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Abstract—The problem of adaptive signal smoothing is consid-
ered and solved using the weighted basis function approach. In
the special case of polynomial basis and uniform weighting the
proposed method reduces down to the celebrated Savitzky-Golay
smoother. Data adaptiveness is achieved via parallel estimation.
It is shown that for the polynomial and harmonic bases and
cosinusoidal weighting sequences, the competing signal estimates
can be computed in both time-recursive and order-recursive way.

Index Terms—signal denoising, adaptive selection of estimation
bandwidth and model order, Savitzky-Golay smoothers

I. INTRODUCTION

The need for smoothing of noise-corrupted signals arises
in many practical applications. When the prior knowledge
about the signal – in the form of a stochastic or deterministic
model – is available, and when noise characteristics are known,
smoothing can be performed in a statistically efficient way.
For example, when the signal admits the linear state space
description and the additive measurement noise is Gaussian,
the optimal (in the mean square sense) smoother can be
designed based on the Kalman filter theory [1].

In the absence of prior knowledge, one has to rely on some
general purpose smoothing schemes, such as the local esti-
mation techniques, which provide a sequence of “pointwise”
signal estimates, or block-oriented methods based on wavelet
decomposition and thresholding (shrinkage). The most popular
local estimation methods include polynomial approximation
[2], [3], kernel regression [4], [5] and order-statistical filtering
[6], [7]. The wavelet shrinkage procedures [8], [9], [10], [11]
can be operated (with hard or soft thresholding) using different
wavelet bases.

Even though wavelet shrinkage denoising does not require
any assumptions about the nature of the signal, and has been
theoretically proven to be nearly optimal when degree of signal
smoothness is unknown, its comparison with multi-scale local
estimation techniques is far from conclusive. In particular, as
demonstrated in [12], [13], [14] on a number of artificially
corrupted 1D and 2D benchmark signals, for moderate and
low signal to noise ratios (SNR ≤ 30), very simple medley
smoothers, combining several averaging and median filters
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with different estimation bandwidths, outperform the state-of-
the-art wavelet-based procedures, both in the quantitative sense
(according to the mean square error measure) and qualitative
sense (according to the perceptual structural similarity mea-
sure, developed for image processing applications). Similar
results, obtained for adaptive multiresolution kernel smoothers,
were reported in [15]. This means that development of new
local estimation techniques has not lost its significance and
still remains an important research topic.

Our present work is focused on the basis function type
smoothers, the well-known example of which, corresponding
to the choice of polynomial basis, are Savitzky-Golay (SG)
filters [16], [17]. Due to their analytical and computational
simplicity, and good smoothing capabilities, Savitzky-Golay
filters have been extensively used in such research areas as
spectroscopy [18], [19], voltammetry [20] and biomedical
signal processing [21], [22], [23], among many others. Prior to
using a Savitzky-Golay filter, two important decisions must be
taken, about the order of the approximating polynomial and
the estimation bandwidth, i.e., the size of the local analysis
(fitting) window. When these design parametrs are inappropri-
ately chosen (underfitted or overfitted), the smoothing results
deteriorate, both in the quantitative and qualitative sense. To
cope with this problem a number of adaptive Savitzky-Golay
algorithms were proposed in the literature allowing one to
select in a signal-dependent way the filter order [20], its
bandwidth [25], [26], or both [2], [19], [23].

The paper presents the first unified treatment of the problem
of adaptive joint order and bandwidth tuning of SG-like filters,
valid for an arbitrary choice of basis and weighting functions.

II. PROBLEM STATEMENT

Consider the problem of recovering a signal s(t) from a
sequence of noisy measurements y(t)

y(t) = s(t) + η(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized (dimension-
less) discrete time, and η(t) denotes additive measurement
noise. In the absence of a phenomenological model of s(t)
– whether deterministic or stochastic – we will pursue a
local estimation technique based on “curve fitting”: we will
assume that at each instant t the signal s(t) can be locally
approximated by a linear combination of a certain number of
known functions of time, further referred to as basis functions.
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However, neither the order of approximation (the number of
basis functions), nor its local range of applicability will be
regarded as known. More precisely, at each time instant t we
will consider a family of hypothetical signal descriptions of
the form

y(t+ i) = s(t+ i) + η(t+ i)

Hn|k(t) : s(t+ i) = fTn|k(i)βn, var[η(t+ i)] = ρ(t)

i ∈ Ik = [−k, k]

(2)

where k ∈ K = {k1, . . . , kK} denotes the approximation
range, n ∈ Nk = {1, . . . , Nk}, Nk = min(k,N), denotes the
order of approximation, and fn|k(i) =

[
f1|k(i), . . . , fn|k(i)

]T
,

i ∈ Ik, denotes the vector of n linearly independent discrete-
time basis functions. We will assume that, for each value of
t, {η(t + i), i ∈ Ik} is a sequence of independent random
variables with constant but unknown variance ρ(t).

The two possible choices of basis functions, which have
some computational advantages that will be discussed later, are
powers of time (corresponding to Taylor series approximation)

fl|k(i) =

(
i

k

)l−1
, l = 1, . . . , n, i ∈ Ik (3)

and harmonic functions (corresponding to Fourier-type ap-
proximation)

f1|k(i) = 1

f2l|k(i) = sin
lπi

k
, f2l+1|k(i) = cos

lπi

k
l = 1, . . . , n0, n = 2n0 + 1, i ∈ Ik .

(4)

Assuming validity of the local signal representation (2), the
vector of coefficients βn can be estimated using the method
of weighted least squares

β̂n|k(t) = arg min
βn

∑
i∈Ik

wk(i)
[
y(t+ i)− fTn|k(i)βn

]2
where {wk(i), i = −k, . . . , k}, wk(0) = 1, denotes a nonneg-
ative, symmetric bell-shaped window of width 2k+1 used for
localization purposes. Straightforward calculations lead to

β̂n|k(t) = P−1n|kpn|k(t) (5)

where

Pn|k =
∑
i∈Ik

wk(i)fn|k(i)fTn|k(i),

pn|k(t) =
∑
i∈Ik

wk(i)fn|k(i)y(t+ i) .

Based on (5), the local estimate of s(t) can be obtained in the
form

ŝn|k(t) = fTn|k(0)β̂n|k(t) . (6)

When needed, in a similar way one can obtain the estimate of
the l-th derivative of s(t) (see e.g. [27] – [29])

ŝ
(l)
n|k(t) = [f

(l)
n|k(0)]Tβ̂n|k(t) (7)

where

f
(l)
n|k(i) = f̃

(l)
n|k(τ)|τ=i, f̃

(l)
n|k(τ) =

dl f̃n|k(τ)

dτ l

and f̃n|k(τ), τ ∈ R, denotes the continuous time “prototype”
of the basis function vector fn|k(i).

Our task will be to choose, at each time instant t, the most
appropriate values of n ∈ Nk and k ∈ K, leading to the
following local approximation of s(t)

ŝ(t) = fT
n̂(t)|k̂(t)(0)β̂n̂(t)|k̂(t)(t) . (8)

The choice of n and k should depend on local properties of
the approximated signal, such as the local compliance with the
incorporated basis functions and the local signal-to-noise ratio.
In statistical terms the best choice is the one that trades off
the bias and variance components of the mean squared signal
estimation error (MSE)

MSE(t) = E{[s(t)− ŝ(t)]2} = MSEb(t) + MSEv(t) (9)

where MSEb(t) = [s(t) − s̄(t)]2, s̄(t) = E[ŝ(t)] and
MSEv(t) = var[ŝ(t)] = E{[ŝ(t) − s̄(t)]2}. Since the bias
component decreases with growing n and decreasing k, while
the variance component shows the opposite tendency, some
sort of compromise is needed. In the remaining part of the
paper we will present and compare two approaches to adaptive
selection of n and k.

III. PREDICTION BASED APPROACH

Suppose that the noisy signal y(t) obeys (2) and denote by
Ω̃k(t) = {η̃(t− k), . . . , η̃(t+ k)} another realization of mea-
surement noise, independent of Ωk(t) = {η(t− k), . . . , η(t+
k)}. The corresponding measurements will be denoted by ỹ(t)

ỹ(t+ i) = s(t+ i) + η̃(t+ i), i ∈ Ik .

Following Akaike [30], one can adopt as an instantaneous
measure of fit the final prediction error (FPE) statistic

δn|k(t) = E{[ỹ(t)− fTn|k(0)β̂n|k(t)]2} (10)

where averaging is carried out over Ω̃k(t) and Ωk(t). Accord-
ing to (10) the quality of the local model is evaluated in terms
of the mean squared prediction error (called final prediction
error in [30]) observed when the model is used to predict
another realization of the noisy signal, different from the one
used for identification purposes.

If the hypothetical description Hn|k(t) holds true, one
obtains

∆β̂n|k(t) = β̂n|k(t)− βn = P−1n|krn|k(t)

rn|k(t) =
∑
i∈Ik

wk(i)fn|k(i)η(t+ i)

and

E[rn|k(t)rTn|k(t)] = ρ(t)Rn|k. (11)
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This leads to

cov[β̂n|k(t)] = E
[
∆β̂n|k(t)∆β̂T

n|k(t)
]

= ρ(t)Qn|k (12)

where

Qn|k = P−1n|kRn|kP
−1
n|k

Rn|k =
∑
i∈Ik

w2
k(i)fn|k(i)fTn|k(i) .

Due to mutual independence of η̃(t) and ∆β̂n|k(t), one
obtains

δn|k(t) = E{[η̃(t)− fTn|k(0)∆β̂n|k(t)]2}

= E[η̃2(t)] + fTn|k(0)cov[β̂n|k(t)]fn|k(0)

= ρ(t)[1 + qn|k] (13)

where

qn|k = fTn|k(0)Qn|kfn|k(0) .

Consider the following estimate of the instantaneous noise
variance

ρ̂n|k(t) =
1

Lk

∑
i∈Ik

wk(i)
[
y(t+ i)− fTn|k(i)β̂n|k(t)

]2

=
1

Lk

∑
i∈Ik

wk(i)
[
η(t+ i)− fTn|k(i)∆β̂n|k(t)

]2
=

1

Lk

∑
i∈Ik

wk(i)η2(t+ i)− 1

Lk
rTn|k(t)P−1n|krn|k(t)

(14)

where Lk =
∑
i∈Ik wk(i) denotes the effective window width.

Note that

E
[
rTn|k(t)P−1n|krn|k(t)

]
= tr

{
P−1n|kE[rn|k(t)rTn|k(t)]

}
= ρ(t)tr{P−1n|kRn|k} .

(15)

Combining (14) with (15) and denoting vn|k =
tr{P−1n|kRn|k}/Lk, one obtains

E[ρ̂n|k(t)] = ρ(t)
[
1− vn|k

]
which leads to the following unbiased estimate of the final
prediction error

δ̂n|k(t) =
1 + qn|k

1− vn|k
ρ̂n|k(t) (16)

and the corresponding selection rule

{n̂(t), k̂(t)} = arg min
k∈K
n∈Nk

δ̂n|k(t) . (17)

IV. INTERPOLATION BASED APPROACH

As an alternative to the final prediction error based approach
to selection of n and k, we will consider a technique known
as cross validation, based on evaluation of signal interpolation
errors. Denote by

ε◦n|k(t) = y(t)− fTn|k(0)β̂◦n|k(t) (18)

the leave-one-out signal interpolation error arising when the
sample y(t) is estimated based exclusively on the preceding
({y(i), i < t}) and succeeding ({y(i), i > t}) samples

β̂◦n|k(t) = arg min
βn

∑
i∈Ik
i6=0

wk(i)
[
y(t+ i)− fTn|k(i)βn

]2
= [P◦n|k]−1p◦n|k(t) (19)

where

P◦n|k =
∑
i∈Ik
i6=0

wk(i)fn|k(i)fTn|k(i)

p◦n|k(t) =
∑
i∈Ik
i6=0

wk(i)fn|k(i)y(t+ i) .
(20)

The estimates of n and k can be obtained using the following
cross-validation (CV) based rule

{n̂(t), k̂(t)} = arg min
k∈K
n∈Nk

σ̂n|k(t) (21)

where σ̂n|k(t) denotes the local estimate of the variance of
ε◦n|k(t), evaluated in the decision window of width M =
2m+ 1 centered at t

σ̂n|k(t) =
1

2m+ 1

m∑
i=−m

[ε◦n|k(t+ i)]2 . (22)

To prevent the decision rule from behaving in an erratic way
and, at the same time, retain its adaptivity, the recommended
range of values for m is [20, 30].

The leave-one-out interpolation errors can be easily evalu-
ated in terms of “regular” interpolation errors

εn|k(t) = y(t)− ŝn|k(t) = y(t)− fTn|k(0)β̂n|k(t) . (23)

Actually, combining the formula

[P◦n|k]−1 = P−1n|k +
P−1n|kfn|k(0)fTn|k(0)P−1n|k

1− zn|k
zn|k = fTn|k(0)P−1n|kfn|k(0)

obtained from (20) using the matrix inversion lemma [31]
(note that wk(0) = 1), with the formula

p◦n|k(t) = Pn|kβ̂n|k(t)− fn|k(0)y(t)

which stems from (20), one arrives at

fTn|k(0)β̂◦n|k(t) =
fTn|k(0)β̂n|k(t)− zn|ky(t)

1− zn|k
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which leads to

ε◦n|k(t) =
εn|k(t)

1− zn|k
. (24)

Hence, evaluation of ε◦n|k(t) does not require implementation
of the modified estimation scheme (19), which makes the
proposed solution computationally attractive.

V. COMPUTATIONAL ASPECTS

First, observe that

fTn|k(i)β̂n|k(t) = γT
n|k(i)pn|k(t)

where the time-independent vectors γn|k(i) = P−1n|kfn|k(i)
can be precomputed and memorized for all values of n, k
and i. Hence, neither computation of ŝn|k(t) nor computation
of residual errors in (14) requires matrix inversion. Second,
since the quantities pn|k(t), n = 1, . . . , Nk− 1 are subvectors
of pNk|k(t), the computational scheme is order-recursive.
Finally, for the polynomial and harmonic bases and weighting
sequences that belong to the cosinusoidal family, computations
can be carried out in the time-recursive way. The simplest
choice which guarantees this property is a cosinusoidal win-
dow of the form

wk(i) = cos[πi/(2k)] . (25)

To derive the time-recursive computational formula, note that
for the basis (3) it holds that

fNk|k(i− 1) = ANk|kfNk|k(i)

where ANk|k = [aij|k]Nk×Nk denotes the lower triangular
matrix with elements

aij|k =

{
(i−1i−j)/(−k)i−j for i ≥ j

0 for i < j
.

Note also that wk(i) = Re{uk(i)} where uk(i) = ej
πi
2k

denotes the recursively computable complex-valued window,
namely:

uk(i− 1) = γkuk(i), γk = e−j
π
2k . (26)

Exploiting (25) and (26), one can compute the quantity
pNk|k(t) recursively using the following algorithm

pNk|k(t) = Re{gNk|k(t)}

gNk|k(t) =
∑
i∈Ik

uk(i)fNk|k(i)y(t+ i)

= γkANk|k
[
gNk|k(t− 1)− uk(−k)fNk|k(−k)y(t− k − 1)

]
+ uk(k)fNk|k(k)y(t+ k).

The analogous recursive algorithm can be derived for the
harmonic basis (4). Another bell-shaped window which in
combination with the polynomial or harmonic basis allows
for recursive computation of pNk|k(t) is the classical Hann,
i.e., raised cosine window wk(i) = [1 + cos(πi/k)]/2.
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Figure 1: The fragment of measured ECG signal (A), the simulated
noisy ECG signal (B) [white noise, SNR = 10 dB] and two results
of denoising obtained with the proposed adaptive smoothing schemes
with FPE-based (C) and CV-based (D) design parameters selection.

VI. COMPUTER SIMULATIONS

In our simulation experiment signal denoising was carried
out for the ECG signal, sampled at 720 Hz, available from the
PhysioBank online database [32]. Fig 1A shows the analyzed
ECG signal of length 2048, covering two heartbeat cycles.
Noisy ECG signals were generated by adding white Gaussian
noise of different variances. Five input signal-to-noise-ratios
(SNRin) were considered: 5 dB, 10 dB, 15 dB, 20 dB, and
25 dB. Fig. 1B shows the simulated noisy ECG signal with
SNRin = 10 dB.

Table 1 shows comparison of denoising results obtained for
9 nonadaptive Savitzky-Golay type smoothers corresponding
to different choices of design parameters k (20, 40, 80) and
n (1, 3, 5), and for the proposed adaptive smoothing schemes
with FPE-based and CV-based selection of design parameters.
In each scenario, corresponding to different SNRin, the output
SNRs were averaged over 100 realizations of the noisy ECG
signal. In the CV-based approach the length of the decision
window M = 2m + 1 was set to 51. The best results
obtained for nonadaptive and adaptive approaches were shown
in boldface. Because of the space limitations we present only
the results obtained for the ECG test signal, the polynomial
basis and the cosinusoidal window (25). More simulation
results and the corresponding MATLAB codes can be found
at the web page [33]. The proposed adaptive approaches yield
either better or comparable results to those provided by the
best smoothing algorithms with fixed settings. As shown in
Figs. 1C and 1D, the results obtained using the FPE and CV
criteria are very similar.

The proposed approaches were next compared with the
wavelet shrinkage methods VisuShrink [10] and BayesShrink
[11], known of their very good signal denoising capabilities.
The corresponding MATLAB codes are available at the Stan-
ford University web page [34]. We used typical settings –
Daubechies 6 wavelet with a three-level decomposition. Table
2 shows comparison of denoising results for different SNRin.
Note that for low SNRin the FPE and the CV approaches yield
better results than the wavelet methods. For high SNRin the
results are comparable.
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SNRin

5 dB 10 dB 15 dB 20 dB 25 dB
k\n 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5
20 16.5 16.5 15.0 18.1 21.0 19.8 18.7 24.2 24.0 18.9 26.3 27.3 19.0 27.2 29.1
40 12.1 15.9 17.2 12.4 17.4 20.7 12.5 17.9 22.8 12.5 18.1 23.8 12.5 18.2 24.1
80 9.3 11.3 13.2 9.4 11.5 13.7 9.4 11.6 13.9 9.4 11.6 14.0 9.4 11.6 14.0

FPE/CV 17.2/17.6 21.4/21.7 24.7/24.9 27.1/27.3 28.7/29.0

Table II: A comparison of denoising results of the ECG signal
obtained for the proposed adaptive smoothing schemes (FPE, CV)
and for the wavelet-based methods: VisuShrink with soft thresholding
(ST) and hard thresholding (HT), and BayesShrink (BS).

SNRin

5 dB 10 dB 15 dB 20 dB 25 dB
FPE 17.2 21.4 24.7 27.1 28.7
CV 17.6 21.7 24.9 27.3 29.0
ST 10.4 14.1 17.6 21.0 23.9
HT 14.8 19.0 22.3 25.3 27.6
BS 16.0 20.2 24.0 27.0 29.1

VII. CONCLUSION

The paper presents a new solution to design of data-adaptive
Savitzky-Golay type smoothers. The proposed bandwidth and
order adaptation mechanisms were based on cross-validatory
analysis and generalized final prediction error statistic, re-
spectively. The proposed adaptive approaches yield either
better results or results that are comparable to those provided
by the best smoothing algorithms with fixed settings. They
also favorably compare with the state-of-the-art denoising
algorithms based on the wavelet signal decomposition.
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Table I: Comparison of denoising results of the noisy ECG signal (for 5 input SNRs) obtained for 9 nonadaptive Savitzky-Golay type 
smoothers corresponding to different choices of parameters k (20, 40, 80) and n (1, 3, 5), and for the proposed adaptive smoothing schemes 
with FPE-based and CV-based design parameters selection. The output SNRs were averaged over 100 realizations of noisy ECG signal.
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