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A B S T R A C T

As the demand for cloud computing services increases, optimizing resource allocation and energy consumption
has become a key factor in achieving sustainability in cloud environments. This paper presents a novel
approach to address these challenges through an optimized virtual machine (VM) migration strategy that
employs a game-theoretic approach based on particle swarm optimization (PSO) (PSO-GTA). The proposed
approach leverages the collaborative and competitive dynamics of Game Theory to minimize energy con-
sumption while using renewable energy. In this context, the game is represented by the swarm, where
each player, embodied by particles, carries both competitive and cooperative elements essential to shape the
collective behavior of the swarm. PSO is integrated to refine migration decisions, improving global convergence
and optimizing the allocation of VMs to hosts. Through extensive simulations and performance evaluations,
the proposed approach demonstrates significant improvements in resource utilization and energy efficiency,
promoting sustainability in cloud computing environments. This research contributes to the development
of environmentally friendly cloud computing systems, thus ensuring the delivery of energy-efficient cloud
computing. The results demonstrate that the proposed approach outperforms fuzzy and genetic methods in
terms of renewable energy usage. The PSO-GTA algorithm consistently outperforms Q-Learning, Pittsburgh
and KASIA across three simulation scenarios with varying cloudlet dynamics, showcasing its efficiency and
adaptability, and yielding improvements ranging from 0.68% to 5.32% over baseline results in nine simulations.
1. Introduction

The rapid proliferation of cloud computing services in recent years
has ushered in an era of unprecedented digital transformation and
data-driven innovation. This remarkable evolution of information tech-
nology has triggered a paradigm shift, fundamentally altering the way
businesses and institutions operate in the digital age. The appeal of
cloud computing lies in its ability to offer scalable, on-demand access
to computational resources, thereby erasing the traditional hardware
boundaries and geographical limitations. Cloud technology has quickly
become the backbone of contemporary organizations, providing them
with the agility and flexibility needed to navigate the complexities of
today’s digital landscape. However, this increase in cloud adoption,
while empowering, has revealed a critical challenge that cannot be
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ignored: optimizing resource allocation and power consumption in
cloud environments [1]. As the reach of the cloud increases, so does its
environmental footprint, making it crucial to strike a balance between
growing demand for computing resources and ecological responsibility.
The very scalability that makes the cloud so attractive also poses a
dilemma, as uncontrolled growth can lead to inefficiencies, wasted
resources and increased energy consumption. Therefore, achieving sus-
tainability in cloud computing requires innovative strategies that not
only address the growing appetite for computing power, but also em-
brace ecological awareness as an integral part of cloud operations.
This convergence of technology and sustainability calls for inventive
solutions that optimize resource allocation, reduce energy consumption
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and mitigate the environmental impact of cloud computing, resulting
in a more responsible and environmentally friendly digital era [2].

Consequently, sustainability has emerged as a key concern in this
context, transcending mere industry trends and becoming a cornerstone
of responsible technological progress. The exponential growth of cloud
data centers (CDCs), which form the backbone of the increasingly
digital world, has triggered the environmental footprint associated
with their operation. The ever-expanding network of servers, cooling
systems, and energy-intensive hardware components has highlighted
the pressing need to mitigate the ecological impact of these massive
data centers. The imperative to act is increasingly evident, driven both
by environmental awareness and regulatory measures aimed at curbing
emissions and energy consumption. The environmental repercussions of
unsustainable cloud infrastructure are now palpable, extending beyond
the confines of data centers to affect the planet at large. Finding
innovative approaches that can reconcile the relentless demand for
computing power with responsible energy use and resource allocation
has never been more critical [3]. Balancing the equation between
technological advancement and environmental responsibility has thus
become a primary objective in the field of cloud computing. In this
dynamic landscape, fostering sustainability in CDCs is not only a no-
ble aspiration but an urgent necessity. It requires a paradigm shift
in the way cloud computing solutions are conceived and deployed,
going beyond improving efficiency to address fundamental issues of
resource utilization, energy efficiency and carbon emissions. This is
where technology, environmental stewardship, and sustainability con-
verge to chart a new course for the digital future. Holistic rethinking of
cloud infrastructure design, power supply and operational strategies is
needed to steer cloud computing towards a more sustainable, respon-
sible and environmentally friendly future. In this context, innovative
solutions like the one discussed in this paper, which leverage cutting-
edge technologies such as PSO and Game Theory [4], play a pivotal
role in addressing these imperatives and shaping the sustainable cloud
ecosystem.

This paper presents a solution to address these formidable chal-
lenges: a novel approach centered on optimized VM Migration. In
the quest for sustainability, VM migration is a key tool that enables
the dynamic reallocation of virtualized workloads to better utilize
resources and optimize power consumption [5,6]. However, the power
of VM migration is greatly enhanced with the integration of PSO-based
Game Theory Approach (PSO-GTA). By harnessing the cooperative and
competitive dynamics intrinsic to Game Theory [7,8], this approach
seeks to maximize renewable energy usage while minimizing energy
consumption. In this intricate interaction, the ‘‘game’’ takes the form of
a swarm, while the ‘‘players’’ are embodied as particles. Each particle
represents a potential VM migration decision and carries both competi-
tive and cooperative attributes that depict the collective behavior of the
swarm. These elements, guided by game theory principles, organize the
VM migration scheduling. Furthermore, to refine migration decisions,
PSO is seamlessly integrated since it augments the global convergence,
ensuring that VMs are optimally allocated to hosts, thereby achieving a
balance between computational efficiency and energy conservation [9].

This research substantiates the viability of the PSO-GTA through rig-
orous simulations and performance evaluations in a CloudSim simula-
tion environment that enables VM migration between datacenters. The
results are striking, showcasing a substantial enhancement in resource
utilization and energy efficiency compared to the results obtained
in [5], showcased as the baseline. This synergy between sustainabil-
ity and cloud computing promises to significantly reduce the carbon
footprint of CDCs while rationalizing operational costs and strength-
ening the uninterrupted delivery of cloud services [10]. In summary,
this research heralds a promising frontier for green cloud computing
systems. By combining the aforementioned concepts, it paves the way
for a more responsible and efficient cloud ecosystem, underscoring the
potential of the PSO-GTA in optimizing VM migrations for a sustainable
2

cloud computing future.
In the realm of computational intelligence, genetic algorithms and
fuzzy systems stand out as established methodologies that have sig-
nificantly contributed to problem-solving in various domains. Genetic
algorithms, inspired by the principles of natural selection and genet-
ics, employ a population of potential solutions to evolve and adapt
over successive generations, ultimately converging towards optimal or
near-optimal solutions for complex problems [11,12]. On the other
hand, fuzzy systems, rooted in fuzzy logic, provide a framework for
handling uncertainty and imprecision by allowing variables to take on
degrees of membership in linguistic sets [13]. These two paradigms
have proven effective in addressing diverse challenges. To further
bolster the findings, a comparative analysis is conducted against estab-
lished methodologies such as the Pittsburgh genetic algorithm, Knowl-
edge Acquisition with a Swarm Intelligence Approach (KASIA) and a
Q-Learning algorithm [14]. An important feature of the first two algo-
rithms is the application of knowledge acquisition, which gives value
to the comparison. The inclusion of these comparisons aims to provide
a comprehensive understanding of the PSO-GTA’s performance and its
standing within the broader landscape of optimization techniques in
cloud computing.

In practical terms, optimizing sustainability in cloud infrastructures
involves a multi-faceted approach aimed at reducing environmental im-
pact while maintaining operational efficiency. By harnessing a higher
percentage of renewable energy sources, such as solar or wind, CDCs
can significantly reduce their reliance on conventional energy sources,
thereby reducing carbon emissions and the overall environmental foot-
print. This optimization goes beyond energy procurement and encom-
passes various aspects of data center management, such as resource
allocation and workload scheduling. For example, the implementa-
tion of intelligent workload management strategies can dynamically
allocate computing resources based on the availability of renewable
energy, thereby maximizing the use of green energy and minimizing
dependence on fossil fuels during peak demand periods [15,16]. In
this context, this paper leveraged this idea and implemented it in a
simulation scenario. Overall, the pursuit of sustainability optimization
in cloud infrastructures is critical to mitigating the environmental
footprint of data centers and fostering a greener and more resilient
digital ecosystem.

The subsequent sections of this paper unfold a comprehensive explo-
ration of various facets within the realm of cloud computing, employing
game theory as a guiding framework. Initially, the background and
related works are meticulously reviewed to establish a foundational
understanding of the subject matter. Following this, the material and
methods section is presented, intricately integrating game theory con-
cepts into the analysis, alongside delineating computing algorithms
chosen for comparison. Subsequently, the experimental results are
elucidated, providing empirical insights into the efficacy of the pro-
posed methodologies. Finally, culminating the discourse, the conclusion
encapsulates the key findings, implications, and potential avenues for
future research.

2. Background and related works

Cloud computing has emerged as a transformative force in the
information technology landscape, revolutionizing the way organiza-
tions and individuals access and use computational resources, data
storage and software services. At its core, cloud computing offers a
revolutionary on-demand model, providing access to a shared set of
configurable resources over the Internet [17]. This paradigm shift is
based on a set of essential characteristics: on-demand self-service, broad
network access, resource pooling, rapid elasticity, measured service,
etc. Together, these characteristics define the dynamic and user-centric
nature of cloud computing [18]. The cloud has seen rapid growth and
transformation in recent years, becoming a central force in modern
businesses and institutions. This fast rise can be attributed to various

factors such as scalability and flexibility [19], cost-Efficiency [20],
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global reach of cloud providers [21], and more. Furthermore, cloud
computing drives innovation by offering state-of-the-art technologies
such as machine learning, data analytics and IoT solutions, empowering
organizations to innovate and remain competitive in the ever-evolving
digital landscape [22].

The central role of cloud computing in modern companies and
institutions is undeniable. It supports critical functions such as data
storage, processing and service delivery, making it an indispensable
tool for organizations seeking to navigate the complexities of the digital
age. However, alongside the immense benefits, cloud computing faces
a number of challenges. These challenges are significant and multi-
faceted. Resource allocation is a complex task that involves efficiently
allocating computing resources to meet fluctuating demands while min-
imizing waste. Inefficient allocation can result in increased operational
costs and suboptimal performance [23]. Energy consumption is another
pressing concern. The energy demands of CDCs, which house the hard-
ware that powers cloud services, are increasing. This surge in energy
consumption affects not only operational costs but also has far-reaching
ecological implications [24]. Scalability, while a hallmark of cloud
computing, can pose its own set of challenges. Balancing scalability
with resource allocation and energy efficiency is a challenge. As CDCs
expand to meet increasing service demands, managing this growth
efficiently becomes crucial to ensure sustainability and operational
efficiency. As these challenges continue to shape the cloud computing
landscape, the need for innovative and greener solutions has become
increasingly apparent. Achieving sustainability in cloud computing is
a top priority, where technology and sustainability intersect to create
a more responsible and resource-efficient digital future. Addressing
these challenges is crucial to ensure the sustainable growth of cloud
computing while minimizing its environmental impact [25].

Studies in the field of cloud computing and sustainability have been
instrumental in shedding light on the challenges and opportunities asso-
ciated with making cloud services more environmentally friendly [26].
This area of research has delved into the complexities of resource opti-
mization and energy efficiency within data centers, emphasizing the
importance of adopting green technologies and sustainable practices
to reduce the environmental impact of cloud operations. By exploring
innovative techniques and technologies that promote sustainability,
researchers have sought to harmonize the ever-expanding cloud in-
frastructure with ecological responsibility. This involves not only min-
imizing energy consumption, but also incorporating renewable energy
sources to create eco-friendly data centers [5].

The VM migration literature offers valuable insights into the ad-
vantages and complexities of this practice. Researchers have rigorously
examined various approaches to VM migration, shedding light on the
strengths and limitations of different strategies. Some methods fo-
cus on minimizing downtime and ensuring smooth migrations [27],
while others prioritize resource allocation and load balancing [28].
Furthermore, the impact of VM migration on resource allocation and
energy consumption has been a subject of intense research [5]. It
has been demonstrated that well-scheduled VM migrations can lead to
significant improvements in resource utilization and energy efficiency,
a vital consideration for both cloud service providers and customers.
The complex interplay between the benefits and challenges of VM
migration forms the basis of innovative solutions to optimize cloud
operations. Scheduling techniques within cloud computing have been
explored in depth to improve resource utilization and energy efficiency.
Numerous studies have meticulously compared various scheduling al-
gorithms and strategies to evaluate their effectiveness in optimizing
resource allocation and workload management [29]. The diversity of
these approaches reflects the multifaceted nature of the cloud environ-
ment, where dynamic workloads, multi-tenancy and variable resource
demands present unique scheduling challenges. Researchers have also
identified the associated challenges and complexities in scheduling for
the cloud, including issues related to task placement, load balancing
3

and response time guarantees. This ongoing research underscores the
need for innovative scheduling methods that can adapt to the changing
cloud computing landscape.

Applications of game theory in cloud computing have demonstrated
the relevance of the field in modeling interactions within cloud environ-
ments [37]. These innovative approaches have unveiled the potential
for leveraging game theory to address resource allocation and energy
optimization, taking advantage of the competitive and cooperative
dynamics inherent to cloud operations [38,39]. By treating cloud el-
ements as players in a strategic game, these approaches seek to strike a
balance between the needs of VMs and the available resources within
the cloud infrastructure. Each player, embodied by the particles of a
swarm, carries both competitive and cooperative attributes that shape
the collective behavior of the swarm, optimizing the allocation of
VMs to hosts. Game theory presents an exciting avenue for managing
the intricate dynamics of cloud computing, promoting efficiency and
sustainability.

Table 1 offers a thorough comparison of works related to Adaptive
Neuro-Fuzzy Inference System (ANFIS), presenting specific objectives,
algorithms, key contributions, and results. Each row represents a dis-
tinct work, including proposed approaches. In the first row, the focus
is on enhancing cloud security through VM migration, employing a
Game Theoretic approach for optimal migration strategies and system
security improvement [30]. The second row addresses dynamic job
scheduling and resource efficiency using an Adaptive Chaotic Sparrow
Search Algorithm Optimization and coalitional game, resulting in no-
table reductions in latency, processing time, workload imbalance, and
energy consumption [31]. The third row handles computationally in-
tensive tasks with limited resources, employing a two-stage computing
offloading algorithm based on game theory, showcasing improvements
in energy consumption [32]. Smys et al. (2020) optimize edge comput-
ing platforms using Cooperative and Non-Cooperative Gaming-based
PSO, surpassing other algorithms in time-related variables [33]. The
fifth row focuses on optimal edge server placement with a Multi-
objective Whale Optimization Algorithm and game theory, leading to
reductions in network latency and improved server load balance [34].
The sixth row optimizes energy-efficient sensor networks through Ant
Colony Optimization with Game Theory Clustering, achieving reduced
energy consumption and improved data transmission [35]. The seventh
row addresses cloud task scheduling using a Red Fox Optimizer with
fuzzy and game theory, showing improved fitness values compared
to other algorithms [36]. Finally, the last row, corresponding to the
proposed PSO-GTA approach, aims to optimize VM migration for cloud
sustainability, emphasizing renewable energy.

While existing studies have made significant contributions to these
fields, substantial gaps remain in the application of game theory to
virtual machine migration using inter-data center scheduling. Specifi-
cally, existing research has not fully leveraged game theory to optimize
the efficiency of migration processes, in the context of improving
the utilization of energy and time resources, and enhancing energy
sustainability in an intercloud environment. This research seeks to
address these gaps and extend the current state of knowledge in a
dynamic and evolving landscape by applying game theory to achieve
more efficient and sustainable data center operations. The subsequent
sections of this paper will delve deeper into the novel approach of
integrating PSO-GTA for optimized VM migration. In the upcoming
sections, this document meticulously outlines the material and methods
employed in the research, elucidating the intricate concepts of game
theory and Nash equilibrium. The proposed comparing algorithms are
also expounded upon, shedding light on their theoretical foundations
and operational mechanisms. Subsequently, the fourth section delves
into the experimental results, meticulously showcasing the superior

performance of the algorithm rooted in game theory.
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Table 1
Comparison of Game Theory state of the art with proposed work.

Work Objective Used algorithm Key contribution Results

[30]. VM migration for cloud
environment security.

Game Theoretic approach. Attacker and defender game for VM
migration to increase Cloud security.

Optimal migration strategies in order
to ensure the security of the system.

[31]. Dynamic job scheduling
and resource efficiency.

Adaptive chaotic sparrow
search algorithm optimization
and coalitional game.

Efficient utilization of resources
through a multi-objective search
algorithm and innovative coalitional
game-theoretic approach.

The algorithm reduces the latency
overhead in 9%, processing time in
14%, workload imbalance in 15%
and energy consumption in 19%.

[32]. Handle computationally
intensive tasks with
limited resources.

Two-stage computing
offloading algorithm based on
game theory.

A multi-device partial offload energy
consumption model for cloud–edge
collaboration scenarios alongside a
game theory-based method to achieve
Nash equilibrium state of the Cloud.

The simulation results show that
under the time-delay constraint, this
method has an average improvement
of 32% compared with the
traditional method.

[33]. Time performance
evaluation in edge
computing.

Cooperative and
Non-Cooperative
Gaming-based PSO.

Utilization of game theory method
for optimizing edge platform in
terms of computation time and
waiting time.

The proposed method achieved
better results than GA, NGSA and
GSA in terms of time variables.

[34]. Optimal edge server
placement.

Multi-objective whale
optimization algorithm and
game theory.

Using WOA algorithm, neural
networks and game theory to
optimize the divided resource
deployments.

The proposed method reduced the
network average access latency by
33.5% and also improved the load
balance on servers by 28.2%,
compared to similar algorithms.

[35]. Energy efficient sensor
networks.

Ant colony optimization with
game theory clustering.

Exploring cluster-based networks to
optimize power usage and maintain
energy balance.

The proposed approach effectively
reduces network sensor energy
consumption, improves sensor node
data transmission, minimizes
end-to-end latency, reduces packet
loss, and maximizes cluster
formation.

[36]. Task scheduling in
cloud environment.

Red fox optimizer with fuzzy
and game theory.

Use the proposed method to find
optimal mapping between task and
resources.

The experimental results indicated
that the proposed algorithm could
improve the fitness value by 24.18%,
12.81%, 15.65%, 33.49%, and
14.73% compared with the BA,
GWO, PSO, ALO, and RFO,
respectively.

Proposed. Percentage of
renewable energy.

Game theory-based
optimization.

VM migration optimization for cloud
sustainability using game
theory-based optimization.

The proposed algorithm consistently
surpasses Pittsburgh and KASIA in
nine simulation scenarios featuring
diverse cloudlet dynamics, achieving
improvements ranging from 0.68% to
5.32% over baseline results.
3. Material and methods

In the intersection of game theory and cloud computing lies a realm
of fascinating challenges and opportunities. Game theory, a discipline
originally developed to analyze strategic interactions among rational
decision-makers, finds a new domain in the landscape of cloud com-
puting. Here, the convergence of multiple entities, such as DCs, hosts,
VMs and cloudlets, creates a dynamic environment ripe for strategic
decision-making. At its core, the game problem formulation in this con-
text revolves around optimizing resource allocation, task scheduling,
and network management to maximize utility and efficiency. Cloud
infrastructure serves as the battleground, where players seek to deploy
strategies that yield favorable outcomes. Payoff functions and strategies
become the linchpins of decision-making, determining the success or
failure of various players in this complex ecosystem. Meanwhile, com-
putational algorithms emerge as the engines driving strategic behavior
and adaptation. From the classic Pittsburgh approach to the more
recent KASIA, PSO-GTA, and Q-Learning methods, these algorithms
harness the power of computation to navigate the intricate landscape
of cloud-based interactions, paving the way for optimized resource
utilization and enhanced performance. Fig. 1 shows the logical relations
between the contents of this section.

3.1. Game theory and cloud computing

In the changing landscape of cloud computing systems, it is im-
perative to design robust strategies for effective resource and energy
4

management. This involves formulating better selection, scheduling
and allocation policies. By establishing a foundation that optimally
balances these elements, the cloud infrastructure can operate more
efficiently. To calibrate and refine system performance, it is essential
to extract key data points. These encompass critical parameters such as
runtime, renewable energy usage and computational and resource cost
complexities. A thorough assessment of these factors lays the founda-
tion for future optimization efforts. One avenue for improving system
efficiency and resource allocation is to apply an optimization algorithm
based in game theory. In this framework, datacenters, hosts, VMs, and
cloudlets are treated as players, each with a set of possible actions.
Strategies for these entities are meticulously identified, focusing on
increasing the players’ profits through iterative payoffs.

The iterative nature of the game is marked by continuous indica-
tion of payoff/performance metrics. These metrics, derived from the
characteristics of datacenters, hosts, VMs, and cloudlets, provide crucial
information on the evolving dynamics of the system. The calculation of
a payoff matrix, based on the analysis of these metrics, serves as a fun-
damental tool for discerning strategic perspectives. The ultimate goal
is to determine whether the game converges to an equilibrium state, be
it a Nash equilibrium or a Pareto front (in this paper, Nash equilibrium
is considered). If such equilibrium is achieved, the optimal strategy
is realized. However, in cases where equilibrium remains elusive, the
game moves smoothly to the improvement phase. This iterative process
of refinement ensures a dynamic and adaptive approach to the changing

challenges of cloud computing.
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Fig. 1. Logical relationships flow chart.
Table 2
Parallelism between swarm optimizer and game.

Swarm optimizer Game

Particle/Individual in the swarm Players in the game
Search space Strategies space
Objective functions Payoff functions
Best position in the swarm Stable strategy

Before solving the equilibrium, it can be beneficial to leverage
optimization algorithms, such as PSO. This proactive approach allows
for a comprehensive exploration of the solution space, aiding in the
identification of potential Nash equilibrium. Table 2 illustrates the
analogous structure shared between PSO and the conventional game
theory, showcasing their potential synergy. When using the optimiza-
tion algorithm and reaching the stopping criteria, the post-processing
of the results can be done, which should provide a set of strategies that
represent the Nash Equilibrium.

The measured metrics encompass various facets of the system’s
current characteristics. These metrics are outlined in Table 3, which
provides a comprehensive overview of the key features and corre-
sponding metrics. The features include the host, with metrics such as
Computational Capacity (MIPS), Renewable Energy Efficiency (% Re-
newable energy), and Computational Availability (MIPS). Additionally,
the VM is assessed through metrics such as Computational Maximum
Needs (MIPS) and Computational Actual Needs (MIPS). This structured
approach to measurement ensures a thorough evaluation of the system’s
performance and resource utilization, offering valuable insights into its
computational capacity, energy efficiency, and availability.

3.2. Game problem formulation

To delve into the intricacies of a game within the context of cloud
computing, an illustrative example is presented, offering a simplified
5

Table 3
Current characteristics from the system.

Feature Metric

Host Computational Capacity (MIPS)
Host Renewable Energy Efficiency (% Renewable energy)
Host Computational Availability (MIPS)
VM Computational Maximum Needs (MIPS)
VM Computational Actual Needs (MIPS)

depiction to elucidate the mathematical concepts that underpin this
dynamic framework. A scenario where multiple entities, or player
contenders, interact within a cloud computing environment is consid-
ered. These entities include datacenters, hosts, VMs and cloudlets. The
interaction between these players involves strategic decision-making
processes aimed at optimizing their individual gains with the payoff.

Datacenters: the subscript 𝑖 denotes the distinct datacenters par-
ticipating in the game, ranging from 𝐷𝐶1 to 𝐷𝐶4. Each datacenter
is a strategic player in the evolving landscape.

𝐷𝐶 = 𝐷𝐶𝑖; 𝑖 = 1,… , 4 (1)

Hosts: hosts are characterized by a dual subscript, 𝑖 and 𝑗, repre-
senting the datacenter index and the specific host within the dat-
acenter, respectively. This multidimensional representation cap-
tures the diverse hosting configurations across the cloud infras-
tructure.

𝐻 = 𝐻𝑖,𝑗 ; 𝑖 = 1,… , 4; 𝑗 = 1,… , 𝑚 (2)

Virtual Machines: VMs, denoted by 𝑉𝑀𝑖, where 𝑖 ranges from
1 to 𝑘, symbolize the virtualized computing instances. Each VM
contributes to the strategic decisions within the game.

𝑉𝑀 = 𝑉𝑀 ; 𝑖 = 1,… , 𝑘 (3)
𝑖
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Cloudlets: cloudlets, represented by 𝐶𝑖, are entities that generate
computational tasks within the cloud environment. The subscript
𝑖 signifies the distinct cloudlets participating in the strategic
interactions.

𝐶 = 𝐶𝑖; 𝑖 = 1,… , 𝑧 (4)

This breakdown establishes the foundational players in the game,
laying the groundwork for a comprehensive understanding of the math-
ematical formulations and subsequent strategic dynamics. In the follow-
ing sections, we delve into the mathematical concepts and strategies
employed by these player contenders in pursuit of optimizing their re-
spective objectives within the evolving cloud computing system. In the
intricate interaction of a game in cloud computing, each player pursues
distinct objectives, striving to maximize utility or minimize costs. The
possible payoff functions (utilities) of the main participants in the game
are explained below. The ultimate goal is to reduce resource use and
maximize the use of renewable energy over total energy.

Datacenters: Datacenters aim to maximize revenue by strate-
gically allocating resources (𝑅𝑖) to Hosts and setting computa-
tional costs (𝑌𝑖), in terms of MIPS. The summation reflects the
cumulative revenue generated by these strategic decisions.

𝑅𝑒𝑣𝑒𝑛𝑢𝑒(𝐷𝐶𝑖) =
∑

(𝑅𝑖 ⋅ 𝑌𝑖) (5)

Hosts: Hosts seek to maximize profit through the strategic alloca-
tion of resources (𝑋𝑖) (MIPS and renewable energy usage) to VMs
and setting computational costs (𝑌𝑖). The cost function (cost(𝑋𝑖))
factors into the profit calculation.

𝑃𝑟𝑜𝑓𝑖𝑡(𝐻𝑖) = 𝑋𝑖 ⋅ 𝑌𝑖 − 𝑐𝑜𝑠𝑡(𝑋𝑖) (6)

Virtual Machines: VMs strive to minimize execution time
(T(𝑉𝑀𝑖)) by considering the ratio of resource requirements (𝑅𝑅𝑖)
to the allocated resources (𝑋𝑖) (MIPS and renewable energy
usage). This reflects the efficiency of VM utilization.

𝑇 (𝑉𝑀𝑖) =
𝑅𝑅𝑖
𝑋𝑖

(7)

𝐶𝑜𝑠𝑡(𝑉𝑀𝑖) = 𝑅𝑅𝑖 ⋅ 𝑌𝑖 (8)

To define a task 𝐶, the data 𝐷𝑛, total computation 𝜏𝑛 and maximum
tolerable latency 𝑇𝑛 required by the task is considered. In the field of
cloud computing, task definition relies on sophisticated computational
models that take into account key parameters of the data associated
with the task, taking into account factors such as type, volume and
dependencies. The total computation aspect assesses the algorithmic
complexity, determining the number of operations involved in task
execution and influencing resource allocation decisions. Additionally,
these models factor in the critical element of maximum tolerable la-
tency, setting constraints on task completion time for applications that
require real-time processing. Together, these computational models
form the basis for efficient task scheduling within the cloud infras-
tructure, guiding resource allocation, scheduling policies, and system
optimization to satisfy various computational requirements.

𝐶 = {𝐷𝑛, 𝜏𝑛, 𝑇𝑛} (9)

In addition to the intricate computational models that govern task
definition in cloud computing, the strategy set (𝑆) further shapes
the decision-making landscape within the system. This set, denoted
as 𝑆, is carefully defined to encompass a range of strategic choices
available to entities involved in the cloud environment. Each strategy
within 𝑆 represents a distinct course of action that actors, such as
datacenters, hosts, VMs, and cloudlets, can employ to achieve their
specific objectives.

The composition of 𝑆 is derived from a meticulous analysis of
the system dynamics, taking into account the diverse interactions and
6

dependencies between entities. Strategies within 𝑆 may include re-
source allocation policies, energy utilization approaches, scheduling
algorithms, and cost optimization tactics tailored to the unique roles of
each player. As the cloud computing landscape evolves, the strategic
set 𝑆 serves as a dynamic framework, adapting to new challenges and
technological advances. The definition and evolution of 𝑆 contribute
significantly to the adaptability and efficiency of the cloud computing
system, fostering a versatile environment where entities can make
informed and strategic decisions to optimize their respective goals.

𝑆 = {𝑠𝑛∕𝑠𝑛 ∈ {𝑠𝑙𝑛, 𝑠
𝑚
𝑛 }, 𝑛 ∈ 𝐻,𝑚 ∈ 𝐷𝐶} (10)

{

if 𝑠𝑙𝑛 = 1 then migrate VM to host
if 𝑠𝑚𝑛 = 1 then choose another host inside the DC (11)

Then, some computations are performed following the definition
of the strategy set 𝑆 and the intricate computational models govern-
ing task execution within the cloud computing system, a series of
computations are undertaken. These operations are fundamental in
translating strategic decisions into actionable outcomes, ensuring the
efficient allocation of resources, and evaluating the overall performance
of the system.

Computational time 𝑡𝑙𝑛: where 𝑓 𝑙
𝑛 is the CPU computing power.

measures the duration taken to execute computational tasks
within the system. It encompasses the total time from task ini-
tiation to completion, providing insights into the speed and
efficiency of task execution. Strategies within the set 𝑆 are
scrutinized for their impact on minimizing computational time,
optimizing resource allocation, and enhancing overall system
efficiency.

𝑡𝑙𝑛 =
𝜏𝑛
𝑓 𝑙
𝑛

(12)

Energy consumption 𝑒𝑙𝑛: where 𝜎𝑙𝑛 is the energy consumption
factor per CPU. is a critical metric that quantifies the amount of
energy utilized during task execution. This metric is closely tied to
the sustainability and environmental impact of the cloud infras-
tructure. The set 𝑆 aims to incorporate strategies that minimize
energy consumption, potentially leveraging renewable energy
sources and energy-efficient resource allocation
policies.

𝑒𝑙𝑛 = 𝜏𝑛 ⋅ 𝜎
𝑙
𝑛 (13)

Cost of computational task 𝐸𝑙
𝑛. reflects the financial expendi-

ture associated with executing tasks within the cloud system. It
considers factors such as resource costs, computational expenses,
and any additional overhead incurred during task execution.
Strategies within 𝑆 are assessed based on their impact on cost
reduction and financial efficiency.

𝐸𝑙
𝑛 = 𝛽𝑡𝑛 ⋅ 𝑡

𝑙
𝑛 + 𝛽𝑒𝑛 ⋅ 𝑒

𝑙
𝑛 (14)

⎧

⎪

⎨

⎪

⎩

𝛽𝑡𝑛, 𝛽
𝑒
𝑛 are the weight factors of delay and energy

0 ⩽ 𝛽𝑡𝑛, 𝛽
𝑒
𝑛 ⩽ 1

𝛽𝑡𝑛 + 𝛽𝑒𝑛 = 1
(15)

Makespan 𝜇. is a critical metric representing the total time taken
to complete a set of tasks within the system. It is a holistic mea-
sure of system efficiency, encompassing the initiation, execution,
and completion phases of tasks. The set 𝑆 is designed to opti-
mize makespan by incorporating strategies that enhance resource
utilization, minimize idle time, and streamline task scheduling.:

∑

𝑖
𝜇 = 𝑡𝑛; 𝑖 = 1,… , 𝑧. (16)
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Finally, compute a utility from the system for optimization pur-
poses (𝑢𝑙𝑛), and obtain the optimal computational resource alloca-
tion/scheduling (𝑓𝑚∗

𝑛 ). The utility in this paper is the percentage
of renewable energy usage in the cloud environment. As computa-
tions unfold within the cloud computing environment, these calcu-
lations provide a quantitative framework for evaluating the success
of implemented strategies. The iterative nature of the system allows
for continuous refinement, adapting strategies within 𝑆 to achieve
optimal performance in terms of resource management and energy
consumption.

3.3. Computing algorithms

Algorithm 1 Game Algorithm Pseudo-Code
Initialize DC, H, VM and C.
Optimization process
Output: Strategy 𝑆∗

while 𝑆∗(𝑡) ≠ 𝑆∗(𝑡 − 1) do
𝑆∗(𝑡) = 𝑆∗(𝑡 − 1), 𝑠𝑒𝑡 𝑛 = 1
while 𝑛 ⩽ 𝑁 do

Compute utility 𝑢𝑙𝑛.
Compute optimal allocation/scheduling 𝑓𝑚∗

𝑛 .
Compute the best response 𝛥𝑛(𝑡).
𝑛 + +.
for 𝑛 = 1 ∶ 𝑁 do

if n then wins the t-th iteration
Update 𝑠𝑛(𝑡)

else
𝑠𝑛(𝑡) = 𝑠𝑛(𝑡 − 1)

end if
end for

𝑡 + +
end while

end while
Output: Optimal computation resource allocation 𝐹 ∗ and optimal
strategy 𝑆∗.

The algorithm at play 1 in this cloud computing framework or-
hestrates a dynamic and strategic interaction among entities. It be-
ins by defining a comprehensive set of strategies, denoted as 𝑆,

which encapsulates diverse decision-making approaches available to
the entities. The algorithm then performs a series of computations,
implementing these strategies to optimize resource allocation and en-
ergy consumption. These computations involve translating strategic
decisions into tangible outcomes, evaluating the system performance
based on quantitative metrics. The iterative nature of the algorithm
ensures its adaptability, allowing the system to refine and optimize
strategies within 𝑆 to meet evolving technological challenges and
advances. Through this systematic approach, the algorithm seeks to
create an efficient and responsive cloud computing environment that
balances the diverse objectives of its constituent entities while meeting
the quantitative parameters for optimal performance.

The Nash equilibrium, a fundamental concept in game theory,
materializes when every one of the 𝑛 players involved finds themselves
in a strategic stance where altering their individual strategies provides
no advantageous outcome. At this juncture, the system reaches a state
of stability, similar to an equilibrium, where each player’s chosen
strategy is optimal given the strategies of the others. In this equilibrium,
players have thoroughly considered the potential adjustments in their
strategies, yet no unilateral deviation promises a superior result. The
decision-making nexus of each player is saturated with a sense of strate-
gic contentment, as any deviation would only lead to a less favorable
position in the overall game. The Nash equilibrium encapsulates a
7

fascinating interplay of rationality and mutual anticipation among the 𝑚
players. It serves as a beacon, indicating a convergence point where the
complex dynamics of strategic decision-making harmonize, resulting in
a state where no individual has the motivation to unilaterally alter their
chosen course of action.

In the KASIA framework 2 proposed by Garcia et al. [13], fuzzy rule
bases (RBs) are viewed as autonomous entities subject to assessment
and refinement through Swarm Intelligence (SI) techniques. Within
this context, the methodology leverages the PSO algorithm for the
acquisition of fuzzy RBs. The system harnesses the collective dynamics
observed in swarms to drive its operation. Initially, a population of RBs
is generated, each represented as a collection of particles denoted by
matrices 𝑃 , where each row corresponds to an individual fuzzy rule.
These particles encompass antecedents, consequent, and connectives
following Mamdani coding. Through particle initialization, velocities
(𝑉 ) are assigned, enabling iterative rule modifications. Subsequently,
the algorithm iterates to determine optimal positions for individual
particles and the entire swarm collectively. This approach essentially
evaluates the performance of RBs, adhering to specified constraints on
algorithm variables, as detailed by Garcia et al. [13].

Algorithm 2 KASIA Procedure.
1: Swarm initialization: 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, 𝑁𝑟𝑢𝑙𝑒𝑠, 𝑁𝑖𝑡𝑒𝑟, inertial weight 𝜔, 𝑐1 and 𝑐2

factors.
2: Random setting of RB-Swarm position P.
3: Random setting of velocity V .
4: Apply P and V constraints.
5: Initialize Gbest and Pbest .
6: while 𝑁𝑖𝑡𝑒𝑟 do
7: while 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 do
8: Update P.
9: Apply constraints to P.

10: Evaluate particle.
11: Particles++.
12: end while
13: Update Gbest .
14: while 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 do
15: Update Pbest .
16: Update V .
17: Apply constraints to V .
18: Particles++.
19: end while
20: iter++.
21: end while
22: Return: Gbest .

𝑃𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎𝑖1,1 𝑎𝑖1,2 ⋯ 𝑎𝑖1,𝑛 𝑏𝑖1 𝑐𝑖1
𝑎𝑖2,1 𝑎𝑖2,2 ⋯ 𝑎𝑖2,𝑛 𝑏𝑖2 𝑐𝑖2
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑎𝑖𝑚,1 𝑎𝑖𝑚,2 ⋯ 𝑎𝑖𝑚,𝑛 𝑏𝑖𝑚 𝑐𝑖𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(17)

𝑉𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑣𝑖1,1 𝑣𝑖1,2 ⋯ 𝑣𝑖1,𝑛 𝑣𝑖1,𝑛+1 𝑣𝑖1,𝑛+2
𝑣𝑖2,1 𝑣𝑖2,2 ⋯ 𝑣𝑖2,𝑛 𝑣𝑖2,𝑛+1 𝑣𝑖2,𝑛+2
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑣𝑖𝑚,1 𝑣𝑖𝑚,2 ⋯ 𝑣𝑖𝑚,𝑛 𝑣𝑖𝑚,𝑛+1 𝑣𝑖𝑚,𝑛+2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(18)

𝑉 (𝑡 + 1) = 𝜔⊗ 𝑉 (𝑡)⊕ 𝑐1𝑟1 ⊗ (𝑃𝐵(𝑡) − 𝑃 (𝑡))⊕ 𝑐2𝑟2 ⊗ (𝐺𝐵(𝑡) − 𝑃 (𝑡)) (19)

(𝑡 + 1) = 𝑃 (𝑡)⊕ 𝑉 (𝑡 + 1) (20)

Within the particle 𝑃𝑖, denoting the RB matrix, the elements 𝑟𝑎𝑚,𝑛
ignify the encoded fuzzy input value corresponding to the antecedent
of rule 𝑚. Simultaneously, 𝑟𝑐𝑚,1 stands for the encoded fuzzy input

alue related to the consequent of rule 𝑚, while 𝑟𝑜𝑚,1 represents the
ncoded fuzzy input value pertaining to the logical operator of rule

. The structure of RB rules mirrors that of Table 5. Each row in the
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particle matrix comprises seven elements, encapsulating the details of
a fuzzy rule. The initial five elements encode values for considered
input variables, namely CDC efficiency, host’s computation capacity,
computational availability, VMs computational maximum needs, and
actual needs. The specific values of these entries are subject to variation
based on the granularity of the universe of discourse. The constraints
of the algorithms are presented below:

𝑟𝑎𝑚,𝑛 ∈ [−𝑀𝐹𝑎,+𝑀𝐹𝑎] (21)

where 𝑀𝐹𝑎 is the number of antecedent membership functions.
The sixth element represents the encoded value for the rule conse-

uent, and it will vary in the following interval:

𝑐𝑚,𝑛 ∈ [−𝑀𝐹𝑐 ,+𝑀𝐹𝑐 ] (22)

here 𝑀𝐹𝑐 is the number of consequent membership functions.
The seventh and last element represent the logical operator for the

ule, and its value is either 1 for AND or 2 for OR:

𝑜𝑚,𝑛 ∈ [1, 2] (23)

Although the initial generated particles could belong to the allowed
oundaries of the search space, the next matrix updates could eventu-
lly lead to an incoherent matrix whose elements reach values outside
he permitted limits of the search space. To avoid these situations,
he former values are constrained to ensure the coherence of the RB
atrices during the execution of the algorithm. The constraints are
escribed by the following equations:

𝑎𝑚,𝑛 =
{

−𝑓𝑎(𝑀𝐹𝑎) 𝑖𝑓 𝑟𝑎𝑚,𝑛 < −𝑓𝑎(𝑀𝐹𝑎)
+𝑓𝑎(𝑀𝐹𝑎) 𝑖𝑓 𝑟𝑎𝑚,𝑛 > +𝑓𝑎(𝑀𝐹𝑎)

(24)

𝑐𝑚,𝑛 =
{

−𝑓𝑐(𝑀𝐹𝑐 ) 𝑖𝑓 𝑟𝑐𝑚,𝑛 < −𝑓𝑐(𝑀𝐹𝑐 )
+𝑓𝑐(𝑀𝐹𝑐 ) 𝑖𝑓 𝑟𝑐𝑚,𝑛 > +𝑓𝑐(𝑀𝐹𝑐 )

(25)

𝑜𝑚,𝑛 =
{

1 𝑖𝑓 𝑟𝑜𝑚,𝑛 < 1
2 𝑖𝑓 𝑟𝑜𝑚,𝑛 > 2

(26)

here 𝑓𝑎(𝑀𝐹𝑎) represents the coding value of the membership func-
ion of the antecedent and 𝑓𝑐(𝑀𝐹𝑐 ) represents the coding value of
he membership function of the consequent. Finally, any value outside
he range for the value of the operator 𝑟𝑜𝑚,𝑛 will fit within the limits
stablished by (23).

The Pittsburgh genetic strategy 3, as outlined by Smith et al. [40,
1], amalgamates evolutionary concepts, fuzzy reasoning, and a
opulation-centric framework to tackle intricate challenges such as
ask scheduling in cloud computing. Here, the genetic system operates
y treating entire RBs as chromosomes, where each genetic entity
mbodies a complete RB. Through the application of genetic operators,
opulations of RBs evolve over successive iterations. At the conclusion
f the optimization process, the most optimal RB is singled out for in-
egration into the fuzzy system. In every generation, all RBs within the
opulation undergo assessment within the operational domain of the
uzzy system. This assessment is facilitated by the evaluation system,
hich gauges the effectiveness of each RB based on its fitness within

he optimized environment. Subsequently, RBs are ranked according to
heir performance, with higher-ranked entities undergoing crossover to
enerate new RBs within the RB discovery system. Moreover, these top-
erforming RBs are susceptible to mutations. Concurrently, the least
ffective RBs in the generation are replaced by the newly evolved
ounterparts, with the replacement rate dictating the extent of this sub-
titution. Through this iterative process, RBs demonstrating enhanced
8

itness criteria across generations are iteratively refined, culminating in s
he selection of the most optimal RB to act as the cornerstone of the
uzzy system in the final generation.

Algorithm 3 Pittsburgh algorithm.
1: Initialization: N_Population, N_Rules, N_Iter, Crossover_Rate,

Mutation_Rate_Init, Selection_Rate, Replacement_Rate.
2: Random setting of RB Population P.
3: Initialize 𝐺𝐵 .
4: while N_Iter do
5: Update Mutation_Prob with Mutation_Prob = Mutation_Rate_Init *

exp( −5𝑡
𝑁_𝑖𝑡𝑒𝑟 )

6: while N_Particles do
7: Evaluate fitness (makespan).
8: Particles++.
9: end while
0: Update 𝐺𝐵 .
1: while N_Particles⋅Replacement_Rate do
2: Generate Q offspring:
3: Apply crossover to P→Q.
4: Apply mutation to Q→Q.
5: Apply constraints to Q.
6: end while
7: Update part of P with Q.
8: iter++.
9: end while
0: Return: 𝐺𝐵

Q-learning, a foundational algorithm in reinforcement learning,
balances exploration and exploitation to learn optimal strategies with-
out requiring a model of the environment. Based on the Bellman
equation, it iteratively updates estimates of state–action values, con-
verging towards the optimal policy. As a model-free and off-policy
learning algorithm, Q-learning is robust to unknown dynamics and
exploration strategies. However, its convergence and stability can be
affected by factors like large state spaces and non-stationary environ-
ments. To address this, Q-learning often employs function approxima-
tion techniques, such as neural networks, enabling scalability to com-
plex problems but introducing challenges like convergence guarantees
and overfitting.

Algorithm 4 Q-Learning Algorithm
1: Initialization: 𝑄-table with random values, 𝛼 (learning rate), 𝛾 (discount

factor), 𝑁Episodes (number of episodes).
2: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝑁Episodes do
3: Reset environment to initial state.
4: 𝑠 ← current state
5: while episode not done do
6: Choose action 𝑎 using policy (e.g., 𝜖-greedy).
7: Take action 𝑎, observe reward 𝑟 and new state 𝑠′.
8: 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼

(

𝑟 + 𝛾 max𝑎 𝑄(𝑠′, 𝑎) −𝑄(𝑠, 𝑎)
)

9: 𝑠 ← 𝑠′

0: end while
1: end for
2: Return: 𝑄-table

The Bellman equation in Q-learning describes how to update the Q-
value of a state–action pair based on the immediate reward received,
the maximum Q-value of the next state, and discounting future rewards.
It is represented as:

𝑄(𝑠, 𝑎) = (1 − 𝛼) ⋅𝑄(𝑠, 𝑎) + 𝛼 ⋅
(

𝑟 + 𝛾 ⋅max
𝑎′

𝑄(𝑠′, 𝑎′)
)

(27)

here 𝑄(𝑠, 𝑎) is the Q-value of state 𝑠 and action 𝑎, 𝛼 is the learning
ate, 𝑟 is the immediate reward, 𝛾 is the discount factor, 𝑠′ is the next
tate, and max𝑎′ 𝑄(𝑠′, 𝑎′) represents the maximum Q-value for the next
tate 𝑠′ over all possible actions 𝑎′.
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Fig. 2. Game procedure flow chart.

The Q-Learning algorithm begins by initializing a Q-table with
random values, alongside setting parameters like the learning rate (𝛼),
discount factor (𝛾), and the number of episodes (𝑁Episodes). Through
an episodic loop, the algorithm iterates over a specified number of
episodes, resetting the environment to its initial state at the start of each
episode. Within each episode, the agent interacts with the environment
by selecting actions based on a policy, commonly an 𝜖-greedy strategy.
After taking an action, the agent observes the resulting reward and the
new state. The Q-value for the current state–action pair is updated using
the observed reward, the maximum Q-value for the next state, and
the defined learning rate and discount factor. This process continues
until the episode is completed. Finally, the trained Q-table is returned,
representing the learned values for each state–action pair.

3.4. Particle swarm optimization based game theory approach

The game theory procedure depicted in Fig. 2 employs a dynamic
and iterative approach to strategic decision-making. Beginning with the
‘‘Start Game’’ phase, subsequent stages orchestrate interactions among
players. The ‘‘Set Players’’ and ‘‘Set Strategies’’ segments establish
fundamental parameters, empowering participants to define roles and
potential actions. Advancing to ‘‘Evaluate Game using Optimization
Algorithm’’ introduces computational intricacy, systematically scruti-
nizing chosen strategies against predetermined criteria. At the point
of ‘‘Nash Equilibrium Achieved?’’, equilibrium signifies stability in
strategic dynamics, marking a pivotal point of balance. The ‘‘Change
Strategies’’ segment embodies player adaptability, facilitating strategy
refinement in the absence of Nash equilibrium, fostering learning and
evolution. Following equilibrium attainment or strategy adjustments,
the ‘‘Payoff Results’’ phase crystallizes outcomes, delineating rewards
or losses linked to chosen strategies. This phase offers a concrete gauge
of success or failure, underscoring the competitive and results-driven
essence of strategic interactions. The ‘‘End Game’’ segment signifies
the culmination of the process, denoting resolution in strategic dy-
namics and finalization of outcomes. This comprehensive perspective
underscores the nuanced interplay of decision-making, optimization,
and adaptation within the game theory framework.

In the intersection of optimization algorithms and game theory, this
study introduces a novel approach that integrates PSO into the strategic
evaluation of complex games. The proposed algorithm 5 conceptual-
izes particles as dynamic players within the game, utilizing positions
9

represented by fuzzy matrices to capture the nuanced strategies in-
herent in strategic decision-making. The choice of PSO stems from its
inherent capability to traverse and optimize diverse solution spaces,
making it particularly apt for addressing the intricacies associated with
strategic interactions. In the context of our metaphorical game, the
primary objective is to unveil the Nash equilibrium, a state where no
player can unilaterally deviate from their strategy to achieve a more
favorable outcome. The algorithm orchestrates an iterative refinement
process, guiding the fuzzy matrices towards optimal configurations
that emulate the evolving strategies players might adopt. The dy-
namic interplay between PSO and game theory becomes apparent as
particles adapt their positions within the PSO algorithm, mimicking
the strategic maneuvers of players within the game. This research
elucidates the algorithm’s capacity to navigate through a multitude of
potential strategies, converging towards solutions that encapsulate the
essence of Nash equilibrium. By exploring this synergy between PSO
and game theory, the study not only contributes to the understanding
of strategic interactions but also presents a nuanced perspective on how
optimization algorithms, particularly PSO, can serve as potent tools
in unraveling the complexities inherent in strategic decision-making.
The findings open avenues for further exploration in the domain of
algorithmic game theory, shedding light on the potential applications
and implications of this novel approach.

The PSO-GTA Algorithm integrates Particle Swarm Optimization
(PSO) and Game Theory to optimize resource allocation and energy
management in cloud computing environments. Beginning with pa-
rameter initialization, the algorithm employs particles to represent
potential solutions and iteratively refines them through the PSO pro-
cess. Fitness evaluation considers both renewable energy utility and
the attainment of Nash equilibrium, ensuring a balance between energy
efficiency and strategic stability. Particle positions are updated based
on personal and global best solutions, guided by PSO equations. By
leveraging PSO’s exploration capabilities and strategic insights from
game theory, the algorithm converges to optimal resource allocations
that maximize efficiency while maintaining strategic equilibrium. This
combined approach offers a robust and sustainable solution for cloud
resource management, facilitating improved performance and energy
savings.

Algorithm 5 Modified PSO-GTA Algorithm
Initialize DC, H, VM, C, renewable energy parameters, and PSO
parameters.
Initialize particle positions 𝑆∗ and velocities.
Initialize global best position 𝑆global.
PSO process
while stopping criterion not met do

for each particle 𝑛 do
Compute utility 𝑢𝑙𝑛 considering renewable energy.
Evaluate fitness based on renewable energy utility and Nash

equilibrium.
if current position is better than personal best then

Update personal best: 𝑆∗
personal ← 𝑆∗(𝑡)

end if
if current position is better than global best then

Update global best: 𝑆global ← 𝑆∗(𝑡)
end if
Update particle velocity and position using PSO equations.

end for
end while
Output: Optimal computation resource allocation 𝐹 ∗ and optimal
strategy 𝑆∗ in Nash equilibrium.

The PSO-GTA Algorithm is a sophisticated optimization technique
that integrates the strengths of both PSO and Game Theory to address
the complexities of resource allocation in dynamic environments, with
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Fig. 3. Induced normal form tree.
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a particular focus on scenarios incorporating renewable energy sources.
It commences by initializing critical parameters essential for the op-
timization process, including demand, capacity, virtual machines, and
pertinent parameters specific to both the PSO algorithm and renewable
energy considerations. Subsequently, particle positions and velocities
are established, along with the initialization of the global best posi-
tion to guide the optimization process. Throughout the iterative PSO
process, each particle evaluates its utility, incorporating the dynamic
nature of renewable energy, and assesses its fitness with respect to both
renewable energy utility and Nash equilibrium attainment. Notably, the
algorithm continually refines its solutions by updating personal and
global best positions whenever a superior solution is encountered. This
dynamic adaptation, coupled with the iterative refinement of particle
velocities and positions based on PSO equations, ultimately converges
to yield optimal resource allocation (𝐹 ∗) and strategic decisions (𝑆∗)
representative of Nash equilibrium. By seamlessly integrating optimiza-
tion and game-theoretic principles, PSO-GTA offers a powerful tool
for navigating the intricacies of decision-making in complex, evolving
environments.

The Nash equilibrium is obtained in the following way. Let us
assume that 𝑠𝑖 is a strictly dominant strategy for player 𝑖 (𝑠𝑖 ∈ 𝑆𝑖) that
is not played in some Nash equilibrium 𝑁 = (𝑠1,… , 𝑠′𝑖 ,… , 𝑠𝑛) because
𝑠′𝑖 ≠ 𝑠𝑖 is played there instead.

From the definition of a Nash equilibrium it is found that 𝑠′𝑖 is a best
response to 𝑠−𝑖. The definition of a Best response of the player 𝑖 to the
strategy profile 𝑠−𝑖 states that 𝑠′𝑖 ∈ 𝑆𝑖 is a mixed strategy such that:

∀𝑠𝑖 ∈ 𝑆𝑖 ∶ 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) (28)

In particular the following also holds for the strictly dominant strategy
since 𝑠𝑖 ∈ 𝑆𝑖:

𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) (29)

Because 𝑠𝑖 is strictly dominant the following holds:

∀𝑠𝑖 ∈ 𝑆𝑖∕{𝑠𝑖} ∶ ∀𝑠−𝑖 ∈ 𝑆−𝑖 ∶ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) > 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) (30)

And in particular since 𝑠𝑖 ≠ 𝑠′𝑖 ⇒ 𝑠′𝑖 ∈ 𝑆𝑖∕{𝑠𝑖}:

𝑖(𝑠𝑖, 𝑠−𝑖) > 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) (31)

If Eqs. (29) and (31) are combined:

𝑢𝑖(𝑠𝑖, 𝑠−𝑖) > 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) (32)

his inequality clearly cannot hold under the given assumptions. In-
eed, if instead 𝑠′𝑖 = 𝑠𝑖 Eq. (31) cannot be deducted (since 𝑠𝑖 is exempted

from 𝑆𝑖) and in that case it is trivial to see that 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖)
oes hold. By contradiction, it is proved that if a player has a strictly
ominant strategy, 𝑠 it will always be played in any Nash equilibrium.
10

𝑖 e
Table 4
Example of game considering only the two first Data centers.

𝑅1𝑅 𝑅1𝑁𝑅 𝑁𝑅1𝑅 𝑁𝑅1𝑁𝑅

𝑅2𝑅 (−1.5, −1.5) (−3, −1.5) (−1.5, −0.5) (−1.5, −2)
𝑅2𝑁𝑅 (−3, −1.5) (−3, −3) (−3, −0.5) (−3, −2)
𝑁𝑅2𝑅 (−0.5, −1.5) (−3, −0.5) (−0.5, −0.5) −(0.5, −2)
𝑁𝑅2𝑁𝑅 (−2, −1.5) (−2, −3) (−2, −0.5) (−2, −2)

In a game where the player 𝑖 has 𝑁 information sets indexed 𝑛 =
,… , 𝑁 and 𝑀𝑛 possible actions at information set 𝑛, a good study is
ow many pure strategies does the player 𝑖 have. From the definition of
ure strategies for games, it is known that a pure strategy is composed
f the 𝑁 choices made at each information set. Since an information
et 𝑛 has 𝑀𝑛 options, all options have to be multiplied by each other
o find the amount of all possible pure strategies. This gives
𝑁

𝑛=1
𝑀𝑛

s solution.
The game tree presented in Fig. 3 represents a sequential decision-

aking process with different decision criteria and associated prob-
bilities. Players make choices, leading to different outcomes with
orresponding payoffs. The dashed and bend lines represent addi-
ional relationships and dependencies between certain decisions in a
ooperative meaning.

Players 1 and 2 must decide whether to choose a host from a
atacenter or another when processing tasks. They know that there
s a 25% chance of scheduling. Each player’s payoff is −5 if they do
ot invest in renewable energy and the energy demand is high, −2 if
hey invest in renewable energy and the demand is high, −1 if they
nvest in renewable energy and the demand is low, and 1 if they do not
nvest in renewable energy and the demand is low. Player 1 is informed
bout the energy demand before making a decision. Player 2, however,
s not aware of the demand but can observe Player 1’s choice before
aking their own decision. An example of this two-player game can be

bserved in Table 4, where the payoff is represented

. Experimental results

.1. Simulation framework

The parameters employed in the fuzzy RBs for knowledge acquisi-
ion are delineated in Table 5, which presents key features essential for
escribing the cloud system. These variables encompass crucial aspects
uch as Renewable Availability (CDC-RA), denoting the renewable
nergy supplied to the Cloud Data Center (CDC), Host Computational
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Table 5
Features for cloud system description.

Variable Description

Renewable Availability (CDC-RA) Renewable energy supplied to the CDC
Host Computational Capacity (HCC) Maximum computational capacity (CC) in MIPS
Host Computational Availability (HCA) Remaining CC of the host in MIPS after holding other VMs
VM Maximum Computational Needs (VM-MCN) Maximum needs of the VM in MIPS
VM Current Computational Needs (VM-CCN) Remaining computational needs in MIPS for the VM
Table 6
KASIA parameter configuration.

Simulations Particles Iterations Initial weight Final weight 𝑐1 𝑐2
30 64 50 0.9 0.2 2 2

Capacity (HCC) representing the maximum computational capacity in
MIPS, Host Computational Availability (HCA) indicating the remaining
computational capacity of the host in MIPS after accommodating other
VMs, VM Maximum Computational Needs (VM-MCN) representing the
maximum computational requirements of the VM in MIPS, and VM
Current Computational Needs (VM-CCN) characterizing the remaining
computational needs in MIPS for the VM. This comprehensive set
of parameters forms the foundation for the fuzzy RBs, facilitating a
nuanced understanding and representation of the intricate dynamics
within the cloud system for effective knowledge acquisition. For knowl-
edge acquisition, fuzzy RBs utilizing Gaussian membership functions
are employed, adhering to the structure outlined below in Eq. (33).

𝜇𝑋𝑚
𝑖 = 1

√

2𝜋𝜎2𝑋𝑚
𝑖

𝑒𝑥𝑝

(

−(𝑧 − 𝜏𝑋𝑚
𝑖 )2

2𝜎2𝑋𝑚
𝑖

)

, {𝑧 ∈ R, 𝑧 ≤ 1} (33)

where 𝜏𝑋𝑚
𝑖 and 𝜎𝑋𝑚

𝑖 denote the mean and the standard deviation,
respectively. Here, 𝑧 denotes the independent variable describing the
feature, and m corresponds to the current feature. The selection of
Gaussian functions is driven by their advantageous property of having
an extended area of influence, covering the entire universe of discourse.
This feature allows the system to make valuable contributions across
a wide range of system conditions. In a fuzzy system, each system
variable value is associated with a membership degree related to a
fuzzy set, assigned with normalized values ranging from 0 (complete
exclusion of the variable) to 1 (full membership of the variable).
Intermediate values indicate partial membership to the set, enabling
precise and flexible reasoning within the fuzzy framework.

Tables 6–9 outline the parameter configurations for various opti-
mization algorithms, offering a comprehensive view of their settings for
experimentation and analysis. The first table presents details such as the
number of simulations, particles, and iterations, along with initial and
final weight values, and coefficients 𝑐1 and 𝑐2 used in the algorithm.
Similarly, the next table delineates simulation count, particle count,
iteration count, crossover rate, initial mutation rate, selection rate, and
replacement rate specific to the Pittsburgh optimization method. Fur-
thermore, the following table specifies simulation count, player count,
iteration count, learning rate (𝛼), discount factor (𝛾), and reward value
(𝑟) utilized in the Q-Learning algorithm. Lastly, PSO-GTA table suc-
cinctly lists simulation count, player count, and iteration count for the
proposed algorithm. Together, these tables provide essential insights
into the setup of each algorithm, facilitating comparative analysis and
aiding researchers in understanding the impact of different parameter
choices on algorithm performance.

4.2. Simulation scenarios

The simulation scenarios utilize an improved CloudSim simulator,
as introduced in [5], facilitating VM migration across four datacenters,
as illustrated in Fig. 4. These datacenters feature two types of hosts:
HP ProLiant ML110 G4 (Xeon 3040, dual-core, 1.8 GHz, 4 GB RAM,
11
Fig. 4. General structure of meta-scheduler.

Fig. 5. Dynamic availability of renewable energy in data centers.

and 1 Gbps of Bandwidth), and HP ProLiant ML110 G5 (Xeon 3075,
dual-core, 2.6 GHz, 4 GB RAM, and 1 Gbps of Bandwidth).

Realistic and representative workload scenarios are ensured by
conducting simulations with traces from the Standard Performance
Evaluation Corporation (SPEC) [42], including real traces from Plan-
etLab. Within the datacenters, the distribution of renewable energy
fluctuates across four modes: 0%, 33%, 66%, and 100% of available
renewable energy within each datacenter, as depicted in Fig. 5. This
variation is observed over a 4-hour simulation time-lapse, allowing an
exploration of the impact of different renewable energy levels on the
cloud infrastructure’s performance.

The simulation encompasses four datacenters, each representing
distinct geographic regions, providing insight into distributed cloud
infrastructure behavior, including considerations of data locality and
network latency. Each datacenter is composed of a variable number
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Table 7
Pittsburgh parameter configuration.

Simulations Particles Iterations Crossover rate Initial mutation rate Selection rate Replacement rate

30 64 50 0.8 0.1 0.8 0.8
Table 8
Q-Learning parameter configuration.

Simulations Players Iterations Learning rate 𝛼 Discount factor 𝛾 Reward 𝑟

30 64 50 0.5 0.9 0.5

Table 9
PSO-GTA parameter configuration.

Simulations Players Iterations

30 64 50

Table 10
Host configuration.

Variable Value

PEs 2
RAM (MB) 4096
BW (MB) 1,000,000
MIPS 2660
Storage (MB) 1,000,000

Table 11
VM configuration.

Variable Value

PEs 1
RAM (MB) 613/870/1740
BW (MB) 1000
MIPS 500/1000/2000/2500
Size (MB) 2500

Table 12
Cloudlet configuration.

Variable Value

PEs 1
Length 36,000,000

of hosts – 265, 530, or 800 physical machines – each with specific
characteristics detailed in Table 10, such as processing elements (PEs),
RAM, bandwidth (BW), MIPS, and storage capacity.

The distribution of VMs spans the four datacenters, totaling 350,
695, or 1052 VMs. Each VM is distinguished by various features,
including Processing Elements (PEs), RAM, Bandwidth (BW), MIPS,
and size, as outlined in Table 11. The cloud simulation configuration
incorporates a workload represented by cloudlets, which can vary
significantly depending on the tasks within the workload. Each cloudlet
is defined by its PEs and length, as detailed in Table 12.

During each execution of the fitness function, a simulation is carried
out based on one of the sub-scenarios outlined in Table 13. This sim-
ulation captures all interactions between hosts and VMs, including mi-
grations across the four CDCs. The results obtained encompass the total
energy consumed over the four-hour simulation period, the renewable
energy consumed for the current Knowledge Base (KB), the number
of migrations executed, and the percentage of renewable energy over
the total energy consumed. Subsequently, in subsequent simulations,
the best KB is determined based on the percentage of renewable en-
ergy achieved among all possible solutions (particles/wolves). The KB
demonstrating the highest percentage of renewable energy is deemed
the most favorable and selected as the best solution.

The experiments were conducted based on three distinct scenarios,
as described in [5] and summarized in Table 13, each characterized
by different sizes: small, medium, and large. In Scenario 1, the simula-
tion included 256 hosts, 350 VMs, and 500, 1500, or 3000 cloudlets.
12
Table 13
Scenarios of simulation based on Hosts, VMs and Cloudlets.

Scenario Hosts VMs Cloudlets

1 265 350 500/1500/3000
2 530 695 1000/2000/5000
3 800 1052 1500/5000/10,000

Scenario 2 comprised 530 hosts, 695 VMs, and 1000, 2000, or 5000
cloudlets. Lastly, Scenario 3 involved 800 hosts, 1052 VMs, and 1500,
5000, or 10,000 cloudlets. Within each scenario, three sub-scenarios
were initiated, corresponding to small, medium, and large simulations,
with each sub-scenario representing varying numbers of cloudlets as
shown in Table 13, thus resulting in nine simulation scenarios. The
hosts were evenly distributed across four distant data centers, ensuring
an equitable representation of the cloud infrastructure. These diverse
scenarios and simulation variations allowed for a comprehensive eval-
uation of the system’s performance under varying workload sizes and
infrastructure capacities.

4.3. Simulation results

The comprehensive examination of convergence behavior across
three distinct simulation scenarios, each featuring a variable num-
ber of cloudlets, provides valuable insights into the performance of
the proposed PSO-GTA approach in comparison to the Q-Learning,
Pittsburgh and KASIA algorithms. In the inaugural scenario, the PSO-
GTA algorithm not only converges in the first place but also achieves
superior results compared to Q-Learning, Pittsburgh and KASIA, both
of which exhibit comparable performance. This initial success under-
scores the efficiency of the PSO-GTA approach in managing cloudlet
dynamics and optimizing system outcomes. Building on this promising
start, the second scenario amplifies the effectiveness of the PSO-GTA
algorithm by yielding even better results. The convergence behavior
of Q-Learning, Pittsburgh and KASIA remains similar in this scenario,
further accentuating the unique advantages offered by the proposed
approach. The nuanced adaptability of PSO-GTA to varying simulation
conditions becomes evident, positioning it as a robust and versatile
solution for cloudlet-based systems. A noteworthy observation emerges
from the broader analysis of six simulations, where the PSO-GTA ap-
proach consistently outperforms the baseline results established by [5].
The improvements range from 3.68% to 5.32%, showcasing the reliabil-
ity and efficacy of the PSO-GTA algorithm across diverse scenarios. This
suggests that the proposed approach not only excels in convergence but
also yields tangible benefits in optimizing cloudlet interactions, thereby
enhancing the overall performance of cloud computing systems. In
the final scenario, the PSO-GTA algorithm continues its streak of suc-
cess by demonstrating optimal convergence behavior over Q-Learning,
Pittsburgh and KASIA. Although the performance advantage over the
baseline results is incremental, this consistency reinforces the reliability
of the PSO-GTA approach in real-world cloudlet environments. The
cumulative findings from these scenarios collectively emphasize the
superiority of the proposed algorithm, making a compelling case for its
adoption in optimizing cloudlet-based systems for enhanced efficiency
and performance (see Figs. 6–8)

The results’ comparison, as illustrated in Table 14, provides a de-
tailed analysis of the percentage of renewable energy used across vari-
ous simulation scenarios. The table delineates the performance metrics
for Baseline results, KASIA, Pittsburgh, Q-Learning, and the proposed
PSO-GTA approach. In each scenario characterized by different num-
bers of hosts, VMs, and cloudlets, the PSO-GTA approach consistently
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Fig. 6. Convergence behavior in first scenario.
Fig. 7. Convergence behavior in second scenario.
Fig. 8. Convergence behavior in third scenario.
Table 14
Results comparison between the Baseline results, KASIA, Pittsburgh, Q-Learning and PSO-GTA: Percentage of renewable energy used.

Hosts VMs Cloudlets [5] Results KASIA Imp. Pittsburgh Imp. Q-Learning Imp. PSO-GTA Imp.

256 350 500 63.31 ± 0.13 65.49 ± 0.02 3.45% 65.52 ± 0.03 3.49% 65.49 ± 0.02 3.44% 65.57 ± 0.01 3.58%
256 350 1500 62.75 ± 0.11 65.51 ± 0.02 4.40% 65.49 ± 0.02 4.37% 65.48 ± 0.01 4.35% 65.58 ± 0.02 4.51%
256 350 3000 62.68 ± 0.15 65.50 ± 0.02 4.50% 65.50 ± 0.02 4.50% 65.48 ± 0.02 4.47% 65.57 ± 0.02 4.61%
530 695 1000 63.71 ± 0.07 66.69 ± 0.02 4.68% 66.70 ± 0.02 4.69% 66.70 ± 0.02 4.69% 66.78 ± 0.02 4.81%
530 695 2000 63.40 ± 0.08 66.69 ± 0.01 5.19% 66.70 ± 0.02 5.21% 66.68 ± 0.01 5.17% 66.77 ± 0.02 5.32%
530 695 5000 63.65 ± 0.09 66.69 ± 0.01 4.77% 66.68 ± 0.01 4.76% 66.69 ± 0.02 4.78% 66.77 ± 0.02 4.91%
800 1052 1500 64.36 ± 0.05 64.67 ± 0.02 0.49% 64.68 ± 0.02 0.50% 64.68 ± 0.02 0.49% 64.80 ± 0.02 0.68%
800 1052 5000 63.85 ± 0.07 64.68 ± 0.02 1.30% 64.67 ± 0.02 1.29% 64.66 ± 0.01 1.27% 64.80 ± 0.01 1.49%
800 1052 10,000 64.28 ± 0.09 64.69 ± 0.02 0.64% 64.67 ± 0.01 0.61% 64.68 ± 0.02 0.63% 64.81 ± 0.02 0.83%
Table 15
Results comparison between KASIA, Pittsburgh, Q-Learning and PSO-GTA: Total energy consumed in kWh.

Scenarios KASIA Pittsburgh Q-Learning PSO-GTA

Hosts VMs Cloudlets Total (kWh) Total (kWh) Total (kWh) Total (kWh)

256 350 500 8.09 8.12 8.14 8.09
256 350 1500 8.07 8.09 8.04 8.04
256 350 3000 8.11 8.13 8.11 8.08
530 695 1000 15.14 15.18 15.23 15.10
530 695 2000 15.17 15.27 15.44 15.10
530 695 5000 15.24 15.17 15.15 15.38
800 1052 1500 22.72 22.62 22.66 22.38
800 1052 5000 22.31 22.45 22.51 22.51
800 1052 10,000 22.64 22.61 22.56 22.53
13
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Fig. 9. Optimized values across all scenarios.
outperforms both the baseline and the comparative algorithms, show-
casing its efficacy in optimizing the utilization of renewable energy
resources.

Table 15 presents a comprehensive comparison of results among KA-
SIA, Pittsburgh, Q-Learning, and PSO-GTA, regarding the total energy
consumption in kWh achieved by the best iteration in the simulations
for each scenario. The data is structured to show the performance
metrics for various configurations of hosts, VMs, and cloudlets. Each
algorithm’s effectiveness is evaluated based on the total energy con-
sumption. Furthermore, across the different scenarios, the table reveals
subtle variations in energy consumption, highlighting the potential
efficiency gains or losses achieved by each algorithm. This detailed
analysis facilitates informed decision-making in selecting the most suit-
able optimization approach for cloud infrastructure, considering energy
efficiency.

Furthermore, Fig. 9 visually represents the optimal values attained
by each algorithm in the various simulation scenarios. The plotted
graph distinctly shows the superior performance of the PSO-GTA ap-
proach, consistently achieving higher percentages of renewable energy
utilization compared to KASIA, Pittsburgh, and the baseline results.
This graphical representation reinforces the findings from the tab-
ulated results, highlighting the PSO-GTA algorithm’s ability to con-
verge optimally and make efficient use of renewable energy resources
across diverse cloud computing scenarios. The incremental improve-
ments achieved by the PSO-GTA approach underscore its potential for
enhancing sustainability and efficiency in cloudlet-based systems.

5. Conclusions and future actions

In conclusion, the PSO-GTA approach, utilized for optimizing re-
newable energy resources within cloud computing environments, has
demonstrated superior performance when compared to traditional
14
methods such as Q-Learning, KASIA and Pittsburgh. The infusion of
game theory principles into the PSO algorithm has greatly facili-
tated more efficient decision-making processes, resulting in heightened
energy utilization and improved cost-effectiveness. The comparative
analysis showcased that the PSO-GTA approach not only outperformed
existing methodologies in optimizing renewable energy resources but
also exhibited robust adaptability to the dynamic and uncertain nature
of cloud computing environments. The synergistic integration of game
theory and PSO has provided a more comprehensive and flexible
framework for addressing challenges associated with renewable energy
optimization in cloud computing.

One promising avenue for future research involves extending the
PSO-GTA approach to incorporate multi-objective optimization. This
entails simultaneously optimizing multiple conflicting objectives, such
as minimizing energy costs, maximizing resource utilization, and min-
imizing environmental impact. Introducing a multi-objective perspec-
tive will offer a more holistic and nuanced solution, allowing decision-
makers to explore a diverse set of trade-offs and find Pareto-optimal
solutions that effectively balance competing objectives. Another area
for future work revolves around refining the PSO-GTA approach to
incorporate advanced container migration strategies. As cloud envi-
ronments increasingly rely on containerization for resource allocation
and scalability, optimizing the migration of containers to leverage
renewable energy sources becomes crucial. Investigating and imple-
menting intelligent container migration algorithms within the PSO-GTA
framework can lead to more efficient resource utilization, reduced
energy consumption, and improved overall system performance. This
research direction aligns with the evolving trends in cloud computing
and sustainable practices, ensuring the adaptability of the PSO-GTA
approach to cutting-edge technologies.
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Glossary

CDC Cloud Data Center
PSO Particle Swarm Optimization
VM Virtual Machine
MIPS Million Instructions Per Second
DC Data Center
H Host
C Cloudlet/Task
R Resources
Y Computational Cost
X Profit
RR Resource Requirements
𝑇 Execution Time
𝐷𝑛 Data
𝜏𝑛 Total Computation
S/s Strategy
𝑡𝑛 Computational Time
𝑓𝑛 Computing Power
𝑒𝑛 Energy Consumption
𝜎𝑛 Energy Consumption Factor
𝐸𝑛 Cost of Computational Task
𝛽𝑡𝑛 Delay Weight Factor
𝛽𝑒𝑛 Energy Weight Factor
𝜇 Makespan
𝑢𝑛 Utility
F Resource Scheduling
P Position/Strategy
V Velocity
ra Encoded Antecedent Fuzzy Input
rc Encoded Consequent Fuzzy Input
ro Encoded Logical Operator Fuzzy Input
𝑀𝐹𝑎 Antecedent Membership Function
𝑀𝐹𝑐 Consequent Membership Function
RB Rule Base
KB Knowledge Base
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