
This is a pre-print of a contribution published in Information Systems Architecture 
and Technology: Proceedings of 39th International Conference on Information 
Systems Architecture and Technology – ISAT 2018, edts: Leszek Borzemski; Jerzy 
Świątek; Zofia Wilimowska, published by Springer. The definitive authenticated ver-
sion is available online via http://dx.doi.org/10.1007/978-3-319-99981-4_15 

 

From Sequential to Parallel Implementation of NLP 

using the Actor Model 

Michał Zielonka[0000-0003-3577-4244] , Jarosław Kuchta[0000-0003-3413-6830] , Paweł 

Czarnul[0000-0002-4918-9196] 

Faculty of Electronics, Telecommunications and Informatics 

 Gdansk University of Technology 

Narutowicza 11/12, 80-233 Gdańsk, Poland 

 

Abstract. The article focuses on presenting methods allowing easy 

parallelization of an existing, sequential Natural Language Processing (NLP) 

application within a multi-core system. The actor-based solution implemented 

with the Akka framework has been applied and compared to an application 

based on Task Parallel Library (TPL) and to the original sequential application. 

Architectures, data and control flows are described along with execution times 

for an application analyzing an online dictionary of foreign words and phrases. 

Keywords: Parallelization, Actor Model, Akka, TPL, NLP. 

1 Introduction 

Nowadays, we deal with multi-core computers every day. Even a personal computer 

is usually equipped with a two- or quad-core processor with hyperthreading. Despite 

this, as our experience in cooperation with CI TASK1 has shown, scientists who are 

not IT professionals, often write sequential applications and do not fully use the capa-

bilities of multi-core hardware. They run their sequential applications in a multipro-

cessor environment and are uncomfortably surprised that they do not get acceleration 

of calculations. Proper parallelization is usually done by rewriting the program code 

from scratch or designing it to be parallel upfront especially for a multi-node cluster 

environment, so that the most time-consuming parts can be executed simultaneously 

by many processors. Unfortunately, such parallelization is generally very complicated 

and time-consuming. 

                                                           

1 Centre of Informatics - Tricity Academic Supercomputer & networK 
 



To avoid rewriting the code of our NLP application from scratch, we can use an al-

ternative approach within a single computational node. One solution proposed by 

Microsoft is TPL (Task Parallel Library) [1]. If we define several tasks in the program 

that are loosely coupled, we can attach these tasks to separate threads. TPL helps us to 

define tasks, run them asynchronously, and return the results. Having a computer with 

e.g. a quad-core processor with hyperthreading, we can easily use eight logical pro-

cessors in our application. Unfortunately, the TPL solution has its limitations. Firstly, 

it is useful in a pipeline or divide-and-conquer model of parallel application, when 

there is no need for inter-task communication. TPL fails with more complex commu-

nication due to lack of support for sending messages between tasks. The second prob-

lem is that tasks must be run explicitly, one per thread. Finally, TPL supports multi-

core calculations, so parallelization is limited to multicore processors. 

All these problems are solved by the Akka [2] toolkit implementing the actor mod-

el [3]. In this model, application parallelization is based on the concept of actors − 

classes that perform specialized tasks. Objects that are instances of actor classes send 

each other data through messages that are placed in queues. Each queue is associated 

with an actor class that creates one or more instances depending on the load recog-

nized by the queue length. After the data has been processed from the message, the 

actor's instance sends a message with the results to the queue of another actor's class. 

Therefore, we decided to examine parallelization of sequential applications using 

the aforementioned example, and to compare the performance of parallel applications 

using both TPL and Akka solutions.  

2 Related Work 

Parallelized NLP is considered in the literature. For instance, a parallel parser with the 

work stealing approach is analyzed in [4]. Fine-grained parallelism is needed to obtain 

high speedup for this purpose according to [5] and on GPUs [6]. Our goal in the paper 

was parallelization of sequential elements of our application in a way that does not 

penetrate too much in the current architecture of the code and make it a scalable solu-

tion within a single multi-core node. There are many APIs to parallelize sequential 

applications [7]. OpenMP [8] is one of the popular APIs for this purpose. This is a 

well-known approach suitable for applications running on shared memory systems. 

OpenACC [9], similarly to OpenMP, allows extending sequential codes with direc-

tives and parallelization using GPUs. OpenCL [10] is an API allowing writing parallel 

programs for both multicore CPUs and GPUs with multiple threads running NDRange 

kernels. CUDA [11], focuses on NVIDIA GPUs Programming productivity, perfor-

mance, and energy consumption when using OpenCL, OpenACC, OpenMP, and 

CUDA are discussed in [12]. Message Passing Interface (MPI) [13] allows to parallel-

ize sequential applications for cluster environments and provides API for interprocess 

communication. For applications written in the .Net environment, we can often ob-

serve the use of Task Parallel Library to add parallelism and concurrency to the solu-

tion [1]. This approach will also be discussed and compared to the actor-model de-

scribed later with the Akka toolkit [2]. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3 Original Sequential Application 

The original sequential application is an NLP (Natural Language Processing) applica-

tion for analyzing an online dictionary of foreign words and phrases2. The dictionary 

consists of over 14,000 HTML files. Each file consists of one or several entries. There 

are over 30,000 entries in this dictionary. 

In order to avoid frequent Internet access, the files have been downloaded once and 

stored locally. After processing by the HTML parser, the files have been divided into 

entries, which have been saved in the relational database for further analysis. Both the 

results of the entire analysis and the results of individual stages are recorded in the 

same database. 

The NLP component of the application became the subject of our interest. The 

NLP algorithm used is well known [14] and can be described as a processing pipe-

line [15] (Fig.1). First, the text is divided into paragraphs and sentences (correspond-

ing to our dictionary entries). This has already been done while storing entries to the 

database. Then entries go to the process of tokenization, during which token sequenc-

es are generated. Tokens correspond to words and punctuation marks. Usually, in the 

next stage, tokens are subject to the process of parts of speech (POS) recognition, and 

then − parsing. In our application, the POS tagging step has been omitted, since dic-

tionary entries have their own formal syntax. Instead, the correction step was added, 

during which syntax errors made by the authors of the dictionary are removed. 

However, not all syntax errors can be identified and removed at this early stage. 

Some of them are revealed later − at the stage of tokenization, and some others − at 

the stage of parsing. Therefore, the process requires relapses. Errors detected at the 

parsing stage are returned to the tokenization step, which has to produce a different 

sequence of tokens. Sometimes it is required to return to the error correction stage. 

Corrector

Tokenizer

Parser

Database

 

Fig. 1. Dataflow for NLP in the original sequential application 

The algorithm of the original application has been implemented in C# using the 

Visual Studio IDE and the local MS SQL Server database.  

                                                           
2 https://www.slownik-online.pl/ 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4 Parallelizing the Sequential Application 

The most-seemingly natural way of parallelizing the application for a parallel envi-

ronment would be to process all dictionary entries in parallel independently − in sepa-

rate processes run on separate cores and machines. However, we parallelized our 

application to run in a single node environment available for an average scientist − 

such as a laptop with an Intel i7 processor – where the number of threads possible for 

parallel processing is rather small when using typical multi-core CPUs. 

4.1 TPL Approach 

In the first approach, we used the solution based on the Task class, which represents 

the operation performed asynchronously (although not necessarily in parallel). Each 

task is associated with a separate thread, which is placed in the thread pool. The 

thread pool is equipped with a core load balancing mechanism that matches the num-

ber of threads to run to the processor's capabilities. 

TPL does not support synchronization between threads, so it is suitable rather for 

pipelining and the divide-and-conquer model. In both models, it is enough to take the 

result after the asynchronous operation has ended. 

Since our application includes feedback loops, we introduced an additional revi-

sion step to simplify the algorithm. in which we grouped backward tokenization and 

backward correction operations. We defined four tasks (correction, tokenization, pars-

ing, revision) in the processing pipeline (as shown in Fig.2). We put buffer variables 

between the tasks to pass the results of one task to be processed by the second task. 

Corrector

Tokenizer

Parser

Revision

Database

 

Fig. 2. Pipeline processing using TPL 

We implemented the TPL algorithm using a common TaskFactory class instance with 

a StartNew() operation. Each StartNew() invokes a specific operation (Corrector, 

Tokenizer, Parser, Revision). These operations take the results of the previous stages 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


which are stored in buffers. The whole algorithm was implemented without using 

“async” or “await” keyword, as we used a Task.WaitAll() operation to suspend the 

main thread until all the tasks finalize their processing (see below code sample). 

 var taskFactory = new TaskFactory(); 

 var correctorStage = taskFactory.StartNew( 

  ()=>Corrector(fileEntries.Count,correctorBuffer)); 

 var tokenizerStage = taskFactory.StartNew( 

  ()=>Tokenizer(correctorBuffer,tokenizerBuffer)); 

 var parserStage = taskFactory.StartNew( 

  ()=>Parser(tokenizerBuffer,parserBuffer)); 

 var revisionStage = taskFactory.StartNew( 

  ()=>Revision(parserBuffer)); 

 Task.WaitAll(correctorStage, tokenizerStage, 

        parserStage, revisionStage); 

4.2 Approach Using the Actor Model and Akka Framework 

The actor model was created to facilitate synchronization between the separate 

threads. Programmers writing parallel applications in C# usually use the classic lock 

instruction to describe the critical section. In many situations this is the best and easi-

est way. Unfortunately for large and complex systems, maintaining such code is very 

difficult, laborious and susceptible to deadlocks. 

In the actor model we do not need to use any locks as the code in each actor class 

is executed only by one thread. Critical sections are therefore replaced by asynchro-

nous messages. If one thread wants to read or change the state of other thread, it sends 

an asynchronous message. The most difficult part of the multi-threading is to modify 

the shared state. Using actor model, there is no need for such modification as a shared 

state does not exist. Each actor works independently of each other. If one actor’s data 

is needed by another, the data is sent as non-modifiable asynchronous message. 

The actor itself is an object that has an inbox, state and behavior. It communicates 

with other actors within the system using asynchronous, non-blocking messages 

(Fig.3). Different types of messages are queued in the inbox (for remote actors the 

data types must be serializable) and they are processed in series. 

Akka is an open-source, free toolkit implementing an actor model. It was originally 

written in Scala on Java Virtual Machine, but a .NET implementation is also availa-

ble. 

Using Akka in our application, we created appropriate actor classes for our tasks. 

Actors among themselves submit indexes of data records ready to be processed. Be-

low we can see the sample implementation of one of the actors. 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Corrector

Database

Tokenizer

Parser

Revision

 

Fig. 3. Using Akka actors model 

 public class CorrectorActor: ReceiveActor 

 { 

  public IActorRef Tokenizer; 

  public CorrectorActor(IActorReftokenizer) 

  { 

   Tokenizer  = tokenizer 

   Receive<FileEntryIndex>(index => 

   { 

    Corrector.TryCorrectEntry(fileEntry[index]); 

    Tokenizer.Tell(index); 

   }); 

  } 

 } 

FileEntryIndex is a class representing the message which the actor receives. If 

someone sends a specific message to this actor, it starts his work. Corrector is an ob-

ject derived from the sequential version of the application and contains the logic re-

sponsible for dictionary entry correction. The delivered message contains an index of 

this entry. After appropriate actions, finally a new message is sent to the next module. 

Thanks to this, the actor responsible for Tokenizer stage will receive information 

about work for itself and Corrector will handle the next message at that time. In this 

simple way we create actors responsible for each module. Then we move on to our 

main methods and initialize the Akka system and actors. 

 ActorSystem = ActorSystem.Create(); 

 IActorRefcorrectorActor=ActorSystem. 

  ActorOf(props,"correctorActor"); 

 for(var i=0; i<fileEntry.Count; i++) 

 { 

  correctorActor.Tell(i); 

 } 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Here we send the data record index to the actor instead of immediately referring to 

the method responsible for the stage (as we did in the sequential version). 

In addition, we are able to define how many instances of each actor we want to 

create. This means that we can, for example, create several instances of actors respon-

sible for the first stage, the second and so on. 

At this point, the system responsible for the actors will prepare as many Corrector 

actor instances as we define in the numberOfActors variable. The user also has the 

option to apply the algorithm to load-balance which will be used by the system. For 

load-balance, we used the round-robin algorithm shown in the code below. 

 var props = Props.Create( 

  ()=>new CorrectorActor(tokenizerActor)) 

  .WithRouter(newRoundRobinPool(numberOfActors)); 

 var correctorActor = ActorSystem.ActorOf 

  (props, "correctorActor"); 

Akka guarantees that operations inside an actor algorithm are executed sequential-

ly, so transferring the logic of each module of the existing sequential version of the 

application does not pose any major problem.  

5 Performance Tests 

This chapter presents performance results of selected solutions tested in two envi-

ronments that are described in the next section. It is worth noting that we measured 

only include the duration of calculations. The time used for reading and writing op-

erations to the database has been omitted. 

 

5.1 Test Environment 

Tests have been carried out on two different machines. The first is a typical laptop 

with a quad-core processor. Its parameters were as follows: 

• Operating system: Windows 10 Pro 64  

• Processor: Intel Core i7-6820HQ (2.70 GHz, 8MB L3 cache, 4 cores) 

• Memory: 16 GB DDR4-2133 

• Frameworks: .NET Core 2.0, Akka 1.3.2.0 

In order to verify the scalability of the prepared solutions, the applications were al-

so launched on a cluster node with many cores. Calculations were carried out at the 

TASK Academic Computer Center in Gdansk. The node parameters are as follows: 

• Operating system: Ubuntu 16.04 64 

• Processors: Intel Xeon Processor E5 v3 @ 2,3 GHz, 12-core (Haswell) 

• Memory: 256 GB RAM DDR4 

• Frameworks: .NET Core 2.0, Akka 1.3.2.0 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5.2 Test Results 

 Figure 4 presents a comparison of application execution times using various num-

bers of actors to the versions using TPL and the sequential approach. 

 

Fig. 4. Performance comparison 

As we can see from the results, the best time for a quad-core machine is 29 seconds 

when using 28 actors. From the results on the cluster node, we see that for the sequen-

tial version and using fewer threads or actors, the results are slightly worse than on 

the first machine. This is due to the fact that the Intel Xeon E5 is a processor with a 

lower clock frequency the Intel Core i7. 

With the use of higher number of cores (for 40 instances of actors), the application 

was executed in 25 seconds. This observation shows that the parallel approach is fast-

er than sequential roughly 2.3x for Intel i7 and 2.8x for Intel Xeon. When performing 

parallelization, the code architecture was not interfered with, but only new modules 

were added using the existing sequential code elements. This makes the results satis-

factory considering that we could easily convert a sequential application to its parallel 

version. 

In Figure 5, we can observe the CPU (Intel Core i7) load at a given time. In total, 

there are 8 logical processors (4 physical cores and 4 virtual cores due to Hyper 

Threading Technology). Akka used all available cores as presented in the aforemen-

tioned figure. 

The level of processor utilization was also measured on the cluster node. Table 1 

shows the average load of each logical processor during application execution. 

42

39

29

42 43 43
47

39

30

25

32
34

67
71

43

49

0

10

20

30

40

50

60

70

4 8 28 40 80 100

Ex
ec

u
ti

o
n

 t
im

e 
[s

]

Number of actors

Intel i7 Intel Xeon

Seq. Seq.

TPL TPL

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 
 

Fig. 5. CPU usage on Intel Core i7 

 

 

 
Table 1. Intel Xeon CPU usage performance 

6 Summary and Future Work 

In the paper we showed that it is possible to parallelize an existing NLP application in 

an easy way using the actor model. The results showed that the obtained speedup is 

roughly 2.3 to 2.8 times using the actor based approach within a multi-core machine. 

Programming with actor model separates the programmer from using threads. This 

simplifies writing efficient programs using the available processor cores. This is an 

important issue, because the computing power of new computers relies mainly on the 

number of cores. In the next step we plan to profile execution at a finer level to inves-

tigate bottlenecks. This will allow to model overheads and scalability of the actor 

model and the Akka implementation into our modeling and simulation environment 

called MERPSYS and perform performance tests on various CPUs from the 

MERPSYS database [16]. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


References 

1. Leijen, D., Schulte, W., Burckhardt S.: The design of a task parallel library. SIGPLAN 

Not., vol. 44, no. 10, pp. 227– 242, Oct. (2009). doi: 10.1145/1639949.1640106 

2. de Castilho, R.E., Gurevych, I.: A broad-coverage collection of portable NLP components 

for building shareable analysis pipelines. Proceedings of the Workshop on Open Infra-

structures and Analysis Frameworks for HLT (2014) 

3. Wyatt, D.: Akka concurrency. Artima Incorporation (2013) 

4. van Lohuizen, M.P.: Parallel processing of natural language parsers. In Parallel Compu-

ting: Fundamentals and Applications (200) 

5. Van Lohuizen, M.P.: Effective Exploitation of Parallelism in NLP (1999) 

6. Lai, C. Y.: Efficient Parallelization of Natural Language Applications using GPUs. vol. 

Technical Report No. UCB/EECS-2012-54. University of California at Berkeley, Electri-

cal Engineering and Computer Sciences (2012) 

7. Czarnul, P.: Parallel Programming for Modern High Performance Computing Systems. 

CRC Press (2018). ISBN 9781138305953 

8. Chandra, R., Dagum, L., Kohr, D., Maydan, D., Menon, R., & McDonald, J.: Parallel pro-

gramming in OpenMP. Morgan kaufmann (2001). ISBN 1-55860-671-8, 9781558606715 

9. Wienke, S., Springer, P., Terboven, C., & an Mey, D. (2012, August). OpenACC—first 

experiences with real-world applications. In European Conference on Parallel Processing 

(pp. 859-870). Springer, Berlin, Heidelberg (2012). doi: 10.1007/978-3-64232820-6_85 

10. Stone, J. E., Gohara, D., & Shi, G.: OpenCL: A parallel programming standard for hetero-

geneous computing systems. Computing in science & engineering, 12(3), 66-73 (2010). 

doi: 10.1109/MCSE.2010.69 

11. Nickolls, J., Buck, I., Garland, M., & Skadron, K.: Scalable parallel programming with 

CUDA. In ACM SIGGRAPH 2008 classes (p. 16). ACM. (2008, August). doi: 

10.1145/1365490.1365500 

12. Memeti, S., Li, L., Pllana, S., Kołodziej, J., & Kessler, C.: Benchmarking OpenCL, Open-

ACC, OpenMP, and CUDA: programming productivity, performance, and energy con-

sumption. In Proceedings of the 2017 Workshop on Adaptive Resource Management and 

Scheduling for Cloud Computing,. ACM. (2017, July). doi: 10.1145/3110355.3110356 

13. Gropp, W. D., Gropp, W., Lusk, E., & Skjellum, A.: Using MPI: portable parallel pro-

gramming with the message-passing interface (Vol. 1). MIT press. (1999). ISBN 

0262527391, 9780262527392 

14. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P.: Natural 

language processing (almost) from scratch. Journal of Machine Learning Research, 

12(Aug), 2493-2537 (2011) 

15. de Castilho, R. E., & Gurevych, I.: A broad-coverage collection of portable NLP compo-

nents for building shareable analysis pipelines. In Proceedings of the Workshop on Open 

Infrastructures and Analysis Frameworks for HLT pp. 1-11 (2014) 

16. Czarnul, P., Kuchta, J., Matuszek, M., Proficz, J., Rościszewski, P., Wójcik, M., & Szy-

mański, J.: MERPSYS: an environment for simulation of parallel application execution on 

large scale HPC systems. Simulation Modelling Practice and Theory, 77, 124-140. (2017) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

