rectangular) window, which makes it impossible to observe small frequency changes, an 
effect similar to the large value of NMRR. 

5.3.2. Measurements in short frequency range near 50 Hz  

In the short frequency range from 48 Hz to 52 Hz, four series of measurements were made with step 
of 0.02 Hz (201 points). The other parameters of the measurements were assumed the same as in the 
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previous part: amplitude Um = 2.5 V, and DC component UDC = –5 V. Each series of measurements was 
carried out for a different averaging window with appropriately selected averaging time: uniform 
(rectangular) window, time 20 ms, triangular window, time 40 ms, Blackman window, time 60 ms, and 
Blackman-Harris window, time 80 ms. Each measurement point on the graph was calculated by averaging 
100 measurements, which took about 15 seconds. Calculating one complete series of measurements of 200 
points took about 50 minutes. The obtained NMRR values are shown in Fig. 15.  

When analyzing the results presented in Fig. 15, good consistency with the results of the theoretical 
analysis and the earlier presented simulations is also observed. However, some differences are also visible 
near the frequency of 50 Hz. In Fig. 15a for the uniform (rectangular) window, one can see large NMRR 
values (off-chart, about 300 dB) in the ±0.1 Hz range around 50 Hz. Fig. 15c for the Blackman window in 
the ±0.1 Hz range around 50 Hz shows a pronounced flattening. A similar effect, but to a lesser extent, is 
noticed for the triangular and Blackman-Harris windows. 

a) b) 

 
c) d) 

 
Fig. 15. NMRR as function of interference frequency - measurements in the range of 48 Hz-52 Hz, step 0.02 Hz (201 points), 
amplitude Um = 2.5 V, DC component UDC = –5 V: (a) uniform (rectangular) window, time 20 ms, (b) triangular window, time 
40 ms, (c) Blackman window, time 60 ms, (d) Blackman-Harris window, time 80 ms. 

5.3.3. Measurement results for different values of amplitude and DC component 

In the next step, the effect of the DC component UDC and the amplitude Um on the NMRR was 
investigated. The measurements were made for the Blackman window with an averaging time of 60 ms. In 
the frequency range of 48 Hz – 52 Hz with step of 0.02 Hz (201 points), three series of measurements were 
made for DC component UDC = –5 V and different amplitudes: Um = 1 V, 2.5 V, 4.5 V, followed by three 
measurement series for amplitude Um = 2.5 V and different values of DC component: UDC = –3 V, –5 V, –
7 V. Each measurement point on the graph was calculated by averaging 100 measurements. The obtained 
values of NMRR are shown in Fig. 16. 

When analyzing the results presented in Fig. 16, it can be seen that the suppression characteristics are 
more influenced by the amplitude Um, while the DC component UDC is less important. For the smallest 
amplitude Um = 1 V, (Fig. 16a), the graph shows a pronounced flattening at 90 dB in the frequency range 
of ±0.4 Hz around 50 Hz, while for the largest amplitude, Um = 4.5 V, (Fig. 16c), a pronounced flattening 
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is observed at over 100 dB in the ±0.4 Hz frequency range around 50 Hz. In contrast, Fig. 16e, f, g for 
amplitude UAC = 2.5 V and different values of component UDC show no significant differences. Thus, it can 
be concluded that weight averaging is more effective for larger AC components of the test signal.  

a) d) 

 
b) e) 

 
c) f) 

 
Fig. 16. NMRR as function of interference frequency - measurements in the range 48 Hz-52 Hz, step 0.02 Hz (201 points), 

Blackman averaging window, time 60 ms. On the left (a, b, c) - value of DC component UDC = –5 V: a) Um = 1 V, b) 
Um = 2.5 V, c) Um = 4.5V, on the right (d, e, f) - amplitude Um = 2.5 V: d) UDC = –3 V, e) UDC = –5 V, f) UDC = –7 V. 

5.4 Discussion of the obtained experimental results  
Summary plots were made to summarize the obtained experimental results. Fig. 17 shows a 

comparison of NMRR as a function of interference frequency for four windows with appropriately selected 
averaging times: uniform (rectangular) window, time 20 ms, triangular window, time 40 ms, Blackman 
window, time 60 ms, and Blackman-Harris window, time 80 ms. The measurements were performed in the 
range of 2 Hz - 1000 Hz with step 2 Hz (500 points), at amplitude Um = 2.5 V and DC component UDC = –
5 V. 

The measurement results shown in Fig. 17 confirm the theoretical relationships that the worst 
performance is for the rectangular window, for which the NMRR reaches values of only 40 dB. For the 
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other windows, triangular, Blackman, and Blackman-Harris (with appropriately chosen averaging times), 
the maximum values of NMRR are close to 100 dB. However, the triangular window shows a large 
variation in NMRR from 30 dB to 100 dB, while for the Blackman window this variation is from 70 dB to 
100 dB, and for the Blackman-Harris window only from 95 dB to 100 dB. Thus, the experiments 
confirmed very good theoretical properties of the Blackman and Blackman-Harris windows. It should also 
be taken into account that a longer measurement window means more pulses for which the gi coefficients 
of the averaging window are calculated (42), (45), (51), (54), which means a more accurate realization of 
the theoretical window shape.  

 

Fig. 17. Comparison of NMRR as function of interference frequency for different windows: uniform (rectangular), time 20 ms, 
triangular, time 40 ms, Blackman, time 60 ms, Blackman-Harris, time 80 ms - measurements in the range of 2 Hz – 1000 Hz, 
step 2 Hz (500 points), amplitude Um = 2.5 V, DC component UDC = –5 V. 

 
Fig. 18 shows a comparison of NMRR for four averaging windows as a function of interference 

frequency over a narrow frequency range of 48 Hz - 52 Hz with step of 0.02 Hz (201 points), amplitude 
Um = 2.5 V, and component UDC = –5 V. For the Blackman and Blackman-Harris windows, the averaging 
time was 60 ms and 80 ms, respectively. For the rectangular window, the measurements were made with 
an averaging time of 20 ms and an additional time of 80 ms. For the triangular window, the measurements 
were made with an averaging time of 40 ms and 80 ms. The additional measurements, with the averaging 
time increasing to 80 ms for the uniform (rectangular) and triangular windows, were made to compare with 
the Blackman-Harris 80 ms window. 

The measurement results presented in Fig. 18 clearly show that the maximum NMRR for the 
triangular, Blackman, Blackman-Harris windows has a similar value of 100 dB. However, the triangular 
window shows much worse suppression for frequencies different from 50 Hz. The Blackman-Harris 
window, which is the best in this respect, shows the least variation in the suppression of about 5 dB for 
frequencies greater than 50 Hz.  

Additional measurements made with an averaging time of 80 ms for the rectangular and triangular 
windows have shown that simply extending the averaging time for these windows does not give as good 
results as the Blackman-Harris 80ms weight function. Extending the uniform (rectangular) window from 
20 ms to 80 ms increased the NMRR from 38 dB to only 50 dB, while the Blackman-Harris 80 ms window 
has a suppression of 100 dB. An analogous lengthening of the triangular window from 20 ms to 80 ms 
produced virtually no noticeable increase in NMRR.  
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Fig. 18. Comparison of NMRR as function of interference frequency for different windows: uniform (rectangular), time 20 ms, 
80 ms, triangular, time 40 ms, 80 ms, Blackman, time 60 ms, Blackman-Harris, time 80 ms, - measurements in the range of 
48 Hz - 52 Hz, step 0.02 Hz (201 points), amplitude Um = 2.5 V, UDC = –5 V. 

 
Fig. 19 shows a comparison of NMRR for the Blackman window with averaging time of 60 ms, as a 

function of interference frequency over a narrow frequency range of 49.4 Hz - 50.6 Hz with step of 
0.02 Hz. The effect of the DC component and amplitude on the NMRR suppression ratio was studied. The 
measurements were made for amplitudes: Um = 1 V, 2.5 V, 4.5 V, and DC component values: UDC = –2 V, 
–3 V, –5 V, –7 V, –9 V. Only those combinations of constant component and amplitude whose sum fell 
within the VFC processing range were considered. 

 
Fig. 19. NMRR as function of interference frequency - measurements in the range 49.4 Hz - 50.6 Hz, step 0.02 Hz, Blackman 
averaging window, time 60 ms, amplitudes: Um = 1 V, 2.5 V, 4.5 V, DC component values: UDC = –2 V, –3 V, –5 V, –7 V, –
9 V. 

The measurement results shown in Fig. 19 clearly show that the values of amplitude Um and DC 
component UDC of the test signal significantly affect the suppression near 50 Hz, where the observed 
changes in NMRR were about 15 dB. For frequencies differing from 50 Hz by more than ±0.5 Hz, the 
suppression changes are smaller, about 5 dB. The graph also shows that the maximum suppression value is 
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more influenced by the amplitude Um, i.e., the larger the amplitude, the greater the suppression. On the 
other hand, the DC component has more influence on the width of the peak of the NMRR, especially for 
small amplitudes Um. In this case, a larger DC component (as to modulus) results in a wider peak. For the 
smallest amplitude Um =1 V and the largest DC component UDC = –9 V, the graph shows a pronounced 
flattening at 85 dB in the frequency range of ±0.4 Hz around 50 Hz, while for the largest amplitude 
Um= 4.5 V and the DC component UDC = –5 V, a pronounced flattening is observed at the level of more 
than 100 dB in the frequency interval of ±0.1 Hz around 50 Hz. Thus, it can be concluded that weight 
averaging is more effective for larger AC components of the test signal. 

6. Conclusions 

The uncertainty of measurement of the VFC output pulse frequency contains two main components, 
which are caused by: i) counting the impulses in the given time interval and ii) the influence of the 
interference in the VFC input signal. The output frequency weight averaging with an appropriately selected 
weight function (window) provides two positive features: i) reduction of the pulse counting effect, and ii) 
suppression of periodical harmonic components of the interference at a given level in a narrow or wide 
frequency band. The result of the VFC output frequency measurement is the sum of values of the weight 
function samples taken at the time of appearance of VFC output pulses. 

Using weight averaging to measure of VFC output frequency, the effect of pulse counting is 
transformed into the effects associated with sampling the weight function. Therefore, this component of 
uncertainty depends on the shape of the weight function and the number of pulses placed in the function's 
durability. When the so-called polynomial weight functions, i.e. triangular, parabolic, etc., are used, the 
relative error, caused by sampling, decreases proportionally to the corresponding power of the number of 
pulses Nx in the duration of the function, namely, for triangular functions this decrease is proportional to 

2
xN , and for parabolic it is proportional to 3

xN , etc. Such weight functions at the same time provide an 
increase in the level of suppression (NMRR) of periodic interference with a relatively stable frequency 
(relative instability is about a few %). However, the level of side lobe of the spectral characteristics of 
these functions is relatively high: about -27 dB for the triangular and -40 dB for the parabolic function, 
therefore such functions are not effective for suppressing interference whose frequency can vary over a 
wide bandwidth. Besides, with the increase in the order of the polynomial function (window) requires a 
corresponding increase in the averaging time of the frequency measurement in the presence of interference, 
namely 2 times for the triangular function and 3 times for the parabolic function. 

The effective suppression interferences with unstable frequency and even in the absence of 
knowledge of the interference frequency values in the preset range, can be obtained by the weight 
functions with appropriate low level of side lobes of the spectral characteristic. The use of the Blackman 
weight function, which duration is equal to 3 periods of least-frequency interference, ensures suppression 
(NMRR) of periodic interferences at a minimum level of 70 dB, while the counting effect is reduced to a 
level about 90 times lower than the usual pulse counting. To increase the NMRR and reduce the counting 
effect, other weight functions can be used, for example the Blackman-Harris function with duration of 4 
periods of least-frequency interference provides NMRR over 90 dB and reduction of counting effect about 
5800 times. 

Simulation tests of weight averaging by the uniform (rectangular), triangular, Blackman and 
Blackman-Harris weight functions for averaging time of 60 ms give the values of the counting error 
component which are very close to the theoretical values. Simulation tests of suppression of periodic 
interferences in a narrow frequency band, ±2% from nominal frequency 50 Hz, for the worst phase of 
interference, have shown that using the triangular window (averaging time 40 ms) and Blackman window 
(averaging time 60 ms) also gives the values of NMRR very close to the theoretical ones. Results of 
simulation shows that using the Blackman window the values of NMRR for any frequency above the 
minimum value Tf /3min =  (T is function duration) are very close to the theoretical levels. That means that 
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the performed simulations fully confirm the previously obtained theoretical results regarding the both 
components: counting effects and NMRR of input voltage interference during weight averaging of VFC 
output pulses. 

When, caused by random noise in the input signal and in the elements of the VFC chain, the standard 
deviation of the temporal variances of the pulses does not exceed 0.5 - 2% of the pulses period, the 
influence of these factors on the averaging result is relatively small. 

The presented and discussed above results of extensive experimental study of weight averaging of 
VFC output frequency pulses at different values of input voltage and parameters of interference have 
shown very good consistence with the results of the simulation studies and the theory. 

Detailed results obtained in the process of simulation and experimental studies are given in [30] and 
[31], respectively. 
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