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From limits of quantum operations to multicopy entanglement witnesses
and state-spectrum estimation
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Limits of state transformations in quantum mechanics are studied. Impossibility of physical implementation
of the transformation% ^ n→%n in quantum mechanics is proved. The most natural notions of structural
completely positive approximation and structural physical approximations of nonphysical map are introduced.
It is shown that these always exist for linear Hermitian maps and can be optimized under natural conditions. It
is pointed out that it is physically possible to measure in a simple way the traces ofnth power of quantum state
Tr(%n) if only joint measurements onn copies of the system are allowed. This gives the interpretation of
Tsallis entropies as values of ‘‘multicopy’’ observables. Following this observations, the notion of multicopy
entanglement witnesses is defined and examples are provided. Finally, using notion of multicopy observable, a
simple method of spectrum state estimation is discussed.
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I. INTRODUCTION

The limits of nonlinearlike operations within the quantu
mechanics is an interesting question. It has been shown
@1#, for example, the operation

% ^ %→F%11
2 %12

2

%21
2 %22

2 G ~1!

can be performed with the finite probability by means o
quite simple network with two copies of% as an input. On
the other hand, the limits for other nonlinear operations h
been shown resulting in ‘‘no-disentanglement’’ rule in qua
tum mechanics@2,3#. In this work, we want to show both
further limits and advantages of nonlinear transformation
context of the quantum entanglement theory.

It can be easily seen that if the state% is diagonal, then
Eq. ~1! provides the square of%. However, to get this, we
have to know the eigenvectors of the state. It is interes
that if one could physically produce square power of an
known state, it would be possible to distill entangleme
from many quantum states with little previous informati
about them@4#. To some extent, it would be similar to situ
ation in compression protocol of Ref.@5# where no measure
ment of a source state is needed if one of its parame
~entropy! is known. We shall show that it is impossible
produce any power of the state if we do not know its eig
vectors. More precisely, it is impossible to perform the o
eration providing nth power of anunknownstate fromn
copies of it.

However, one can consider weaker requirements: if so
operation is impossible to perform exactly, one can try
perform itapproximately. The most known examples of suc
approximations are cloning operation@6–8#, universalNOT

gate@9#, and ‘‘two-qubit fidelity’’ map @10#. Recently more
careful study of approximations of one-qubit maps has b
carried out@11,12#.

*Email address: pawel@mif.pg.gda.pl
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It is natural to expect that physical approximations
nonphysical maps could help in solving physical problems
general. To study this, we use the notion of structural co
pletely positive approximation~SCPA! and structural physi-
cal approximation~SPA! of the nonphysical operation. Thes
are very restrictive approximations—the key feature of su
approximated maps is that these always have the directio
generalized Bloch vector of the output state the same as
output state of the original nonphysical map. Only the len
of the vector is rescaled by some factor. The first example
such map has been introduced in different context as a
versalNOT gate in pioneering work@9#. It is worth mention-
ing the first version of applications in entanglement detect
@13,14#. Here, we show that SCPA and SPA always exist
linear, nonphysical Hermitian maps. We also prove that th
is a natural optimization giving the best SPA.

We also consider possibility of direct measurement
trace ofnth power of a state. Using generalized swap ope
tor, we show that value Tr(%n) can be measured as quantu
observable if joint measurements onn copies of the system
are allowed. Several interesting applications of this fact
provided. In particular, one can measure what we propos
call multicopy observablesof the system: mean value of suc
observables is measurable if joint measurements on sev
copies of the system in the same state can be performed.
mean value of such an observable can be found if suc
measurement is repeated many times. Each time it consu
n copies of%, but the entire procedure can provide us t
interesting information about properties of single%. In our
analysis, we point out that all Tsallis entropies@28# with
natural index correspond to some multicopy observab
Then, applying the separability conditions as the entro
inequalities theory developed first in Refs.@26,15,29# and
completed in an elegant way in Refs.@16,17#!, we show that
each Tsallis@18# entropic separability tests~equivalent to
quantum Renyi ones@15–17#! can be physically performed
directly with the help of single multicopy observable. Th
advantage of the method is that only a finite~small! number
of copies in joint measurement is required. Finally, we po
©2003 The American Physical Society01-1
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out how to estimate the spectrum of an unknown state u
the idea of multicopy observables. The above observat
are in a sense complementary to the optimal procedure
Refs. @19,20#, because on one hand we allow for join me
surement on small number of copies and on the other h
we focus on mean values of quantum observables direc

In both approaches, collective measurements on finite~not
more than dimension of Hilbert space of a single copy! num-
ber of copies are involved in one run of experiment.

The paper is organized as follows: In Sec. II, we prove
following ‘‘no-go’’ result: if the state% is unknown, then the
operation% ^ n→%n is impossible. In Sec. III, we provide
general idea of the SCPA and its slight modification—t
SPA. We also show that these approximations always e
for any Hermitian map. Finally, we show that the most na
ral SPA is optimal.

In Sec. IV, we investigate further possibility of dire
measurement of nonlinear parameters. We introduce the
tion of ‘‘multicopy observable’’ and show how Tsallis en
tropy with natural index can be measured with the help
such an observable. We utilize entropic separability crite
to introduce the notion ofmulticopy entanglement witnes.
Finally, in Sec. V, we point out how to estimate the spectr
of unknown state defined onC m.

II. IMPOSSIBILITY OF THE OPERATION %‹N\%N

Consider an arbitrary quantum state defined onC d space.
We shall show that there is no quantum transformation of
kind

L~% ^ n!→%n, ~2!

which works for anunknownquantum state. Let us first not
that such an operation would beprobabilistic, i.e., it would
give the required output with the probabilityp5Tr(%n) de-
pending on the input state. Suppose that such an opera
existed. Then, because of complete positivity it would be
the form of completely positive mapL(%)5( i 51

N Vi%Vi
† .

So, we would rewrite Eq.~2! as follows:

(
i 51

N

Vi%
^ nVi

†5%n. ~3!

Taking trace of both sides of the above equation, we get
there would exist thepositivestate independent operatorA
5( i 51

N Vi
†Vi , with the property1 0<A<I such that

Tr~A% ^ n!5Tr~%n! ~4!

for any state %. In particular, for any pure projectorPf
5uf&^fu corresponding to normalized vectoruf&, we would
have Tr(APf

^ n)5Tr(Pf)51. But, because all eigenvalue
of A belong to the interval@0,1#, this means that any vecto
of the form uC&5uf& ^ n must be an eigenvector ofA. How-
ever, all uC& ’s of this form span the completely symmetr

1If A,B are Hermitian operators, then the notationA<B means
that for any vectoruc&, one haŝ cuAuc&<^cuBuc&.
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subspaceHSY M of (C d) ^ n. Thus, the subspace is an eige
subspace ofA corresponding to eigenvalue 1. On the oth
hand, putting into Eq.~4! full rank matrix %, diagonal in
some standard basis$uei&}, one gets that positivity ofA
would imply A5( i 50

d21(uei&^ei u) ^ n. But this is in contradic-
tion to the expected invariance ofHSY M under the action
of A.

III. STRUCTURAL PHYSICAL APPROXIMATIONS
OF NONPHYSICAL HERMITIAN MAPS

A. Definition

We introduce the following definition of the SCPA of lin
ear Hermitian mapL:B(C d)→B(C d8).

Definition 1.The SCPA of linear, Hermitian mapL is any
completely positive operation of the form

L̃~% !5d~% !L I1gL, ~5!

with linear functiond>0, and strictly positive parameterg.
The mapL I is defined asL I(•)5ITr(•). The SPA of non-
physical mapL is such SCPAL̃ that any state% satisfies
Tr@L̃(%)#<1, which means thatL̃ can be implemented ex
perimentally.

Remark 1.The optimalNOT gate@9# can be treated as firs
example of the SCPA~and also the SPA!. On the other hand
the approximated cloning machine@6–8# is not the SCPA.
Indeed, if the cloning machine acts on the state%, then it can
be seen that the machine output is not of the formd(%)L I
1g% ^ %.

Remark 2.The above definition could also be extended
the form L̃(%)5d(%)L I1g(%)L. This would apparently
admit nonlinear components in the SPA map. It can
shown, however, that the assumptions of~i! nontriviality of
the functiong (g[” 0) and~ii ! its continuity lead to the form
~5! whereg is constant andd linear.

Let us comment on the definition. The essence of
SCPA L̃ of an arbitrary mapL is that ~i! it is complete
positive and~ii ! its outputkeeps the structure of the outputof
the nonphysical mapL. In particular, for any%, the ‘‘direc-
tion’’ of generalized Bloch vector ofL̃(%) is the same as in
L(%). However, the vector ofL̃(%) is ‘‘decreased’’ by a
factor g @9# and the additional portion~quantified byd) of
completely random noise is admixed. The SPA is such SC
that can be probabilistically implemented in lab~see the Ap-
pendix!. Note that for finite-dimensional systems, some S
can be obtained from nonzero SCPA by normalization,

L̃SPA5
1

aL̃

L̃, aL̃[max
%

Tr@L̃~% !#, ~6!

where strict positivity ofaL̃ is given by complete positivity
of nonzero SCPAL̃.

Now, one can ask about possible optimality of the giv
SPA. Let us recall that question of optimality was frequen
posed in context of approximate cloning machines. Here,
define optimality as follows.
1-2
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Definition 2.The optimal SPA ofL is such SPA mapL̃opt
that for any fixed% ~i! the ratiod(%)/g in Eq. ~5! is minimal
and ~ii ! the probability of implementationp(Lopt ;%)
[Tr@L̃opt(% )# is maximal if compared to any other SPAL̃.

Sometimes, instead of the term ‘‘the optimal SPA,’’ w
shall use name ‘‘the best SPA.’’

Summarizing, for the best SPA, one requires as much
‘‘noise’’ in Eq. ~5! as possible under the condition of max
mal probability of implementation~see the Appendix!.

B. Natural construction

In what follows, we shall briefly prove the following.
Proposition 1.For any Hermitian linear mapL:B(C d)

→B(C d8), there exists a SPAL̃ defined by

L̃a5ba
21~aL I1L!, ~7!

with the parametera>ld, wherel5max@0,2l8# andl8 is
the minimal eigenvalue of the operator@I^ L#(P1). Here,
P15uC1&^C1u corresponds to the ‘‘isotropic’’ maximally
entangled d^ d state uC1&5(1/d)( i 51

d u i &u i &, ba

[max%Tr„@aL I1L#(%)….
The above approximation follows immediately from th

well-known fact that linear, Hermitian operationL is com-
pletely positive if and only if@I^ L#(P1) has non-negative
spectrum.

C. Remarks on structural physical approximations
of nonlinear maps

One might expect~as it was conjectured in first version o
this paper! that there is no physical approximation of th
map % ^ n→%n. However, quite recently, it has been show
that such operations are possible. Namely, in Ref.@21#, the
explicit construction of such a map for two qubits (n52)
has been provided. It happens that generalization of this
sult to many copies of multilevel system is possible. T
issue will be considered elsewhere@22#.

IV. OPTIMIZATION

Here, we shall give the optimal form of the SPA of give
linear, Hermitian map as follows.

Proposition 2.The best SPA of linear, Hermitian mapL is
the approximation~7! with minimal a ~i.e.,a5ld). It can be
written in the form

L̃opt5
ld

ldd81aL

L I1
1

ldd81aL

L, ~8!

with aL5max%Tr@L(%)#.
Proof. Recall that, following Riesz theorem applied

Hilbert-Schmidt space, the linear function of quantum st
denoted byd is uniquely determined by some Hermitian o
erator D in the following way: d(%)5Tr(D%). Now, the
complete positivity ofL̃ results in conditiond(%)>ga, with
parametera>ld defined as in proposition 1. whered is a
dimension of the Hilbert space anda>l is defined as in
05210
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proposition 2. Minimization of the rated/g according to the
condition ~i! of the Definition 2 leads to constantd that
amounts to

d5gld. ~9!

In this way, one gets the family of SPA mapsL̃g5g(ldL I
1L) depending on single parameterg. On the other hand
according to the condition~ii ! of Definition 2, to get the bes
SPA, we have to maximize the value Tr@L̃g(%)# under the
condition Tr@L̃g(%)#<1. Since the latter must be satisfie
for any %, one gets g<1/(ldd81aL) with aL

5max%Tr@L(%)#. This after maximization leads to optima
parameters:g51/(ldd81aL), d5ld/(ldd81aL). In this
way, we have obtained the formula~8!. To conclude the
proof of the Proposition 2, it is enough to check that the m
~8! coincides with Eq.~7! for a5ld.

Interpretation and example

There is a simple interpretation of the optimal formula~8!

if aL.0. To get the best SPAL̃, one needs the following
two operations:~i! rescale the given linear, HermitianL by
taking L85aL

21L, which already satisfies Tr@L8(%)#<1,
~ii ! take the following convex combination:

L̃opt5p* Ldep1~12p* !L8, ~10!

with probability p* 5ldd8aL
21/(ldd8aL

2111) and l
5max@0,2l8#, wherel8 is the minimal eigenvalue of the
operator@I^ L#(P1). In the above formula, we have als
used the usual depolarizing channel

Ldep~% !5I /d8 ~11!

that turns any state onC d into a maximally mixed state on
C d8. Note thatLdep5L I /d8.

In the case of trace-preserving maps~or, in general, for all
maps that satisfyaL51), the above protocol givesL85L
so the only step~ii ! above is important. This means that
these cases, to get the optimal SPA, one has to constru
probabilistic mixture ofL with depolarizing channel. Fo
very efficient applications of such maps in domain of phy
cal detection of quantum entanglement, see Refs.@13,14#.

Example.Consider the best SPA of the transposition m
T:B(C d)→B(C d) that transposes the matrix@T(A)#mn
5Anm . Applying the prescription above forL5T, we get
@I^ T#(P1)51/dV whereV is a ‘‘flip’’ or ‘‘swap’’ operator
@23#. As V has spectrum61, this givesl51/d, aL51 that
results in the optimal parameterp* 5d/(d11). In this way,
we get trace-preserving SPA, which is the following quantu
channel:

T̃~% !5
d

d11

I

d
1

1

d11
%T ~12!
1-3

http://mostwiedzy.pl


a
n

a

t.

le
is

e

in
em
ng
le

y
vi-
,
sy

rv

-

e
o
d

d
l
on
on

-
o-

ned

pli-

-
alue

an

es-

ture.
ure-
be

ant
t

ari-
lti-

led

es

the

PAWEŁ HORODECKI PHYSICAL REVIEW A68, 052101 ~2003!

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

or T̃5@d/(d11)#(I /d)1@1/(d11)#T. It has already been
introduced as a byproduct of optimal quantum cloning m
chines@6–8# and is equivalent to one-qubit universal qua
tum NOT gate@9#.

Another important example of the SPA is the approxim
tion of partial transpositionI^ T that found application in
detection@13# and estimation@14# of quantum entanglemen

V. TSALLIS ENTROPY AS ‘‘MULTICOPY’’ OBSERVABLE
AND MULTICOPY ENTANGLEMENT WITNESSES

A. Multicopy observables

We propose to extend the notion of quantum observabA
to n-copy observable A(n). Suppose that the system state
defined on the Hilbert spaceH. Then, measurement ofA
performed on% leads to the mean valuêA&[Tr(A%).

Definition 3.Let A(n) be the Hermitian operator onH ^ n.
We interpret it asn-copy observable with respect to th
single system defined on a single Hilbert spaceH by defin-
ing ‘‘mean value’’ of A(n) on % as

^^A(n)&&%5^A(n)&% ^ •••^ %[Tr~A(n)% ^ n!. ~13!

.
Remark.The above concept of multicopy observables

volves an interaction between many copies of the syst
One can explain the concept with the help of the followi
physical example. Suppose that we are given an ensemb
many copies of the state% of single spin-12 particle. One can
consider an observable that measuresz coordinate of global
spin of each three particles of the ensembletreated as a new
joint spin-32 system. Such an observable is just multicop
~three-copy! observable. It involves an interaction since e
dently it is not a product of three spin-1

2 observables. Hence
after measurement of the observable, the three-particle
tem will, in general, remain in entangled state.

Below, we shall consider examples of multicopy obse
ables that are important for further analysis.

Example 1. ‘‘Swap’’ observable.Consider the swap opera
tor @8# on two-system space, which has the propertyVuF&
^ uC&5uC& ^ uF& for anyF, CPC d. It is known@8# thatV
is hermitian and satisfies Tr(VA^ B)5Tr(AB). In particular,
its mean value on the state% ^ % is

Tr~V% ^ % !5Tr~%2!. ~14!

Thus, swapV operator can be viewed as 2-copy observ-
able: the above formula~14! leads to the conclusion that th
value Tr(%2) is measurable if joint measurements on tw
copies of the state are allowed. From that, we get imme
ately that the Tsallis entropySq

T(%)5@12Tr(%q)#/(q21) is
measurable forq52. Indeed, we take the observableW[I
2V andS2

T(%)5^W&% ^ %5Tr(W% ^ %).
Example 2. ‘‘Shift’’ operation. Tsallis entropies as induce

multicopy observables.Consider the well-known natura
generalization of the swap. This is a shift operati
Vn , which can be interpreted as some cyclic permutati
It is defined asV(n)u1^ u2^ •••^ un5u2^ •••^ un^ u1. It
is known that ~see Ref. @24#! Tr(V(n)A1^ •••^ An)
05210
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5Tr(A1•••An). Unfortunately, it is, in general, not Hermit
ian ~which can be checked directly looking at its decomp
sition into swaps V5V(2)). However, note that value
Tr(Xs) for anyoperatorX and states can be experimentally
checked by measuring Hermitian@defined as Xh[ 1

2 (X
1X†)] and anti-Hermitian @defined as Xa[(2 i /2)(X
2X†)] part of X because of elementary observation^X&
5Tr(Xs)5Tr(Xhs)1 iTr(Xas)5^Xh&1 i ^Xa&. Thus, one
can determine mean value Tr(Xs) of non-Hermitian opera-
tor X by an experimental measurement of onlytwo Hermitian
observables.

The interesting case is when we knowa priori that the
resulting value Tr(V(n)s) is real. Then, there is the following
simple observation~cf. Refs.@13,20#!.

Observation. Consider an arbitrary ~may be non-
Hermitian! operatorX. If the value^X&5Tr(Xs) is real, then
it coincides with the usual mean value of observable defi
by Hermitian part ofX.

This leads to the interesting consequences. Namely, ap
cation of the above observation to the moments Tr(%n)
5Tr(V(n)% ^ n), which arereal, leads to an immediate con
clusion that each of them can be measured as the mean v
of n-copy observable

W(n)5@V(n)1~V(n)!†#/2. ~15!

Immediately, all Tsallis entropiesS̃q(%)5@12Tr(%q)#/(q
21) with positive integerq can be measured as the me
value ofsinglemulticopy observable

W̃(q)5~ I 2W(q)!/~12q!. ~16!

For another implications, see remarks on spectrum state
timation ~Sec. VI!.

Estimation of mean values of multicopy observables.The
above observables have, in general, complicated struc
However, their mean values can be estimated via meas
ment on single ancilla coupled to the system. This may
done either in a way proposed recently in Ref.@20# with the
help of the encoding observable into the ancilla~this requires
ancilla that is bigger than the system, but allows for eleg
interferometric implementation! or via binary measuremen
on a single spinlike ancilla coupled to the system@25#. The
latter method works also for any bounded continuous v
able observables. It is interesting that in the case of mu
copy observable~15!, the corresponding mean value on% ^ n

can be measured interferometrically directly using control
unitary operationV(n) @20#.

B. Multicopy entanglement witnesses

Separability inequalities in terms of entropic inequaliti
were first investigated in Ref.@26#. Following the Renyi en-
tropy analysis, we know that any separable state satisfies
entropy inequality~see Refs.@26,15,29,16,17#!

Sa~%AB!2Sa~%X!>0,X5A,B. ~17!

This is equivalent to the Tsallis entropy inequalities
1-4
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S̃q~%AB!2S̃q~%X!>0,X5A,B. ~18!

All these inequalities have been shown to be satisfied
bipartite separable states~see Ref.@17#!. As such these form
a necessary condition for separability of quantum sta
Consider the bipartite state% defined onHAB5HA^ HB .
We shall define the q -observable on the system ofq copies
of the state:%AB

^ q . Let W̃(q) be just the observable~15! acting
on H AB

^ q . Let us recall that this is the multicopy observab

that corresponds to entropyS̃q . Let alsoW̃X
(q) stand for coun-

terpart ofW̃(q) but acting onH X
^ q , X5A,B. Finally, let

RA
(q)5W̃(q)2I A^ W̃B

(q) ,

RB
(q)5W̃(q)2W̃A

(q)
^ I B , ~19!

whereI X corresponds to identity matrix onH X
^ q , X5A,B.

Evidently, mean valuê^RX
(q)&&%[^RX

(q)&% ^ q is positive if
and only if the inequalities~18! and ~17! are satisfied forX
5A,B. Thus, becausê̂ RX

(q)&&% is ~i! positive for all sepa-
rable states% ~ii ! negative for some entangled states% @those
that violate inequilities~18! and ~17!#, we propose to call
them multicopy entanglement witnesses. In general, it is
likely that multicopy observableslike the above entangle
ment witnesses can be useful not only in quantum inform
tion theory but also in quantum domain, in general. Applic
tion of such witnesses is expected when technology allo
for precise control of physical interactions among ma
quantum systems. More formally, we can introduce the
lowing.

Definition 4. An n-copy entanglement witness is a
n-copy observableR(n) that satisfieŝ ^R(n)&&%>0 for all
separable%, but ^^R(n)&&%ent

,0 holds for some entangle

state%ent .

C. Remarks on state spectrum estimation

It is remarkable that if one wants to determine spectr
$pi% of the state% defined onm-dimensional Hilbert space
then it is sufficient to knowm21 valuesw25Tr(%2), w3
5Tr(%3), . . . ,wm5Tr(%m). This can be seen by realizin
that Tr(%k)5(p1)k1(p2)k1•••1(pm)k. Thus, since a finite
discrete random variable is determined by itsm21 mo-
ments, allpi ’s can be uniquely determined from the set
given values$wi%. But according to Sec. IV C, these happ
to be mean values of observables~15!, i.e., wi5^^W( i )&&%

[^W( i )&% ^ i. Thus, we have the following.2

Conclusion.In order to determine the spectrum of~com-
pletely unknown! state%, it is enough to know mean value
wi of m21 multicopy observablesW(k) (k52, . . . ,m) that
correspond to Hermitian parts of shift operationsV(k).

Remark.The above conclusion is complementary to wh
is known in the literature so far. We have had either~i! to
perform full tomography: estimation of mean values ofm2

2The conclusion is an improvement~based on technique from Re
@13#! of the one made in previous version of the present paper
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observables, eachvia single copy statistics, or~ii ! an
asymptotic estimation of Young frames requiring estimat
of sequence ofn-copy observables withn approaching infin-
ity. The method~ii !, has an elegant mathematical bac
ground, was shown to be optimal~see Ref.@19#!. It involves
effectively onlym output parameters~because it needs est
mation of probabilities ofm results of output observable!,
but requires possibility of collective measurements on a
trary number of copies to get good accuracy. Quantum
mography~i! requires only single copy per measurement, b
one needsm221 observables. In the present approach,
see that measurement of onlym21 observables is needed
collective measurements onfinite numbers of 2,3, . . . ,m
copies are possible. In this sense, it represents some kin
compromise between the previous two methods~i! and ~ii !.

It is quite remarkable that one can design powerful int
ferometric schemes@13,20# that allow to detect means o
thosem21 observables in a natural way as a result of int
action with controlled bit ancilla~see also discussion in Se
V A !.

VI. CONCLUSION

We have considered possibility of transformation of g
ting nth power of the state% provided that operations onn
copies of% are allowed. We have shown that it is impossib
We have analyzed the possibility of construction of the str
tural physical approximation~SPA! of the unphysical map
under the condition of preserving~in a well-defined way! the
structure coming from the map. We have shown that it
possible to approximate any linear, Hermitian map in suc
way. We have also optimized the SPA any nontrivial Herm
ian map. On the other hand, it has been pointed out tha
joint measurements on n copies of given state% are allowed,
then the nonlinear function of the state defined by Tr(%n)
can be easily measurable. This leads to the notion of mu
copy observable with remarkable examples of measurem
of Tsallis entropies.

Further, we have introduced the notion of multicopy e
tanglement witnesses. The examples of the latter have b
provided, measuring the degree of violation of separabi
criterion based on entropic inequalities. Finally, the existe
of simple method of spectrum estimation for the unkno
state has been pointed out, which requires collective m
surements on small number of copies. The number of nee
estimated parameters is 2dimH23, which is less than
(dimH)221 required in tomography. One can hope that t
multicopy observables idea together with direct physical
terpretation of Tsallis entropy in context of multicopy o
servables can be useful not only for the quantum entan
ment theory but also for the quantum information in gene
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APPENDIX

Here according to a well-known quantum mechanical p
cedure, known form is Kraus~see for instance, Ref.@27#!, we
shall recall how any completely positive mapL satisfying

Tr@L~% !#<1 ~A1!

can be probabilistically implemented in laboratory. We kno
thatL(•)5( i 51

k Vi(•)Vi
† . From Eq.~A1!, remembering that

Tr@( i 51
k Vi%Vi

†#5Tr@( i 51
k Vi

†Vi%#, we get that the positive
operatorA05( i 51

k Vi
†Vi has the spectrum form in interva

@0,1#. Thus we can defineV05AI 2A0 and then, the ex-
tended completely positive mapL8(•)5L(•)1V0(•)V†
ys

M

i

ki

A.

A

05210
d.
t

-

5(i50
k Vi(•)Vi

† is trace preserving because Tr@L(%)#

5 Tr@( i 5 0
k Vi%Vi

†# 5 Tr@( i 5 0
k Vi

†Vi%# 5 Tr@(A0 1 I 2 A0%#
5Tr(I%)5Tr(%)51. But any trace-preserving map can b
implemented in lab by the interaction with some addition
quantum system~ancilla! and some von-Neumann measur
ment on this system with outputsi 50,1, . . . ,k ~for descrip-
tion, see Ref.@27#!. In this case, thei th ‘‘event’’ corresponds
to the single mapViVi

† . It can be interpreted as ‘‘producing
unnormalized stateVi%Vi

† . Indeed, though its action result
in normalized state% i5Vi%Vi

†/pi this occurs only with
probabilitypi5Tr(Vi%Vi

†). In this sense, the original mapL
can be implemented: we apply some special von-Neum
measurement on the ancilla and keep the system if only
i th event with iÞ0 occurs. If the singled-out event corre
sponding to i 50 occurs, we ‘‘discard’’ our system. Thi
gives the new state%85L(%)/p with probability p
5Tr@L(%)#.
,

.
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