
Citation: Draszawka, K.; Szymański, J.
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Abstract: In this paper, we propose a novel approach for obtaining predictions from per-class scores
to improve the accuracy of multi-label classification systems. In a multi-label classification task, the
expected output is a set of predicted labels per each testing sample. Typically, these predictions are
calculated by implicit or explicit thresholding of per-class real-valued scores: classes with scores
exceeding a given threshold value are added to a prediction set. In our work, we propose a neural
network-based thresholding phase for multi-label classification systems and examine its influence on
the overall classification performance measured by micro- and macro-averaged F1 scores on synthetic
and real datasets. In contrast to classic thresholding methods, our approach has the unique property
of being able to recover from scoring errors, because each decision about a given label prediction
depends on the corresponding class score, as well as on all the other class scores for a given sample at
once. The method can be used in combination with any classification system that outputs real-valued
class scores. The proposed thresholding methods are trained offline, after the completion of the
scoring phase. As such, it can be considered a universal fine-tuning step that can be employed in
any multi-label classification system that seeks to find the best multi-label predictions based on class
scores. In our experiments on real datasets, the input class scores were obtained from two third-party
baseline classification systems. We show that our approach outperforms the traditional thresholding
methods, which results in the improved performance of all tested multi-label classification tasks.
In terms of relative improvement, on real datasets, the micro-F1 score is higher by up to 40.6%, the
macro-F1 score is higher by up to 3.6%, and the averaged micro–macro-F1 score is higher by up to
30.1%, considering single models only. We show that ensembles and hybrid models give even better
results. We show examples of successful extreme recoveries, where the system, equipped with our
method, was able to correctly predict labels, which were highly underscored after the scoring phase.

Keywords: multi-label classification; thresholding; label scores; classification metrics; extreme classification;
deep learning

1. Introduction

In order to facilitate various aspects of everyday life, modern applications or devices
often have to solve the problems of Multi-Label Classification (MLC). Classification of
texts to the most relevant categories [1–6], finding types of objects that appear on a given
image [7–11], or recognizing multiple sources of sounds heard in sound samples [12–16]
are examples of MLCs from various domains. Classification is always a transition from
objects (e.g., text documents, images, or sound samples) to labels (document categories,
types of objects in images, sound sources). In the task of MLC, an object should be assigned
to a subset of the most appropriate labels out of a predefined set of all available labels.
In contrast to single-label classification, where only one (the most appropriate label) is
expected, in MLC, the returned subset of labels can have arbitrary sizes, which should
depend on the objects to classify. For example, a text document can belong to a couple of
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relevant categories, a single image can contain many objects, and a sound can be a mix of
acoustic waves from various sources.

A typical classification system, while calculating its output (subset of labels) for a
given input, internally operates in continuous latent space and provides a certain floating
point value—a score—for all (or the most promising) labels. The higher the label score,
the more appropriate this label is for a given input, according to the classifier. In order
to return a set of labels, the classifier must make final decisions about the prediction of
labels, basing them on these per-label scores. This stage of making ultimate predictions
based on scores is called thresholding. All classifiers, implicitly (e.g., [10,11]) or explicitly
(e.g., [17–21]) have to use some form of thresholding of the calculated per-label scores to
obtain the final bipartition of the set of all available labels into subsets of relevant and
irrelevant ones. The thresholding phase is typically meant to be as simple as taking labels,
where scores exceed a suitably chosen threshold value (e.g., it can be 0.5 if the scores have a
probabilistic interpretation, see, e.g., [20,21]). Thresholding can also be more complex (see
Section 3.1), which can lead to overall better label predictions.

When there are thousands or even millions of available labels to choose from, the task
is known as eXtreme Multi-Label Classification (XMLC) [22]. Such a large number of labels
in XMLC makes it a suitable framework for analyzing and even solving other problems
closely related to classification, such as recommendation, tagging, and ranking [23–26].
These are the prevailing applications and use cases of extreme multi-label classifiers. In
the ranking, recommendation, and most tagging applications, we care about the top k
outputs of the system, such as the k-most appropriate adverts, k-most relevant search
engine results, or k-top-scoring topics describing a given post or tweet (not necessarily
the whole subset of relevant tags). In the literature on XMLC (e.g., [25–31]), the quality of
extreme multi-label classifiers is evaluated based on label lists sorted in descending order,
according to their real-valued scores calculated by the classifier. The XMLC repository
(http://manikvarma.org/downloads/XC/XMLRepository.html, accessed on 26 May 2023)
curates benchmark results of many extreme multi-label classifiers on a collection of datasets
using the following metrics: precision at k (P@k), propensity scored precision at k (PSP@k),
discounted cumulative gain at k (DCG@k), normalized discounted cumulative gain at k
(nDCG@k), etc. The k values for which performances are reported are as follows: 1, 3, and
5 (e.g., P@1, PSP@3, nDCG@5). The important thing to notice here is that all these metrics
are ranking quality metrics, not classification quality metrics, e.g., F1 score [1,32]. There
are a couple of reasons for the choice of ranking-based metrics over classification-based
metrics in XMLC [24]. In addition to the aforementioned typical applications of extreme
classifiers (recommendation systems), there is also the inevitable problem of missing labels
in ground truth predictions in the presence of millions of labels, which makes the ground
truth in XMLC less trustworthy than in other tasks; the difference in relevance between
true positive prediction (especially for rare labels) and true negative prediction (most of
the labels should not be assigned to a given input); and the high imbalance in label sizes.
Typically, there are some labels with thousands of training examples, but also thousands of
tail labels, i.e., labels that are very rare (e.g., in a Wikipedia dataset, there are thousands of
categories that contain less than five articles each). Considering all these factors, the use of
ranking-based benchmarks for evaluating ranking or recommendation systems is the most
appropriate and valid approach.

However, when evaluating classification systems based on ranking metrics, the quality
assessment of a crucial step of every proper classifier, i.e., the thresholding phase, is missed.
In particular, for multi-label classification tasks, thresholding strategies are shown to be
highly impactful on the evaluation of classifications in terms of proper classification metrics,
such as the F1 score (see, e.g., [18,19,32]). For applications, where it is useful to obtain a
subset of labels, instead of a fixed-sized list of the most promising labels, i.e., for middle-
sized or large proper classification tasks (but not for XMLC with unreliable ground truth),
it is, therefore, crucially important to experiment with thresholding methods and measure
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the results using proper classification metrics. The thresholding methods can work on top
of scores obtained from extensively researched XMLC classifiers.

This is the main motivation behind this paper, where we focused on experimenting
with advanced thresholding strategies based on label scores already calculated with the
use of XMLC classifiers and in isolation from ideas behind the scoring algorithms. Our
contribution is as follows:

• We designed novel, neural network-based thresholding models, called ThresNets,
which, in terms of classification metrics, and as shown in experiments on synthetic
and real datasets, are preferable compared to traditional thresholding methods. The
models achieve this in a linear space complexity with respect to the number of labels.
One of the proposed architectural variants of ThresNets is suitable to be initialized
using threshold values obtained from traditional methods. This allows for knowl-
edge transfer between the two methods. The independence of the method from the
source of label scores is demonstrated by its positive results when applied to scores
from both tested third-party scorers. A hybrid approach that combines neural and
traditional thresholding strategies offers the best performance as measured by the
macro-averaged F-measure metric on the tested real datasets.

• We draw a connection between classic thresholding techniques and neural network
models by showing that our method can be seen as a neural implementation and
a generalized version of traditional per-label optimized thresholding.

• This generalized thresholding method bases the final prediction for a given label on
the score for that label as well as on all of the scores in a score vector, enabling it to the
previously unseen ability to recover the classification system from mis-scoring situa-
tions. This ability is showcased for some concrete examples on real datasets. It was
also empirically measured on artificially created multi-label score datasets created with
the use of a simple generator coupled with a controlled scoring corruption module.

The rest of the paper is structured as follows. The next section describes the formal
specification of the problem. Thresholding strategies and related methods are presented
in Section 3. Section 4 presents our proposition, which is then evaluated in Section 5.
Moreover, the quantitative results section contains examples of difficult, yet successful,
predictions, which our method enables. The final section concludes the paper.

2. Problem Statement
2.1. Large-Scale Multi-Label Classification

In accordance with the MLC literature (e.g., [2,3,30,31]), let us use the following
notation: N is the number of training examples, D is the number of features, and L is the
number of labels. Then, feature vectors, representing objects to classify, is xi ∈ RD. Label
vectors, i.e., ground truth, are symbolized as yi ∈ {0, 1}L. D = {(xi, yi)}N

i=1 describes
training data and f : RD 7→ {0, 1}L denotes the classification mapping.

The MLC task can be defined as finding f based on D, so that it generalizes well to
unseen similar data. L can be large (e.g., ∼104–106, esp. in XMLC). Typically, N and D are
also very big.

2.2. Two Phases of Multi-Label Classifiers

Let us denote a vector of real-valued scores for i-th object to classify as si. Because
there is one score per label, the number of elements in this vector is the same as in yi and is
equal to L. The transition from the xi input to si, can be referred to as the scoring phase of a
classification system.

As mentioned in Section 1, most state-of-the-art extreme classifiers (see, e.g., [2,3,27–31]) in
the evaluation are treated as rankers, and scoring is their only phase. For evaluation purposes,
typically, only the top k of the returned scores is used.

However, in classic classification systems, to fulfill the definition of a multi-label
classification, classifiers return subsets of labels based on score vectors. Alternatively, the
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label subset can be expressed by a binary predicted label vector—ŷi. This transition is
called the thresholding phase.

Let us add two more symbols to our notation:

• s : RD 7→ RL: scoring phase
• t : RL 7→ {0, 1}L: thresholding phase

Then, the MLC classifier mapping can be decomposed into two cascaded phases:

ŷ = f (x) = t(s(x)). (1)

2.3. Thresholding Optimization

We focus on measuring the performances of various thresholding techniques in isola-
tion from the scoring phase. Score vectors are treated as given. They can be obtained from
the original dataset D, e.g., using one of the available MLC/XMLC classifiers (working as
scorers, without the thresholding phase). For isolated thresholding phase experiments, we
can first collect thresholding training data, Ds, which is a dataset derived from the original
dataset D with the use of a scorer s:

Ds = {(si, yi)}N
i=1 = {(s(xi), yi)}N

i=1 (2)

The thresholding phase optimization task is then formulated as follows: given Ds, the
task is to find a mapping t that maximizes a desired metric and generalizes well to unseen
score vectors.

2.4. Evaluation Metrics

The most popular evaluation metric for classification problems with imbalanced
classes is the F-measure (F1 score), used in, e.g., a large-scale hierarchical text classification
challenge [1]. For multi-label problems, F1 scores are typically defined in two standard
forms of averaging: micro-averaged Fmi and macro-averaged Fma. Formally, the F1 score
for label l is as follows:

Fl =
2TPl

2TPl + FPl + FNl
, (3)

where TPl , FPl , FNl are the counts of true positives, false positives, and false negatives per
label l. Then:

Fma =
L

∑
l=1

Fl , Fmi =
2 ∑L

l=1 TPl

2 ∑L
l=1 TPl + ∑L

l=1 FPl + ∑L
l=1 FNl

(4)

Macro-averaged metrics treat all classes with equal weight, while micro-averaged
metrics are influenced mostly by the biggest classes. Depending on the application, one
could be more interested in optimizing one metric or the other. Thresholding methods that
perform well in micro-averaged terms are often worse if measured by a macro-averaged
metric. To have one unifying metric, we also calculate the simple average of the two:

Favg =
Fmi + Fma

2
(5)

3. Related Works
3.1. Traditional Thresholding Methods

Most traditional thresholding strategies, presented below, were studied carefully
in [32]. Additional variants of these classical methods were also analyzed in [18].
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3.1.1. S-Cut

The simplest and most popular strategy, known as the S-cut strategy, returns a set of
labels for which their scores exceed or equal a constant threshold value t.

tS-cut(s) = {li : s[i] ≥ t}, ∀L
i=1 (6)

If scores have probabilistic interpretation, the natural value for t is 0.5, but the threshold
can be raised or lowered depending on the desired classifier characteristics, landing at a
chosen point in a precision–recall curve. If the aim is to optimize the classifier for a specific
metric, then the optimal t value can be determined empirically in cross-validation.

3.1.2. CS-Cut

The class-specific score-cut (CS-cut) [18], instead of one global t, optimizes a vector of
threshold t, with a separate threshold value ti for the i-th label, and then applies the same
thresholding operation as in the S-cut:

tCS-cut(s) = {li : s[i] ≥ ti}, ∀L
i=1 (7)

In comparison to the S-cut, the CS-cut has L parameters to optimize and store. Com-
pared to the S-cut, this strategy allows for more precise thresholding, at the cost of being
more prone to overfitting.

In the alternative nomenclature, thresholding methods are divided into the single-
threshold selection method (i.e., the STS method, which is equivalent to the S-cut) and the
multiple-threshold selection method (the MTS method, which is equivalent to the CS-cut
strategy) [33].

3.1.3. R-Cut

The R-cut returns r labels with the highest scores, i.e., takes labels that correspond to
the first r scores in a score vector sorted decreasingly by value:

tR-cut(s) = {li : rank(s, i) ≤ r}, ∀L
i=1 (8)

where rank(s, i) returns a position of label li according to its score value in s. Similar to
value thresholds t, the optimal value of r can be found using cross-validation.

The downside of the R-cut strategy is that it always returns exactly r labels for each test
example. (C)S-cut approaches return predictions of arbitrary sizes, depending on whether
the score vectors contain large or small values compared to the thresholds. An interesting
version of the R-cut strategy is presented in [34], where instead of constant r, the number
of top-scoring labels to predict is determined individually for each query instance.

3.1.4. DS-Cut

A distinctive score-cut [17] has R (e.g., 5) threshold values tr, one for each of the first
R ranks, and then applies the following formula (treating thresholds for further ranks
as infinite):

tDS-cut(s) = {li : s[i] ≥ trank(s,i)}, ∀L
i=1 (9)

In this case, R thresholds have to be tuned. The DS-cut strategy returns variably sized
predictions that contain no more than R labels. The DS-cut is a hybrid of the S-cut and
R-cut, and determines the output on both the position of the score and of its value in a
score vector. Theoretically, it is also possible to make a hybrid CS-cut and R-cut (which
would need R · L parameters), but its high overfitting tendency makes it impractical.

3.1.5. P-Cut

The proportional thresholding P-cut, introduced in [35], is yet another method of
bipartitioning real-valued outputs. The method calculates per-label proportions of positive
to all examples, which can also be viewed as finding a priori probabilities for labels, given
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the training dataset. In the test time, these per-label proportions are kept among test
predictions by taking the right number of highest-scoring examples per label:

tP-cut(si|Stest) = {lj : rank(Stest[:, j], i) ≤ C · pj · Ntest ∧ Stest[i, j] > 0}, ∀L
j=1, (10)

where Stest is the matrix consisting of test score vectors, where si is the i-th row, pj is the
fraction of positive examples for label j, Ntest is the number of test examples, and C is
a global proportionality constant. Typically, C = 1, but its optimal value can be optimized
through cross-validation. It should be noted that, unlike all the other methods, the P-cut
approach is not suitable for online inference, i.e., testing examples one at a time.

3.1.6. Scaled Versions

Moreover, working on raw score vectors, each thresholding strategy can also perform
a preliminary scaling step and perform the same calculations, but on scaled scored vectors:
ssi. In the thresholding context, scaling is just dividing the score vector by its biggest
component (it is assumed that at least one label had a non-zero score): ss = s/ maxi(s[i])

Applying this operation during threshold-tuning and, consequently, testing, leads to
the following strategies: SS-cut, CSS-cut, DSS-cut, and PS-cut, where tSS-cut(s) = tS-cut(ss)
etc. Of course, the R-cut strategy would behave exactly the same in the scaled version, so
this one does not have its scaled counterpart. These strategies, despite being very similar
to their unscaled counterparts, often produce totally different outcomes, so it is worth it to
test them separately.

Because values in scaled score vectors are guaranteed to be in the [0, 1] range, SS-
cut and DSS-cut strategies easily guarantee non-empty predictions (setting t or trank(1)
thresholds to 1 or below). The S-cut, the P-cut, and the CSS-cut methods require artificial
hard-coded inclusion of the best scoring label to predictions, if only non-empty predictions
are expected in a given application. This was also done in our experiments.

A comparison of thresholding strategies made in [18] on a large-scale Wikipedia text
corpus shows that the CSS-cut strategy is slightly better than the rest of the methods for
that task. However, it does not invalidate the assessment (presented in [32]) that one should
check which thresholding strategy works best for one’s specific use case.

3.2. Newer Approaches to Obtaining Multi-Label Predictions

Apart from thresholding techniques, more sophisticated ways for obtaining multi-
label predictions from class scores can be found in papers discussed in this section. They
are not meant to be replacements for the classic thresholding methods presented above,
but their objectives are often related, i.e., to obtain multi-label predictions that take into
account the relationships between label scores. Most of the methods emit either 0 or 1 for a
given label basing the decision not only on the score (its value or rank) for this particular
label but taking into account the scores of other labels, similar to what our method does.

Ref. [36] proposes an algorithm that jointly trains a chain of per-label classifiers, where
every next classifier has a vector of class probabilities provided as a part of its input
feature vector. This predictions-as-features approach allows the classifiers to incorporate
knowledge about decisions made by peer classifiers allowing them to model dependencies
between labels.

In a meta-learning approach for multi-label classification proposed by [37], a recurrent
neural network (RNN) is trained alongside a base classifier. In each training step, this
recurrent meta-learner returns a vector of thresholds that is then used by the base classifier
to produce final results; moreover, these thresholds are included as part of the input vector
for calculating new threshold values in the subsequent time step. Similar to our approach,
the meta-learning technique is model-agnostic—a base classifier could be any model that
returns score vectors—but here, both the base classifier and the meta-learner have to be
trained jointly, which is not the case in our method.
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Perhaps the closest to our proposition is the rethinking structure introduced in [38].
There, an RNN model iteratively refines the predictions for a couple of steps in a sequence.
Firstly, a multi-label soft prediction vector is obtained from a feature vector only (the
scoring phase); then, in each step of a rethinking process, newer predictions are calculated
from previous ones, forming a repeating re-scoring procedure, which ends in the final
thresholded predictions. The re-scoring is conducted via a memory transformation matrix
that produces an L-sized soft prediction vector out of the previous state of the same
vector. One step of this rethinking process is similar to using a naive version of our model
(Figure 1b, described later). The crucial difference is that our models are much more scalable,
because, firstly, we deliberately sidestep the use of a direct transformation matrix with
O(L2) complexity, and, secondly, we drop the recursive process of the refinement, forcing
all dependencies between scores to be consumed in a short forward pass of the model.
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Figure 1. Basic neural network thresholding models. (a) Neural network realizing the CS-cut
thresholding: CS-Net; (b) naive generalization of the CS-cut thresholding.

An interesting use case for thresholding methods was presented in [39], where they
were used to obtain pseudo-labeling in semi-supervised multi-label classification tasks. To
obtain positive or negative annotation for a given unlabeled sample-label pair, two score
thresholds per class are used. If a score exceeds a positive threshold or is lower than a
negative threshold, then this pair is annotated suitably (with 1 or 0, respectively); otherwise,
it remains unlabeled. These two score thresholds for each class are calculated dynamically
based on chosen global positive and negative percentile-based thresholds and per-label score
distributions among samples in a training batch.

Finally, it is worth mentioning attention-based classification heads of object detectors
for images. The modules, introduced in [40], and later refined in [41], produce a prediction
for each label whose embedding appears in its input sequence of embeddings. These label
embeddings (i.e., per-label trainable parameters initialized randomly or obtained from
label titles via NLP techniques) are compared via attention to the additional context, which
are image embeddings from a backbone convolutional neural network. Such classification
heads are not simply thresholding methods since they are not based solely on label scores,
but are similar to them in the sense that some per-label quality (an embedding vector in this
case) is provided as their input and the outputs are the corresponding label predictions.

4. Neural Network Models for Thresholding Prediction Scores
4.1. From Classic Strategies to Neural Networks

S-cut and CS-cut strategies (as well as their scaled counterparts) can be easily imple-
mented as very simple, one-layered neural networks (see Figure 1a).
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Typically, a dense neural layer performs the following calculation:

y = denseact(x) = fact(Wx + b), (11)

where W is a weight matrix, b is a bias vector (both are trainable parameters of the layer),
and fact is a nonlinear activation function. Setting the Heaviside step function H(·) as fact,
forcing W to be the identity matrix, and b = −t, i.e., setting the bias vector to the negative
threshold vector of the CS-cut strategy, and feeding the net with score vectors s (or ss), we
have the following:

ŷ = H(s− t), (12)

where

H(x) =

{
0, if x < 0,
1, if x ≥ 0,

(13)

which is exactly equivalent to the CS-cut strategy, from Formula (7). We call this architecture
CS-Net. If t is further forced to share one (and the same) value for all L positions, then such
a restricted neural network realizes the S-cut strategy. With sorted scores at the input, one
can even turn this model into R-cut or DS-cut thresholding equivalents.

The benefit of formulating thresholding strategies in neural network terms comes
when the normal neural connections of a dense layer are retained. Figure 1b shows a
natural generalization of the previous model, i.e., a fully connected neural network layer
that maps score vectors to prediction vectors. This model conditions its decision about the
i-th label prediction, not only on the i-th score value but on all values in the score vector,
via a dense weight matrix W.

The problem with such a natural generalization is the O(L2) space complexity of this
model. For very large number of labels, such a naive model is infeasible. One possible
solution to this problem is to add a hidden layer of h neurons, where h << L, reducing the
space complexity to O(Lh). Another possibility would be to apply sparse weight matrices,
such as in [42], but this approach would limit the generality of the model.

4.2. ThresNet—Neural Thresholding Model with Label Embeddings

To overcome the space complexity problem of the above naive model, we propose
a different architecture, presented in Figure 2, inspired by a FastText model [43]. In this
model, each label is associated with a trainable label embedding (such as word embeddings
in FastText), which is a vector of d floating point values. For a given input, which is a
scaled score vector ss, the model calculates the effective multi-label embedding h, which can
be described as a result of sparse vector–dense matrix multiplication: h = ss · Emb, where
Emb is an L× d matrix with the i-th label embedding in its i-th row. In other words, the
effective multi-label embedding is a weighted sum of the label embeddings (not a simple
average of the embeddings, as in the original FastText), with label scores as the weights of
the components. This way, it includes information about which labels are involved in a
given input as well as the intensity of these labels in the mix, as judged by a source scorer.

This multi-label embedding could be directly used to produce prediction vectors via a
dense layer with L output units. After initial experiments, we found that slightly better
results are possible with a deeper model. The final model has two additional hidden layers,
both having d units (the same sizes as embeddings), and using the popular ReLU [44]
activation function ( fReLU(z) = max(0, z)). The final model realizes the following function:

ThresNet(ss) = σ(dense(denseReLU(denseReLU(ss · Emb)))) (14)

For training purposes, the Heaviside is replaced by sigmoid σ(·) (σ(z) = 1/(1 + exp(−z))),
which enables a standard gradient-based training. During inference, the Heaviside function is
used again to achieve binary predictions.

The presented architecture enables complex, nonlinear, and non-obvious thresholding,
while having O(dL) complexity, where d << L. Dimensionality of label embeddings
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d (which is also the hidden layer size), is the main hyperparameter for controlling the
complexity of the model.

Prediction
vector

y1 y2 y3 y4 y5 yL

h1 h2 h3 hd

Sparse
score vector

Trainable label
embeddings

h1 h2 h3 hd

h1 h2 h3 hd

s1 s2 si sL

Non-zero scores

v1 v2 v3 vd

emb1

*

si

v1 v2 v3 vd

embi

*

v1 v2 v3 vd

sj

embj

*

v1 v2 v3 vd

sk

embk

*

s1

⅀

Effective multi-label
embedding

Dropout

Figure 2. ThresNet—a thresholding model with label embeddings.

ThresNet, while inspired by FastText, is considerably different. First, the purposes
of these models are different: thresholding for ThresNet versus representation learning
or end-to-end classification for FastText. The main consequence of that is the nature of
the model inputs: ThresNet obtains label scores and not raw feature vectors (especially
not features from a fixed-sized moving context window). Second, ThresNet calculates
a weighted average of label embeddings, while FastText calculates a simple average of
feature embeddings. Third, ThresNet includes a couple of bottleneck hidden layers to
mitigate the O (L2) complexity and improve performance, while FastText maps averaged
embeddings directly into the output space. Finally, the ThresNetCSS variant, described
below, is the enhancement that does not have any equivalent counterpart in FastText (and
which is rather impossible, because input and output spaces are different in sizes there).

4.3. ThresNetCSS—A Residual Variant

ThresNet can learn complex patterns for seemingly easy tasks of thresholding score
vectors. Although this ability is crucial to be able to correctly predict mis-scored labels, mak-
ing a prediction about a label should fundamentally be based on its label score. However,
ThresNet architecture does not allow for this easily, because there is no direct connection
between the i-th input ss[i] and the i-th output ŷ[i]. The signal between these units has to
go through three bottleneck layers and nonlinearities of activation functions.

ThresNetCSS, depicted in Figure 3, is a variant designed specifically to remedy the
aforementioned problem. The idea here is to combine the powerfulness of ThresNet
with traditional CS-cut thresholding, implemented as CS-net (shown in Figure 1a and
Equation (12)). The model adds the input score vector just before the final activation
function of ThresNet, transforming the architecture into a form of a residual network [45].
The residual connection joins the corresponding elements of large sparse input and output
vectors, which are otherwise connected through bottleneck layers, similar to what is done
to images in UNet-like image segmentation models [46].
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Prediction
vector

y1 y2 y3 y4 y5 yL

Sparse
score vector

s1 s2 si sL

CS-Net
(not trainable)

+

ThresNet

Figure 3. ThresNetCSS—a residual variant that enables easy and simple strategic calculations and
CSS-threshold priors.

Additionally, it is possible to transfer knowledge from a CS(S)-cut traditional strategy
into the model via a non-trainable bias vector tCSS. The overall function of the model is
as follows:

ThresNetCSS(ss) = σ

dense(denseReLU(denseReLU(Emb · ss)))︸ ︷︷ ︸
ThresNet part

+ ss− tCSS︸ ︷︷ ︸
CS-Net part

 (15)

During training, this residual model learns to exhibit behaviors that differ from simply
applying a priori-given CSS-cut thresholds. The intuition is that complex pattern-based
thresholding should be applied only when it outweighs the default CSS-cut strategy. The
space complexity of ThresNetCSS is the same as the primary ThresNet.

4.4. Network Training

The presented models are trained in a standard way using stochastic gradient descent
with mini-batches to minimize binary cross-entropy loss for each label:

J = − 1
N

N

∑
i=1

[
y(i) log

(
ŷ(i)
)
+
(

1− y(i)
)

log
(

1− ŷ(i)
)]

, (16)

where ŷ(i) is the model response given the i-th train-scaled score vector ss(i). To minimize
this loss, we used the NAdam optimizer [47] with the default settings.

In experiments on real datasets (Section 5.2), 10-fold cross-validation was employed.
Partitioning data into stratified folds, which is challenging in multi-label problems, was
conducted using iterative stratification described in [48]; this stratification is publicly
available alongside the data [49]. To prevent overfitting, the dropout [50] layer was added
to the models before the final prediction layer and early stopping was used by monitoring
the loss on the validation data. In each data fold, we ran 10 trials of random searches for
the best hyperparameters; thus, we trained 100 models for each dataset to select the best
ones based on validation results. The whole code was implemented in Python using a
TensorFlow 2.0 framework and is available at github.com/szarakawka/nn-thresholding,
(accessed on 26 May 2023).

5. Experiments and Results

To have a better understanding of various thresholding strategies, i.e., the strong and
weak sides, before experimenting on real datasets, we first created artificial score datasets
Ds and tested thresholding methods on these.

Using artificial datasets, it is possible to check the behaviors of thresholding strategies
under controlled conditions. In particular, we can see and measure when and to what de-
gree thresholding methods are able to recover correct label predictions from scoring errors.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

github.com/szarakawka/nn-thresholding
http://mostwiedzy.pl


Appl. Sci. 2023, 13, 7591 11 of 18

5.1. Synthetic Scores
5.1.1. Score Generator

Synthetic data are generated using the pseudo-restricted Boltzmann machine (RBM)
model, where a visible vector yi (the ground truth label vector) depends on a random
one-hot hidden vector hi according to:

yi = tS-cut(σ(hiW)), (17)

where σ is a sigmoid function, W is a weight matrix with real random values set once at
the beginning of the generation process, sampled uniformly from range [−1, 1], and tS-cut is
the S-cut threshold function. Its single global threshold value is set to obtain the desired
sparsity of label vectors (95% in our experiments). The idea behind such a pseudo-multi-
label generator is that it models various correlation patterns between labels, which are
encoded in the rows of W, which show off one per example in the actual data, depending
on the position of 1 in a particular hi.

Importantly, ground truth label vectors are then corrupted by randomly substituting
0 s with 1 s (with a chosen False Positive Ratio (FPR)) and 1 s with 0 s (according to the
specified False Negative Ratio (FNR)). Score vectors are then created from the corrupted
label vectors by adding Gaussian noise and pruning negative scores to 0:

si = max(corrupt(yi) +N (0, ζ), 0), (18)

where the standard deviation of the Gaussian ζ is a noise level and the corrupt(·) function
is the label corruption process described above.

5.1.2. Results

Figure 4 shows the performances of traditional thresholding methods as well as
ThresNets on synthetic data. The generated datasets are not imbalanced so the macro- and
micro-averaged F1 scores are very similar and only macro-F1 scores are presented. For each
FPR-FNR combination, a new data generator instance was created. The methods were
then trained on 10,000 samples, and tested on 1000 new samples generated from the same
instance. The same train and test samples are used across all the methods. The test metrics
are shown.

As can be seen, for all combinations of FPR and FNR, neural thresholding performs
comparable to—or much better than—the competition. Traditional methods work reason-
ably well when scores have high quality, i.e., the Gaussian noise added to scores is low;
FPR and FNR are also very low. The performances of the baseline methods quickly drop
when the score variances increase or the scores are corrupted.

The important thing to notice here is the asymmetry of the impact of FPR versus FNR
on the results of the traditional methods. If FPR is small (≤0.1) and the score noise is low,
they work reasonably well, even for FNR, up to 0.3. However, when FNR is low and FPR is
high, this is not the case. Even for FPR = 0.1, the results are poor. Fortunately, in manually
labeled real large/extreme datasets, the first scenario is much more prevalent: failing to
assign all relevant labels to a given sample out of the plethora of possibilities is much more
frequent than assigning an incorrect label. Still, for all FNR > 0, the traditional methods
are worse than ThresNet in this experiment.

The explanation is that due to the simplicity of traditional methods, they do not
have any reconstruction abilities and they rely solely on the quality of per-label scores in
isolation from the global view of label scores. In the case where a reconstruction from bad
scoring is possible, normal thresholding methods are at a clear disadvantage compared
to more powerful neural networks. ThresNets exhibit rethinking abilities (to use phrasing
from [38]), but they do it effectively, without directly modeling all L2 relations. The question
pertains to the extent of inter-score relationships observed in real datasets obtained using
authentic scorers.
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Figure 4. Test macro F1 score performance of traditional thresholding methods and ThresNets for
synthetic data for various FPR and FNR: (a) low score noise level ζ = 0.02 and (b) high score noise
level ζ = 0.4. Number of labels L = 1000, size of h = 50.

5.2. Real Datasets
5.2.1. Datasets

To answer the above question, we performed experiments on two medium-sized
multi-label real datasets: Eurlex dataset (EURLex4K) [51] and Simple English Wikipedia
Dataset (SimpleWiki2K) [49]. The statistics of these datasets are given in Table 1.

Table 1. EURLex4K and SimpleWiki2K—statistics of datasets used in the experiments.

Dataset Feature Dims Label Dims Training
Examples

Testing
Examples

Avg. Examples
per Label

Avg. Labels
per Example

SimpleWiki2K 97,179 1849 60,744 6761 52.60 1.60
EURLex4K 5000 3956 15,539 3809 20.86 5.31

We used two classic classifiers (scorers) to obtain score datasets: a simple k-Nearest
Neighbors (k-NN) with the multi-label scoring system described in [52] and LEML [53],
as a classic representative of a modern, embedding-based, extreme, multi-label classifier.
After training both scorers on both train datasets, we obtained four distinct thresholding
training datasets (see Section 2.3): SimpleWiki2KKNN, SimpleWiki2KLEML, EURLex4KKNN,
and EURLex4KLEML.
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5.2.2. Methods

We compare ThresNet and ThresNetCSS with the CSS-cut strategy, as the most pow-
erful baseline thresholding method. We present the results of the best models selected
according to the validation metrics (models denoted as single) as well as the results of the
hard-voting ensemble of all 10 models, one from each fold. We also use neural-traditional
hybrid models, constructed as follows: for each class separately, a thresholding method
is chosen between CSS and ThresNet based on the validation performance for this class
averaged over validation folds.

5.2.3. Quantitative Results

In Tables 2 and 3, we present the results of the four described score datasets on held-
out test splits. In almost all cases, ThresNetCSS performed best between single models
and ensembles. According to Favg, the method turned out to be better than the best
traditional method in all cases, with improvements ranging from 0.01 (EURLex4KLEML) to
0.09 (SimpleWiki2KLEML). Interestingly, sometimes the hybrid ThresNetCSS with CSS was
profitable, although ThresNetCSS used CSS thresholds internally.

Table 2. Thresholding results on the SimpleWiki2K test set and scores given by k-NN and LEML scorers.

k-NN Scores LEML Scores
Thresholding Method

Fmi Fma Favg Fmi Fma Favg

CSS (single) 0.434 0.299 0.367 0.429 0.168 0.299
ThresNet (single) 0.556 0.222 0.389 0.602 0.169 0.386

ThresNetCSS (single) 0.592 0.235 0.413 0.603 0.174 0.389
CSS+ThresNet (single) 0.444 0.297 0.371 0.470 0.189 0.329

CSS+ThresNetCSS (single) 0.449 0.304 0.377 0.472 0.193 0.332

CSS (ensemble) 0.442 0.308 0.375 0.434 0.177 0.306
ThresNet (ensemble) 0.602 0.216 0.409 0.622 0.165 0.394

ThresNetCSS (ensemble) 0.608 0.236 0.422 0.622 0.169 0.396
CSS+ThresNet (ensemble) 0.459 0.314 0.387 0.500 0.210 0.355

CSS+ThresNetCSS (ensemble) 0.467 0.320 0.393 0.502 0.213 0.358

Table 3. Thresholding results on the EURLex4K test set and scores given by k-NN and LEML scorers.

k-NN Scores LEML Scores
Thresholding Method

Fmi Fma Favg Fmi Fma Favg

CSS (single) 0.344 0.211 0.278 0.425 0.166 0.295
ThresNet (single) 0.433 0.137 0.285 0.469 0.141 0.305

ThresNetCSS (single) 0.441 0.182 0.311 0.467 0.142 0.305
CSS+ThresNet (single) 0.331 0.206 0.268 0.446 0.167 0.307

CSS+ThresNetCSS (single) 0.339 0.210 0.274 0.447 0.169 0.308

CSS (ensemble) 0.356 0.219 0.287 0.428 0.166 0.297
ThresNet (ensemble) 0.464 0.144 0.304 0.467 0.130 0.299

ThresNetCSS (ensemble) 0.480 0.152 0.316 0.479 0.139 0.309
CSS+ThresNet (ensemble) 0.354 0.217 0.285 0.445 0.171 0.308

CSS+ThresNetCSS (ensemble) 0.353 0.215 0.284 0.450 0.173 0.311

Higher Favg achieved by neural thresholding can be attributed to much better Fmi.
Neural nets naturally optimize for Fmi because training is performed example by exam-
ple, and the optimization is conducted for all labels simultaneously; each output unit
participates in the binary cross entropy. On the other hand, the CSS-cut strategy fits each
threshold per label separately, so it optimizes a Fma metric. In fact, with the exception of
SimpleWiki2KLEML, CSS is much better than our neural methods (excluding hybrids) in
terms of this metric. The addition of CSS priors in ThresNetCSS improves Fma considerably,
but it still was not enough to reach CSS in this metric. We speculate that the main reason
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for the fact that a better Fmi does not entail a better Fma is that output neurons responsible
for predictions for the smallest classes received few positive examples to correctly set their
weights. This does not affect micro-averaged metrics much, but it does affect macro-F1 a
lot, because there are many underrepresented classes, especially in the EURLex4K dataset.

The results of the held-out test sets are similar to values obtained on validation folds
during cross-validation. Box plots in Figure 5 indicate that the results and characteristics of
ThresNet and CSS-cut strategies are consistent over data folds. However, it can be seen
that neural models, being much more complex models, exhibit slightly larger performance
variations than CSS. This is why the hybrid models, for each label, decide whether it is
beneficial to use a ThresNet or just CSS, based on the average of the validation folds.

CSS ThresNet ThresNetCSS

0.45

0.50

0.55

0.60

Fmi

1

(a)

CSS ThresNet ThresNetCSS

0.20

0.25

0.30

Fma

1

(b)

CSS ThresNet ThresNetCSS

0.35

0.40

F avg

1

(c)
Figure 5. Box plots for classification metrics on validation sets for the 10-fold cross-validation of
the ThresNet and CSS-cut strategies on SimpleWiki2KKNN (red boxes) and SimpleWiki2KLEML (blue
boxes) datasets: (a) Fmi, (b) Fma, and (c) Favg.

5.2.4. Qualitative Results

To show the capability of ThresNet to recover from label-level scoring mistakes, we
present some successful recoveries from extreme mis-scorings found in the test samples.

Table 4 presents a case of an article with a 0 score for its correct label, which means that
whatever classical thresholding strategy is used, it will certainly fail to provide the correct
prediction. Nevertheless, ThresNetCSS predicted the label based on scores associated with
other labels. Similarly, Table 5 shows a case where incorrect labels have, by far, the largest
scores, where classical thresholding strategies would again fail by returning a couple of
false positives, but ThresNetCSS was able to make a correct prediction.

Table 4. An example of a successful classification of an extremely under-scored case: a Simple Wiki
article titled List of Consadole Sapporo players.

k-NN Scaled CSS ThresNetCSS
Label Name

Score Score Prediction Prediction

Living people 3.778 1.0 FP TN
Sportspeople stubs 3.778 1.0 FP TN

Footballers from Tokyo 0.153 0.041 TN TN
Japan stubs 0.124 0.033 TN TN

North Korean footballers 0.099 0.026 TN TN
Cities in Japan 0.076 0.02 TN TN

Lists of Japanese football players 0 0 FN TP

These are just two cases of extreme recovery, which are not very frequent. However,
there are many less spectacular (but important) corrections; for example, when a correct
class had a relatively low score compared to the scores of incorrect labels. Such recoveries
were not possible for other thresholding techniques. Once again, only the rethinking
structure [38] would be able to achieve a similar effect if it is successfully scaled to thousands
of labels.
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Table 5. An example of a successful classification of a case involving over-scored labels: an article
titled Real Zaragoza.

k-NN Scaled CSS ThresNetCSS
Label Name

Score Score Prediction Prediction

Living people 4.79 1.0 FP TN
Sportspeople stubs 4.79 1.0 FP TN

Sports stubs 2.961 0.618 FN TP
Uruguayan footballers 0.17 0.035 TN TN

Croatian footballers 0.158 0.033 TN TN
Geography stubs 0.067 0.014 TN TN

6. Conclusions

In this paper, we proposed two variants of a novel neural network-based thresholding
method for obtaining high-quality multi-label predictions from class scores already avail-
able from external scorers. Our models, called ThresNets, are designed to scale linearly with
the number of labels and can be trained offline entirely, e.g., after the training of a scorer is
finished. The second variant of our proposal shows a way to incorporate classic CS/CSS
thresholds into the neural model, which can be viewed as a kind of transfer learning
between heterogeneous models. The presented thresholding methods exhibit interesting
recovering possibilities from scoring errors that are unavailable in classic approaches.

Our method is well suited for middle-sized MLC tasks, where the label space is large
enough, such that informative dependencies between label scores can be found, and the
ground truth of label assignments is still reliable (which is problematic in XMLC problems).
Our experiments on artificially created scores show that the complex thresholding phase
can be especially beneficial when the scoring phase leaves enough room for improvements.
For example, popular nearest neighbor-based classifiers (such as k-NN and LEML, among
others) may produce underscored or overscored labels due to their use of local information
about the instance. In such cases, ThresNets proved to be useful.

In our empirical evaluation on real datasets, ThresNets clearly show better perfor-
mances according to Favg, Fmi, as part of a hybrid with classical methods, Fma metrics,
tested on four dataset–scorer combinations, as well as on synthetic datasets. Among single
thresholding methods, we had up to 40.6% relative improvement over the CSS-cut baseline
in Fmi (0.6 over 0.43), 3.6% relative improvement in Fma (0.174 over 0.168), and 30.1%
relative improvement (0.389 over 0.299) in Favg (the results for SimpleWiki2KLEML scores).

Among the downsides of the proposed methods, one of the hardest to overcome
is the risk of overfitting to training data. We attempted to minimize this risk by using
regularization methods while training neural models (dropout layer, early stopping, cross-
validation) as well as designing ThresNetCSS architecture that learns only the residuals
over the CSS-cut baseline. Still, the abundance of long-tail labels, for which only a few
positive samples are available, makes the training hard, and we found that a hybrid of
ThresNetCSS and the CSS-cut strategy often works better than ThresNetCSS only.

In the future, we will utilize the external knowledge of class structure by encoding it
in label embeddings. We can then start ThresNet training with such prepared embeddings
instead of random ones, as is currently done. Intuitively, when such a structure exists (e.g.,
Wikipedia (pseudo)-hierarchy of categories), encoding it in pretrained label embeddings
should be beneficial, and our models can make use of them without any changes in
architecture. This external knowledge could also be used in a more complicated way, for
example, to initialize an additional sparsely connected first layer, where instead of a dense
matrix W, there would be, e.g., a sparse category graph adjacency matrix of a fixed structure,
with trainable weights. Another potential extension of the presented neural models is to
make them work on scores obtained not only from one scorer but from two or more scorers
at the same time; in this way, they can work as merging units trained to produce optimal
predictions based on available scorers. Yet another interesting direction of the development
of ThresNets is to include hierarchy-related cost-sensitivity (see e.g., [19,54,55]) while
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training them, enabling better performance in terms of hierarchical classification metrics.
Sometimes hierarchical organization of categories may change; if so, it would be faster to
fine-tune a thresholding phase than retrain the whole classification system.
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