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Abstract

The unitary operators U(t), describing the quantum time evolution of systems
with a time-dependent Hamiltonian, can be constructed in an explicit manner using
the method of time-dependent invariants. We clarify the role of Lie-algebraic tech-
niques in this context and elaborate the theory for SU(2) and SU(1,1). In these
cases we give explicit formulas for obtaining general solutions from special ones.
We show that the constructions known as Magnus expansion and Wei-Norman ex-
pansion correspond with different representations of the rotation group. A simpler
construction is obtained when representing rotations in terms of Euler angles.

Progress can be made if one succeeds in finding a non-trivial special solution of
the equations of motion. Then the general solution can be derived by means of the
Lie theory. The problem of evaluating the evolution of the system is translated from
a noncommutative integration in the sense of Dyson into an ordinary commutative
integration.

The two main applications of our method are reviewed, namely the Bloch equa-
tions and the harmonic oscillator with time-dependent frequency. Even in these
well known examples some new results are obtained.

1 Introduction

Assume that a time-dependent Hamiltonian H(t) is given. The axioms of quantum
mechanics require that it is a selfadjoint operator in Hilbert space. The solution of the
time dependent Schrödinger equation

i
dψ

dt
= H(t)ψ(t) (1)

is formally given by ψ(t) = U(t)ψ(0) with unitary operators U(t) satisfying U(0) = I and

i

(

d

dt
U(t)

)

U∗(t) = H(t). (2)
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The time evolution can be extended to density operators (positive trace-class operators
with trace 1) by the relation

ρ(t) = U(t)ρ(0)U∗(t). (3)

They satisfy von Neumann’s equations of motion

d

dt
ρ(t) = i[ρ(t), H(t)]. (4)

Explicit expressions for U(t) in function of the given H(t) are usually difficult to
obtain. The mathematical origin of the difficulties is that Hamiltonians H(t) and H(t′)
at unequal times t 6= t′ do not necessarily commute with each other. Much progress
has been made in the case that the time-dependent Hamiltonian can be written as a
linear combination of constant operators S1, S2, · · ·Sn, generating a finite dimensional
Lie algebra

H(t) =

n
∑

j=1

hj(t)Sj . (5)

The generators satisfy the commutation relations

[Sj, Sm] = i
∑

l

ωjmlSl, (6)

with structure constants ωjml. Then the time evolution of the generators can be written
as

U(t)SjU
∗(t) =

∑

m

umj(t)Sm, (7)

with coefficients umj(t) solution of

d

dt
umj(t) =

∑

ls

ωlsmhl(t)usj(t). (8)

Note that (7) is not the time evolution in the Heisenberg picture. The latter is given by
U∗(t)SjU(t) instead of U(t)SjU

∗(t).
Using (7) one can obtain the general solution of the von Neumann equation (4), with

arbitrary initial conditions of the form

ρ(t = 0) = C +
∑

j

aj(0)Sj. (9)

The operator C is an arbitrary operator commuting with all generators Sj . The solution
is

ρ(t) = C +
∑

j

aj(t)Sj , (10)

with

aj(t) =
∑

m

ujm(t)am(0). (11)
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The problem remains to obtain an explicit expression for the unitary operators U(t).
See for instance [1, 2] and the references quoted there. These authors show that one can
write U(t) as an ordered product

U(t) = eg1(t)S1eg2(t)S2 · · · egn(t)Sn , (12)

where the complex functions g1(t), · · · gn(t) are solutions of some set of non-linear differ-
ential equations. In this way the problem is reduced to a well-known but rather difficult
classical (this is, non-quantum) problem of solving sets of equations. This method has
been elaborated by many authors, including [3, 4, 6, 8, 19, 20, 22]. A related topic is that
of the superposition principle for nonlinear equations, see for instance [29, 39].

Alternatively, one assumes that a particular solution ρs(t) of von Neumann’s equation
(4) is known. This special solution was called a time-dependent invariant in [3]. We
use the existence of such special solutions as a starting point for constructing unitary
operators U(t), based on an idea of [35].

The next Section describes in general terms the method of constructing U(t). Section
3 explains how the assumption, that the Hamiltonian H(t) can be expanded in terms of
generators of a Lie algebra, helps to apply the method. Subsequent Sections specialise
the method for SU(2) and SU(1,1). Applications start in Section 6. The discussion of
the obtained results follows in Section 10.

2 Method

Assume that there is given a time-dependent Hamiltonian H(t) and a special solution

ρs(t) of the von Neumann equation (4) and dρs(t)
dt

6= 0 for almost all t. Can one construct
unitary operators U(t) solving (2)? The method described below requires two steps to
do so.

First step Determine unitary operators V (t) such that

ρs(t) = V (t)ρs(0)V ∗(t). (13)

If ρs(t) has a discrete spectrum, as is the case for a density operator, then this can be
obtained in principle by diagonalising ρs(t). The unitary V (t) transforms the basis in
which ρs(0) is diagonal to the basis where ρs(t) is diagonal. In practical applications
we use special solutions obtained by some concrete technique (expansions in generators
of a Lie algebra, Darboux transformations, etc.), and the very form of a given method
typically suggests the shape of V (t).

With this V (t) one can construct a Hamiltonian K(t) by

K(t) = i
dV

dt
V ∗(t). (14)

In general, this Hamiltonian differs form the given H(t), in which case V (t) is not a
solution of (2), which is the defining equation of U(t).

Second step Assume now that ρs(0) is self-adjoint, as is the case for a density operator.
Then generically operators commuting with ρs(0) are functions of ρs(0) in the sense of
spectral theory. Comparing (13) with (3) shows that U(t)V ∗(t) commutes with ρs(t) and
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V ∗(t)U(t) commutes with ρs(0). Hence, if ρs(0) is multiplicity free, there exists a real
function ft(x) such that

U(t) = eift

(

ρs(t)
)

V (t) = V (t)eift

(

ρs(0)
)

. (15)

It remains to determine this function ft(x). Combine (15) with (2) to obtain

d

dt
ft(ρs(0) − C) = U∗(t) {K(t) −H(t)}U(t) = V ∗(t) {K(t) −H(t)}V (t). (16)

The r.h.s. of this equation is known from the first step of the method. Hence the function
dft(x)/dt can be determined. To this purpose, the r.h.s. of (16) has to be written as a
function of ρs(0). Next, ft(x) is obtained by integration.

Summing up, if for a given time-dependent Hamiltonian H(t) we know V (t) corre-
sponding to some explicit solution ρs(t), such ρs(0) is multiplicity free, then the problem
of defining the evolution of the system is translated from noncommutative integrations
in the sense of Dyson to an ordinary commutative integration.

3 Lie algebras

Assume now that H(t) is a linear combination of generators S1, · · · , Sn of a Lie algebra,
with commutation relations as given by (6), and that the special solution ρs(t) is of the
form (10). We first study the time evolution of the coefficients aj(t) as elements of a Lie
algebra, represented in R

n.
Introduce the Killing form

〈a|b〉 = 〈b|a〉 = −
∑

mn

(

∑

j

ωjmnaj

)(

∑

l

ωlnmbl

)

. (17)

The minus sign is needed because of the imaginary factor i in the definition (6) of the
structure constants. Introduce the Lie bracket a× b = −b× a by

(a× b)l =
∑

jm

ajbmωjml. (18)

A well-known property of the Killing form, consequence of the Jacobi identity, is that

〈a× b|c〉 = 〈a|b× c〉. (19)

This will be used often.
The Hamiltonian K(t) can be written as

K(t) =
∑

j

kj(t)Sj . (20)

One has

i
∑

j

daj
dt
Sj = i

d

dt
ρs(t) = [K(t), ρs(t)]

= i
∑

jm

kj(t)am(t)ωjmlSl. (21)
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This implies

daj
dt

=
∑

ml

km(t)al(t)ωmlj . (22)

Introduce the notation ȧ for the vector with components daj/dt. From (22) then follows
that ȧ = k × a.

Let us assume that the Killing form is non-degenerate. This is known to be the case
if and only if the Lie algebra is semi-simple.

Lemma 1 Assume that the Killing form is non-degenerate. Fix a ∈ R
n such that 〈a|a〉 6=

0. Assume that the Killing form of the Lie algebra is such that 〈b|a〉 = 0 implies that
there exists c ∈ R

n such that b = a × c. Then a × u = 0 and 〈u|a〉 = 0 together imply
u = 0.

Proof
Let d be arbitrary in R

n. Write

d =
〈d|a〉
〈a|a〉a+ b, (23)

with 〈b|a〉 = 0. By assumption one can write b = a× c so that

d =
〈d|a〉
〈a|a〉a + a× c. (24)

Now calculate, using a× u = 0 and 〈u|a〉 = 0,

〈d|u〉 = 〈a× c|u〉 = 〈c|u× a〉 = 0. (25)

Since d is arbitrary and the Killing form is non-degenerate there follows that u = 0.
�

Proposition 1 Let be given a special solution ρs(t) of the form

ρs(t) = C +
∑

j

aj(t)Sj , (26)

where C commutes with all Sj. Assume that 〈a(0)|a(0)〉 6= 0 and that 〈b|a(0)〉 = 0 implies
that there exists c ∈ R

n such that b = a(0) × c. Assume also that the Killing form is
non-degenerate. Then one has

H(t) = K(t) + α(t){ρs(t) − C}. (27)

with

α(t) =
〈a|h− k〉
〈a|a〉 . (28)
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Proof
Note that

ȧ = h× a = k × a. (29)

Let r = h− k. Then one has 0 = r× a. Let u = r−α(t)a with α(t) given by (28). Then
a short calculation yields 〈u|a〉 = 0 and a × u = 0. By the previous lemma this implies
that u = 0. One therefore has h = k + α(t)a, which can be written as (27).

�

Since ρs(t) and H(t) are known, the Proposition ensures that the difference between
H(t) and K(t) is proportional to the special solution ρs(t) minus a constant operator.
Then, (16) implies

d

dt
ft(ρs(0)) = V ∗(t){K(t) −H(t)}V (t)

= −α(t)V ∗(t){ρs(t) − C}V (t)
= −α(t){ρs(0) − C}. (30)

Therefore, one finds that ft(u) is the linear function given by

ft(u) = τ(t) u with τ(t) = −
∫ t

0

ds α(s). (31)

Hence, (15) becomes

U(t) = eiτ(t)(ρs(t)−C)V (t) = V (t)eiτ(t)(ρs(0)−C). (32)

Inserting now (32) into the l.h.s. of (2) gives

i

(

d

dt
U(t)

)

U∗(t) =

(

i

(

d

dt
V (t)

)

eiτ(t)(ρs(0)−C) − U(t)(ρs(0) − C)
dτ

dt

)

U∗(t)

= K(t) + (ρs(t) − C)α(t)
= H(t). (33)

One concludes that U(t), as given by (32), indeed solves (2). This completes the second
step of the method. All it needs from the first step is the knowledge of V (t) and the value
of the Killing form 〈k|a〉.

Introduce coefficients vmj(t) defined by

V (t)SjV
∗(t) =

∑

m

vmj(t)Sm. (34)

They satisfy

am(t) =
∑

j

vmj(t)aj(0). (35)

The aj(t) are known functions. We have to find vmj(t), solving (35), such that unitary
operators V (t) exist which solve (34).

6

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Note that

d

dt
〈a|a〉 = 2〈h× a|a〉 = 2〈h|a× a〉 = 0. (36)

This means that 〈a|a〉 is constant in time. Hence, it is obvious to look for solutions vkj(t)
of (35) which are matrix elements of a matrix W (t) that leaves the Killing form invariant,
in the sense that

〈Wb|Wc〉 = 〈b|c〉 for all b, c ∈ R
n. (37)

For the construction of a matrix W (t) that leaves the Killing form invariant and that
satisfies (35) one has to rely on the large amount of knowledge about automorphisms of Lie
algebras (Note that automorphisms of the Lie algebra leave the Killing form invariant).

The next step is the construction of the operator V (t). One can make use of the
fact that the construction can be done in any faithful operator representation of the Lie
algebra. Indeed, let Ŝj be the generators in such a representation (the hat is used to

distinguish the generators Sj from their representations Ŝj) and assume that

ρ̂s(t) = V̂ (t)ρ̂(0)V̂ ∗(t) (38)

with

ρ̂s(t) =

n
∑

j=1

aj(t)Ŝj, (39)

and

V̂ (t) = eir1(t)Ŝ1eir2(t)Ŝ2 · · · eirn(t)Ŝn . (40)

Choose for instance a V (t) of the Wei-Norman form (12) [1]. Then the operators V (t),
defined by

V (t) = eir1(t)S1eir2(t)S2 · · · eirn(t)Sn , (41)

satisfy

ρs(t) = V (t)ρ(0)V ∗(t). (42)

The argument is that, when calculating V (t)ρ(0)V ∗(t), using the Baker-Campbell-Haus-
dorff formula, one needs to know only the commutation relations between the generators
Sj . Hence, the expressions for V (t) and V̂ (t) have the same form. Note that, if then the
generators Sj are self-adjoint and the coefficients rj(t) are real, then V (t) is unitary, as
requested.

Factorisations of V (t), other than that of Wei and Norman, will be used below as
well. However, the above argument can be used in all cases.

4 SU(2)

Let be given operators S1, S2, S3 that satisfy the commutation relations

[S1, S2] = iS3 and cyclic permutations. (43)

7

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The non-vanishing structure constants are ω123 = ω231 = ω312 = 1 and ω132 = ω213 =
ω321 = −1. The Lie bracket is

(a× b)3 = a1b2 − a2b1 and cyclic permutations. (44)

The Killing form is

< a|b >= −2
∑

j

ajbj . (45)

A well-known identity is

2x× (x× y) = 〈x|y〉x− 〈x|x〉y. (46)

This implies that the conditions of the Proposition 1 are satisfied, provided that a(0) 6= 0.
Indeed, assume 〈b|a(0)〉 = 0. Then (46) implies that b = a(0) × c with

c = −2
a(0) × b

〈a(0)|a(0)〉 . (47)

Let be given a special solution ρs(t) of the von Neumann equation. Then we have
to construct automorphisms W (t) of the Lie algebra such that (13) holds. In addition,
we have to calculate 〈k|a〉. The rotations of R

3 are the natural candidates for the W (t).
Several parametrisations are possible and are treated below.

4.1 Magnus expansion

Any rotation of R
3 can be denoted R(n, φ), meaning a rotation around an axis determined

by the vector n, satisfying |n| = 1, and by an angle φ. One has

R(n, φ)u = cos(φ)u− sin(φ)a× u+ (1 − cos(φ))(u · n)n. (48)

A well-known projective representation of the group SO(3) in SU(2) is

V̂ (n, φ) = exp

(

−iφ
2

3
∑

α=1

nασα

)

, (49)

where the σα are the Pauli spin matrices. It satisfies

V̂ (n, φ)(a · σ)V̂ (n,−φ) = cos(φ)a · σ − sin(φ)(a× n) · σ
+(1 − cos(φ))(a · n)n · σ

= (R(n, φ)a) · σ. (50)

Hence, the map a → 1
2
a · σ is an operator representation of the Lie algebra SU(2) (note

that σj = 2Ŝj).
Let n(t) and φ(t) be smooth functions such that a(t) = R(n, φ)a(0). Then (49) is an

explicitly constructed representation, satisfying our requirements. One concludes that

V (t) = exp

(

−iφ
3
∑

α=1

nαSα

)

. (51)

This ends the first step of the method. The disadvantage of the Magnus expansion is
that the expression for the operator K is rather complicated. The expansion is therefore
less useful and further application of the method is omitted here.
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4.2 Wei-Norman expansion

A rotation in R
3 can also be described as a sequence of rotations about each of the

principal axes. Let

R1(q1) =





1 0 0
0 cos(q1) sin(q1)
0 − sin(q1) cos(q1)





R2(q2) =





cos(q2) 0 − sin(q2)
0 1 0
sin(q2) 0 cos(q2)





R3(q3) =





cos(q3) sin(q3) 0
− sin(q3) cos(q3) 0
0 0 1



 . (52)

Then one has

eiq1σ1/2eiq2σ2/2eiq3σ3/2(u · σ)e−iq3σ3/2e−iq2σ2/2e−iq1σ1/2 = (R1R2R3u) · σ.
(53)

One concludes that

V (t) = eiq1S1eiq2S2eiq3S3 , (54)

with time-dependent angles qj(t) determined by a(t) = R1(q1)R2(q2)R3(q3)a(0). The
Hamiltonian K is found to be

K = −q̇1S1 − q̇2{cos(q1)S2 − sin(q1)S3}
+q̇3{sin(q2)S1 + sin(q1) cos(q2)S2 − cos(q1) cos(q2)S3}.

(55)

Given a special solution of the form (26), the functions aj(t) are known. The time-
dependent angles qj(t) can then be determined by the requirement that the vector a(t) is
obtained from a(0) by three successive rotations. Hence the Hamiltonian K can be com-
puted explicitly. From the difference with the given Hamiltonian H one can determine the
function α(t) — see Proposition 1. The full unitary time evolution U(t) is then obtained
from (31, 32). This is surely a viable approach. However, the equations determining the
time-dependent angles can be rather complicated. Therefore, some alternatives are given
below.

4.3 Euler angles

Another well-known parametrisation of rotations is that of Euler. It describes the rotation
of a reference frame. When describing a rotation in R

3 the first rotation can be used to
bring the initial vector in the plane orthogonal to direction 1. Let

a(t) = R3(ψ)R1(θ)R3(φ)a(0). (56)

Then one has for arbitrary u ∈ R
3

e
i
2
ψσ3e

i
2
θσ1e

i
2
φσ3(u · σ)e−

i
2
φσ3e−

i
2
θσ1e−

i
2
ψσ3 = (R3(ψ)R1(θ)R3(φ)u) · σ.
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(57)

One concludes that

V (t) = eiψS3eiθS1eiφS3 , (58)

with time-dependent Euler angles determined by a(t) = R3(ψ)R1(θ)R3(φ)a(0).
The Hamiltonian K is found to be

K = −ψ̇S3 − θ̇(cos(ψ)S1 − sin(ψ)S2)
−φ̇{cos(θ)S3 + sin(θ) cos(ψ)S2 + sin(θ) sin(ψ)S1}. (59)

Note that one can replace (58) by the alternative expressions

V (t) = ei(ψ+φ)S3eiθ(cos(φ)S1+sin(φ)S2) (60)

or

V (t) = eiθ(cos(ψ)S1−sin(ψ)S2)ei(φ+ψ)S3 . (61)

These expressions might be more convenient in certain applications.

4.4 Calculation of the time-dependent angles

The calculation of the time-dependent angles ψ, θ, φ may involve complicated expressions.
It is therefore noteworthy that one can redefine the Euler angles in such a way that (58)
may be replaced by

V (t) = eiφ(t)S3eiθ(t)S1e−iθ(0)S1e−iφ(0)S3 . (62)

This expression involves only two angles φ(t) and θ(t), determined by

sin(φ) =
a1

z
, cos(φ) =

a2

z
,

sin(θ) = −a3

λ
, cos(θ) =

z

λ
, (63)

where z(t) =
√

a1(t)2 + a2(t)2 and λ =
√

z(t)2 + a3(t)2. To see this, note that
R1(−θ)R3(−φ) rotates the arbitrary vector a into the fixed vector λ(0, 1, 0)T.

Using φ̇ =
a2ȧ1 − a1ȧ2

z2
and θ̇ = − ȧ3

z
the Hamiltonian K(t) can be calculated as

follows

K(t) = i
dV

dt
V ∗(t)

= −θ̇{cos(φ)S1 − sin(φ)S2} − φ̇S3

=
a2ȧ3

z2
S1 −

a1ȧ3

z2
S2 +

a1ȧ2 − a2ȧ1

z2
S3. (64)

Using ȧ = h × a one sees that this expression is of the form k = h − α(t)a with the
function α(t) given by

α =
a1h1 + a2h2

z2
. (65)
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The final result is then (see (32))

U(t) = V (t) exp

(

iτ(t)
∑

j

aj(0)Sj

)

, (66)

with V (t) given by (62) and with

τ(t) = −
∫ t

0

ds α(s) (67)

4.5 General solution of the equation ẋ = h× x

For the applications, discussed later on, it is of interest that one can now write down the
general solution of the equations ẋ = h × x in terms of the special solution a and the
effective time τ(t). Indeed, one has

x(t) = A





a1

a2

a3



− λB

z
cos(λτ + C)





a2

−a1

0



+
B

z
sin(λτ + C)





a3a1

a3a2

−z2



 ,

(68)

with A,B,C arbitrary constants. The verification of this results is a matter of a straight-
forward calculation.

5 SU(1,1)

Consider operators S1, S2, S3 satisfying the commutation relations

[S1, S2] = iS3

[S2, S3] = −iS1

[S3, S1] = −iS2. (69)

Introduce S ′
1 = iS1, S

′
2 = iS2, and S ′

3 = −S3. Then S ′
1, S

′
2, S

′
3 satisfy the commutation

relations of SU(2). Hence, the results of the previous Sections can be used to solve step 1
of our method. However, in step 2 the assumption is made that the generators S1, S2, S3

are self-adjoint. Therefore, the results of Section 4 have to be rederived here for SU(1,1).
The non-vanishing structure constants are ω123 = ω321 = ω132 = 1 and ω213 = ω231 =

ω312 = −1. The Lie bracket for vectors in R
3 is

(a× b)1 = a3b2 − a2b3,
(a× b)2 = a1b3 − a3b1,
(a× b)3 = a1b2 − a2b1. (70)

The Killing form is

〈a|b〉 = −2a1b1 − 2a2b2 + 2a3b3. (71)

The identity (46) still holds. Hence, the Proposition 1 predicts the form of the relation
between the unitary operators V (t) and U(t).
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5.1 Representation in R
3

Note that the cyclic permutation symmetry of SU(2) is lost. Hence, from the Wei-Norman
expansion (54) and the expansion based on Euler angles (58) one can derive two times
three different expansions. Let us consider just one of these, corresponding with the
choice of signs (-,-,+) in the Killing form, as found in (71). Then the rotations around
the third axis R3(φ) and R3(ψ) remain automorphisms. But R1(θ) must be replaced by

P1(χ) =





1 0 0
0 cosh(χ) sinh(χ)
0 sinh(χ) cosh(χ)



 . (72)

Assume now that the coefficients aj(t) are written as a(t) = R3(ψ)P1(χ)R3(φ)a(0). Then
the unitary operators V (t) are given by

V (t) = e−iψS3e−iχS1e−iφS3 . (73)

Indeed, for arbitrary u in R
3 is

eiψS3eiθS1eiφS3(u · σ)e−iφS3e−iθS1e−iψS3 = (R3(−ψ)P1(−θ)R3(−φ)u) · σ.
(74)

The corresponding Hamiltonian is

K = i
dV

dt
V ∗(t) = ψ̇S3 + χ̇(cos(ψ)S1 − sin(ψ)S2)

+φ̇{cosh(χ)S3 + sinh(χ) cos(ψ)S2 + sinh(χ) sin(ψ)S1}. (75)

As before in the SU(2) case one can rewrite the automorphism in such a way that
only two angles are involved

a(t) = R3(φ(t))P1(χ(t) − χ(0))R3(−φ(0)). (76)

The corresponding unitary operators are

V (t) = e−iφ(t)S3e−iχ(t)S1eiχ(0)S1eiφ(0)S3 (77)

The angles φ(t) and χ(t) must satisfy

sin(φ) =
a1

z
cos(φ) =

a2

z
sinh(χ) =

a3

µ
cosh(χ) =

z

µ
, (78)

where z(t) =
√

a1(t)2 + a2(t)2 and µ =
√

z(t)2 − a3(t)2. The fixed vector is

P1(−χ(0))R3(−φ(0))a(0) = µ(0, 1, 0)T. (79)

Using χ̇ = ȧ3/z and φ̇ = (a2ȧ1 −a1ȧ2)/z
2 the Hamiltonian K can be calculated as follows

K = i
dV

dt
V ∗(t) = χ̇{cos(φ(t))S1 − sin(φ(t))S2} + φ̇S3

=
ȧ3a2

z2
S1 −

ȧ3a1

z2
S2 +

a2ȧ1 − a1ȧ2

z2
S3. (80)
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Using ȧ = h× a one sees that this expression is of the form k = h−αa with the function
α(t) given by

α =
a1h1 + a2h2

z2
. (81)

The final result is then (see (32))

U(t) = V (t) exp

(

iτ(t)
∑

j

aj(0)Sj

)

, (82)

with V (t) given by (77) and with

τ(t) = −
∫ t

0

ds α(s) (83)

If the initial conditions satisfy a2
3 = a2

1 + a2
2 then µ = 0 and the angle χ(t) cannot

be determined by (78). In that case R3(−φ(0))a(0) equals z(0, 1, 1)T (we assume that
a3(0) > 0). The angle χ(0) can be taken equal to zero. The corresponding expression for
the time-dependent angle χ(t) is then

eχ(t) =
a3(t)

a3(0)
. (84)

Using χ̇ = ȧ3/a3 and φ̇ = (a2ȧ1 − a1ȧ2)/a
2
3 the Hamiltonian K becomes

K =
ȧ3

a2
3

(a2S1 − a1S2) +
a2ȧ1 − a1ȧ2

a2
3

S3. (85)

One then verifies that k = h−αa still holds with the function α(t) given by (81), in spite
of the fact that in this case the conditions of the Proposition 1 are not satisfied.

Note that slightly different choices have to be made in the case that the initial con-
ditions satisfy a2

3 > a2
1 + a2

2 instead of a2
3 < a2

1 + a2
2. Because a3(t) does not change sign,

and is assumed to be positive, one can take

sinh(χ) =
z

µ
cosh(χ) =

a3

µ
, (86)

with µ =
√

a3(t)2 − z(t)2. Then P1(−χ(0))R3(−φ(0))a equals µ(0, 0, 1)T.

5.2 General solution of the equation ẋ = h× x

In the same way as for the SU(2) symmetry one can now write down the general solution
of the equation ẋ = h× x. One finds, assuming a2

1 6= a2
2 + a2

3,

x(t) = A





a1

a2

a3



+
µB

z
cosh(µτ + C)





a2

−a1

0



+
B

z
sinh(µτ + C)





a3a1

a3a2

z2



 ,(87)

with A,B,C arbitrary constants. In the case that a2
1 = a2

2 + a2
3 then one finds

x(t) = (A +Bτ + Cτ 2)





a1

a2

a3



+
a3

z2
(B + 2Cτ)





a2

−a1

0



+
1

z2
C





−a1

−a2

a3



 . (88)
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6 The Bloch equations

A well-known application of SU(2) concerns the Bloch equations — see [9]. It is treated
in the present Section. The modification obtained by considering phase modulation is
treated in the next Section.

Note that the incorporation of the Bloch equations into the Maxwell-Bloch equations
have been studied by many authors, including [14, 36].

More general applications of SU(2) symmetry have been considered in the literature
as well. Campolieti and Sanctuary [10] applied the Wei-Norman technique to field modu-
lation in NMR. Zhou and Ye [16] study the case where all coefficients are time-dependent.
They introduce Euler angles with the same purpose as in the present work. Finally, Das-
gupta [24] studies the Jaynes-Cummings model with time-dependent coupling between
the spin and the photon field.

6.1 The Bloch equations

A magnetic spin in a magnetic field is usually described by a Hamiltonian of the form

H =
1

2
ǫσ3 −

1

2
ξσ1. (89)

The Pauli matrices σ1, σ2, σ3 are related to the generators of the Lie algebra by σα = 2Sα.
One has h = (−ξ, 0, ǫ)T. The equations of motion ȧ = h × a are known as the Bloch
equations — see [9]. Written explicitly, they are

ȧ1 = −ǫa2,
ȧ2 = ǫa1 + ξa3

ȧ3 = −ξa2. (90)

6.2 Special solutions

Assume that the constant ǫ does not depend on time. If ξ(t) does not depend on time
then any solution x(t) of the harmonic oscillator equation ẍ+ (ǫ2 + ξ2)x = 0 determines
a solution of (90), given by

a1 =
ǫẋ

ǫ2 + ξ2
+ ξC

a2 = x,

a3 =
ξẋ

ǫ2 + ξ2
− ǫC, (91)

with integration constant C.
When ξ(t) is time-dependent then a solution is known only in very specific cases. One

such case involves Jacobi’s elliptic functions sn, cn, and dn, with elliptic modulus k. Let

ξ(t) = 2ωk cn(ωt; k). (92)

Then a solution of (90) exists of the form

a1(t) = ǫ cn(ωt; k),
a2(t) = ω sn(ωt; k) dn(ωt; k),
a3(t) = −ωk sn2(ωt; k) + γ, (93)
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with

γ = −ǫ
2 − ω2

2ωk
. (94)

In the limit k = 1 these expressions lead to the well-known result (see Eq. 4.21 of [9])

ξ(t) = 2ω sech(ωt),
a1(t) = ǫ sech(ωt),
a2(t) = ω tanh(ωt) sech(ωt),
a3(t) = −ω tanh2(ωt) + γ. (95)

When ω = ǫ then the limit k = 0 can be taken. The rather trivial result is

ξ(t) = 0,
a1(t) = ω cos(ωt),
a2(t) = ω sin(ωt).
a3(t) = 0. (96)

6.3 General solution of the Bloch equations

The general solution of the Bloch equations, given arbitrary initial conditions and with
time-dependent Hamiltonian determined by (92), is derived in the Appendix A. The three
independent solutions a(1), a(2), a(3) of ȧ = h× a are obtained from (A.10). They are

a(1) =
ǫ

λ





sin(φ) cos(θ)
cos(φ) cos(θ)
− sin(θ)



− γ

λ
cos(λτ)





sin(φ) sin(θ)
cos(φ) sin(θ)

cos(θ)



+
γ

λ
sin(λτ)





cos(φ)
− sin(φ)

0





a(2) = − sin(θ) sin(λτ)





sin(φ)
cos(φ)

0



− cos(λτ)





cos(φ)
− sin(φ)

0



− cos(θ) sin(λτ)





0
0
1





a(3) =
γ

λ





sin(φ) cos(θ)
cos(φ) cos(θ)
− sin(θ)



+
ǫ

λ
cos(λτ)





sin(φ) sin(θ)
cos(φ) sin(θ)

cos(θ)



− ǫ

λ
sin(λτ)





cos(φ)
− sin(φ)

0





(97)

The special solution (93) satisfies a = ǫa(1) + γa(3). The general solution of the Bloch
equations ẋ = h× x is given by expression (68), with a(t) given by (97). The equations
determining the angles φ and θ are given in the appendix.

The solution a(2) has the initial condition a(2)(t = 0) = (0, 1, 0)T. The other new
solution is

γa(1) − ǫa(3) = −λ cos(λτ)





sin(φ) sin(θ)
cos(φ) sin(θ)

cos(θ)



+ λ sin(λτ)





cos(φ)
− sin(φ)

0



 . (98)

Its initial condition is a(t = 0) = −λ(sin θ(0), 0, cos θ(0))T. Both new solutions are
characterised by the appearance of the angle τ(t) describing a nutation of the rotation
axis.

In the limit k = 1 the formulas simplify. The relevant expressions become

sin(φ) =
a1

z
=

ǫ
√

ǫ2 + ω2 tanh2(ωt)
,
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cos(φ) =
a2

z
=

ω tanh(ωt)
√

ǫ2 + ω2 tanh2(ωt)
,

sin(θ) = −a3

λ
=
ω tanh2(ωt) − γ
√

ǫ2 + γ2
,

cos(θ) =
z

λ
= sech(ωt)

√

ǫ2 + ω2 tanh2(ωt)

ǫ2 + γ2
,

z =
√

a2
1 + a2

2 = sech(ωt)
√

ǫ2 + ω2 tanh(ωt),

λ =
√

z2 + a2
3 =

√

ǫ2 + γ2 =
ǫ2 + ω2

2ω
,

α = −a1

z2
ξ = − 2ǫω

ǫ2 + ω2 tanh2(ωt)
, (99)

with γ = (ω2 − ǫ2)/2ω. The integral of α(t) can be done analytically. It yields

τ(t) = −
∫ t

0

ds α(s) =
2ω

ǫ2 + ω2

{

ǫt+ arctan
(ω

ǫ
tanh(ωt)

)}

. (100)

6.4 The Bloch equations at resonance

The resonant condition is ǫ = ω. In that case, γ, as given by (94), vanishes. The equations
(A.19) can be used to obtain the general solution of ȧ = h× a at resonance

agen
1 (t) = agen

1 (0) cos(θ) sin(φ)
+ sin(θ) sin(φ) [agen

3 (0) cos(ωτ) − agen
2 (0) sin(ωτ)]

− cos(φ) [agen
2 (0) cos(ωτ) + agen

3 (0) sin(ωτ)]
agen

2 (t) = agen
1 (0) cos(θ) cos(φ)

+ sin(θ) cos(φ) [agen
3 (0) cos(ωτ) − agen

2 (0) sin(ωτ)]
+ sin(φ) [agen

2 (0) cos(ωτ) + agen
3 (0) sin(ωτ)]

agen
3 (t) = −agen

1 (0) sin(θ)
+ [agen

3 (0) cos(ωτ) − agen
2 (0) sin(ωτ)] cos(θ). (101)

The correction angle α, given by (A.5), simplifies to

α(t) = −a1

z2
ξ = −kω (1 + cn(2ωt; k)) . (102)

This expression can be integrated analytically. The result is

τ(t) = −
∫ t

0

ds α(s) = kt− 1

ω
arctan

dn(ωt; k)

k sn(ωt; k) cn(ωt; k)
. (103)

With some effort, (101) can now be written as

agen
1 (t) = agen

1 (0) cn(ωt; k)
+agen

2 (0) sn(ωt; k) cos(kωt)
+agen

3 (0) sn(ωt; k) sin(kωt),
agen

2 (t) = agen
1 (0) sn(ωt; k) dn(ωt; k)

+agen
2 (0) ( cn(ωt; k) dn(ωt; k) cos(kωt) − k sn(ωt; k) sin(kωt))

+ agen
3 (0) ( cn(ωt; k) dn(ωt; k) sin(kωt) + k sn(ωt; k) cos(kωt)) ,
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agen
3 (t) = −agen

1 (0)k sn2(ωt; k)
+agen

2 (0) (k cn(ωt; k) sn(ωt; k) cos(kωt) + dn(ωt; k) sin(kωt))
+ agen

3 (0) (k cn(ωt; k) sn(ωt; k) sin(kωt) − dn(ωt; k) cos(kωt)) . (104)

The three independent solutions are therefore

a(1) =





cn(ωt; k)
sn(ωt; k) dn(ωt; k)
−k sn2(ωt; k)



 ,

a(2) =





sn(ωt; k) cos(kωt)
cn(ωt; k) dn(ωt; k) cos(kωt) − k sn(ωt; k) sin(kωt)
k cn(ωt; k) sn(ωt; k) cos(kωt) + dn(ωt; k) sin(kωt)



 ,

a(3) =





sn(ωt; k) sin(kωt)
cn(ωt; k) dn(ωt; k) sin(kωt) + k sn(ωt; k) cos(kωt)
k cn(ωt; k) sn(ωt; k) sin(kωt) − dn(ωt; k) cos(kωt)



 . (105)

One clearly has a = ωa(1), the special solution we started with. It is easy to verify that
also a(2) and a(3) are solutions of ȧ = a× h.

7 Bloch equations continued

7.1 Including phase modulation

A slightly different solution is obtained when the parameter ǫ in (90) is made time de-
pendent in the following way

ǫ = ǫ0 tanh(ωt). (106)

In [9], the resulting equations are called the Bloch equations including phase modulation.
Also in this case a special solution is known. The generalisation to Jacobi’s elliptic
functions, as given below, can be done in two different ways.

7.2 Special solutions

Assume that

ξ(t) = ξ0 cn(ωt; k),
ǫ(t) = ǫ0 sn(ωt; k). (107)

or

ξ(t) = ξ0 dn(ωt; k),
ǫ(t) = ǫ0 sn(ωt; k). (108)

Both assumptions reduce to ξ(t) = ξ0 sech(ωt) and (106) in the limit k = 1.
A solution of the equations (90) is given by

a1(t) = ǫ0 cn(ωt; k),
a2(t) = ω dn(ωt; k),
a3(t) = −ξ0 sn(ωt; k). (109)
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or

a1(t) = ω cn(ωt; k),
a2(t) = ǫ0 dn(ωt; k),
a3(t) = −ξ0 sn(ωt; k). (110)

provided that ξ2
0 = ǫ20 + ω2k2, respectively ξ2

0 = ǫ20k
2 + ω2, is satisfied.

Only the first of the cases is treated below. The other case is completely analogous.
Note that in the limit k = 1 the solution (109) reduces to the well-known solution

a1(t) = ǫ0 sech(ωt),
a2(t) = ω sech(ωt),
a3(t) = −ξ0 tanh(ωt). (111)

In the limit k = 0 it reduces to a harmonic precession

ξ(t) = ξ0 cos(ωt),
ǫ(t) = ǫ0 sin(ωt),
a1(t) = ǫ0 cos(ωt),
a2(t) = ω,
a3(t) = −ξ0 sin(ωt). (112)

7.3 General solution including phase modulation

It is now possible to obtain the general solution of the Bloch equations including phase
modulation, with driving fields of the form (107).

The three independent solutions of ȧ = h× a, obtained from (B.6), are

a(1)(t) =
ǫ0
λ





sin(φ) cos(θ)
cos(φ) cos(θ)
− sin(θ)





+
ω

λ
sin(λτ)





sin(φ) sin(θ)
cos(φ) sin(θ)

cos(θ)



 +
ω

λ
cos(λτ)





cos(φ)
− sin(φ)

0



 ,

a(2)(t) =
ω

λ





sin(φ) cos(θ)
cos(φ) cos(θ)
− sin(θ)





−ǫ0
λ

sin(λτ)





sin(φ) sin(θ)
cos(φ) sin(θ)

cos(θ)



− ǫ0
λ

cos(λτ)





cos(φ)
− sin(φ)

0



 ,

a(3)(t) = cos(λτ)





sin(φ) sin(θ)
cos(φ) sin(θ)

cos(θ)



− sin(λτ)





cos(φ)
− sin(φ)

0



 . (113)

The equations determining the angles φ and θ are found in the Appendix B. The special
solution (109) satisfies a = ǫ0a

(1) +ωa(2). The general solution of the equations ẋ = h×x
has been given in Section 4.5 and can be rederived from the knowledge of a(1), a(2), a(3).
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7.4 The k = 1-limit

In this limit the existence of the special solution requires that ξ0 = λ. The angle φ and
the phase α become constants

sin(φ) =
ǫ0
λ

and cos(φ) =
ω

λ
(114)

and α = −ǫ0ξ0/λ2. Hence one has λτ(t) = ǫ0t. The angle θ satisfies

sin(θ) = − tanh(ωt) and cos(θ) = sech(ωt). (115)

The three independent solutions are

a(1)(t) =
ǫ0
λ2





ǫ0 sech(ωt)
ω sech(ωt)
λ tanh(ωt)



+
ω

λ2
sin(ǫ0t)





−ǫ0 tanh(ωt)
−ω tanh(ωt)
λ sech(ωt)



+
ω

λ2
cos(ǫ0t)





ω
−ǫ0
0





a(2)(t) =
ω

λ2





ǫ0 sech(ωt)
ω sech(ωt)
λ tanh(ωt)



− ǫ0
λ2

sin(ǫ0t)





−ǫ0 tanh(ωt)
−ω tanh(ωt)
λ sech(ωt)



− ǫ0
λ2

cos(ǫ0t)





ω
−ǫ0
0





a(3)(t) =
1

λ
cos(ǫ0t)





−ǫ0 tanh(ωt)
−ω tanh(ωt)
λ sech(ωt)



− 1

λ
sin(ǫ0t)





ω
−ǫ0
0



 . (116)

8 The generalised harmonic oscillator

Consider creation and annihilation operators b† and b satisfying the canonical commuta-
tion relations [b, b†] = I. Then the operators

S1 =
1

4
((b†)2 + b2),

S2 =
i

4
((b†)2 − b2),

S3 =
1

4
(b†b+ bb†) (117)

satisfy (69). Hamiltonians which can be written as a linear combination of these genera-
tors are the generalised harmonic oscillators.

8.1 Time-dependent frequency

Consider the harmonic oscillator with arbitrary time-dependent frequency ω(t)

H =
1

2m
P 2 +

1

2
mω2(t)Q2. (118)

Here, Q is the position operator and P the momentum operator. They satisfy [Q,P ] = i.
This problem was studied by Lewis and Riesenfeld [3]. See also [5, 13, 17, 27, 28, 33, 34,
37, 40]. Also here we use the known analytical solutions to derive the general solution
with arbitrary initial conditions.

Introduce an annihilation operator defined by

b =
1

r
√

2
Q+ i

r√
2
P, (119)
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with r =
1√
mω0

and ω0 some constant frequency. Then the generators equal

S1 =
1

4r2
Q2 − r2

4
P 2 (120)

S2 =
1

4
(QP + PQ) (121)

S3 =
1

4r2
Q2 +

r2

4
P 2. (122)

Introduce the function γ(t), modulating the frequency ω0, defined by ω(t) = γ(t)ω0. The
Hamiltonian becomes

H(t) = −1

4
ω0(b− b†)2 +

1

4
ω0γ

2(t)(b+ b†)2

= ω0(γ
2(t) − 1)S1 + ω0(γ

2(t) + 1)S3. (123)

Hence one has h = ω0(γ
2(t) − 1, 0, γ2(t) + 1)T.

8.2 Special solution

The time evolution equation reads (see the definition (70) of the Lie bracket)

ȧ = h× a
= (h3a2, h1a3 − h3a1, h1a2)

T

= ω0(γ
2(t) + 1)(a2,−a1, 0)T + ω0(γ

2(t) − 1)(0, a3, a2)
T. (124)

Proposition 2 Let x(t) be a solution of the classical oscillator equation

ẍ+ ω2(t)x = 0. (125)

Then a, defined by

a =
1

2
(ẋ)2(1, 0, 1)T +

1

2
ω2

0x
2(−1, 0, 1)T − ω0xẋ(0, 1, 0)T, (126)

is a solution of (124).

The proof is done by explicit calculation. One concludes that, to find a special solution
of the von Neumann equation, it suffices to find a special solution of the classical equation
(125). Note that the latter problem is equivalent with solving Riccati’s equation

ġ − g2 = ω2(t). (127)

The corresponding solution of (125) is

x = C exp

(

−
∫

dt g(t)

)

, (128)

with integration constant C. In the case that ω(t) is constant one finds

g(t) = ω tan(ωt) (129)
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so that x(t) = C cos(ωt). With C = 1 and ω0 = ω one obtains the special solution

a =
1

2
ω2(− cos(2ωt), sin(2ωt), 1)T. (130)

If ω(t) is of the form ω(t) = ω0(1 + ǫ cos(2λt)) then the equation (125) is related to
Mathieu’s equation. The solution x = cn(ω0, t; k), involving Jacobi’s elliptic function
with 0 < k < 1/

√
2, is obtained when

ω(t) = ω0

√

2 dn2(ω0t; k) − 1. (131)

8.3 Automorphisms

Note that the special solution (126) satisfies 〈a|a〉 = 0 (using the metric with signature
−,−,+). Hence, we have to apply the exceptional case discussed at the end of Section
5.1.

Write a(t) into the form

a(t) = R3(φ)P1(χ)R3(−φ(0))a(0). (132)

From (78) follows

sin(φ) =
a1

a3
=

(ẋ)2 − ω2
0x

2

(ẋ)2 + ω2
0x

2
,

cos(φ) =
a2

a3
=

2ω0xẋ

(ẋ)2 + ω2
0x

2
. (133)

From (84) follows

χ = ln
a3(t)

a3(0)
= ln

(ẋ)2 + ω2
0x

2

[(ẋ)2 + ω2
0x

2)]t=0
. (134)

Note that φ(0) simplifies if either x(0) = 0 or ẋ(0) = 0.
From the general theory now follows that (see (77))

V (t) = e−iφ(t)S3e−iχ(t)S1eiφ(0)S3 . (135)

The corresponding Hamiltonian is

K = χ̇ {cos(φ)S1 − sin(φ)S2} + φ̇S3. (136)

Note that

χ̇ =
ȧ3

a3
= h1

a2

a3
and φ̇ =

a2ȧ1 − a1ȧ2

a2
3

= h3 − h1
a1

a3
. (137)

Hence K can be written as

K = (cos(φ)χ̇,− sin(φ)χ̇, φ̇)T

=
1

a2
3

(

h1a
2
2,−h1a1a2, h3a

2
3 − h1a1a3

)T
. (138)
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One obtains h− k = αa, with

α = h1
a1

a2
3

. (139)

The final result is

U(t) = V (t)eift(ρs(0)−C) = e−iφ(t)S3e−iχ(t)S1eiφ(0)S3ei
P

j aj(0)Sj

R t

0
dsα(s). (140)

It can be used to calculate the time evolution with arbitrary initial conditions. In partic-
ular, one can start with an initial state which does not satisfy the ’light cone condition’
〈a|a〉 = 0.

9 More general oscillators

More general time-dependent harmonic oscillators have been considered in the literature
[7, 11, 12, 21, 30, 32, 37]. Even damped oscillators have been studied — see for instance
[15, 18, 31]. Some of them can be treated by the present method. An example not yet
considered in the literature is H =

∑3
j=1 hj(t)Sj with

h1(t) = a cn(ωt; k) (141)

h2(t) = −a sn(ωt; k) (142)

h3(t) = c+ ω dn(ωt; k), (143)

with constants ω, a, c, and 0 ≤ k ≤ 1. A special solution of the von Neumann equation
is given by (see [35]) ρs(t) =

∑3
j=1 aj(t)Sj with

a1(t) = a cn(ωt; k) (144)

a2(t) = −a sn(ωt; k) (145)

a3(t) = c. (146)

Note that ρs(t) is not a density operator. But this does not harm our method.
Introduce unitary operators V (t) by (see (77))

V (t) = e−iφ(t)S3e−iχ(t)S1eiχ(0)S1eiφ(0)S3 (147)

with angles φ(t) and χ(t) satisfying (see (78))

sin(φ) = cn(ωt; k), cos(φ) = sn(ωt; k) (148)

sinh(χ) =
c√

a2 − c2
, cosh(χ) =

a√
a2 − c2

. (149)

Note that we assume that a2 > c2. Also, note that φ(0) = π/2. Because χ(t) turns out
to be independent of time t, (147) simplifies to

V (t) = e−i(φ(t)−φ(0))S3 . (150)

Next calculate

α(t) =
a1h1 + a2h2

a2
= 1. (151)
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Hence, the time evolution is described by the unitary operators

U(t) = V (t)e−iρs(0)t = e−i(φ(t)−φ(0))S3e−it(aS1+cS3). (152)

It is now possible to calculate the time evolution of the generators in the Heisenberg
picture. For simplicity take c = 0. Then one obtains

S1(t) = U(t)∗S1U(t)
= cos(φ(t) − φ(0))S1 + sin(φ(t) − φ(0))S2

= sin(φ(t))S1 − cos(φ(t))S2

= cn(ωt; k)S1 − sn(ωt; k)S2. (153)

Similarly is

S2(t) = U(t)∗S2U(t)
= cosh(at) [cos(φ(t) − φ(0))S2 − sin(φ(t) − φ(0))S1] − sinh(at)S3

= cosh(at) [sin(φ(t))S2 + cos(φ(t))S1] − sinh(at)S3

= cosh(at) [ cn(ωt; k)S2 + sn(ωt; k)S1] − sinh(at)S3, (154)

and

S3(t) = U(t)∗S3U(t)
= cosh(at)S3 − sinh(at) [cos(φ(t) − φ(0))S2 − sin(φ(t) − φ(0))S1]
= cosh(at)S3 − sinh(at) [sin(φ(t))S2 + cos(φ(t))S1]
= cosh(at)S3 − sinh(at) [ cn(ωt; k)S2 + sn(ωt; k)S1] . (155)

Note that S3 is the energy of the unperturbed harmonic oscillator. Clearly, this quantity
explodes for large times. Hence, the time-dependent harmonic oscillator described by
(143) is at resonance.

10 Discussion

We present a general method of constructing unitary operators U(t) that solve a quantum
time evolution in the case of a time-dependent HamiltonianH(t). The method starts from
a special solution of the von Neumann equation. It differs form the approach of [3], where
the special solution is called a time-dependent invariant, by using an explicit solution
instead of defining it by means of a classical differential equation and an asymptotic
procedure. The method is worked out in detail for the case that H(t) can be written
as a linear combination of generators S1, · · · , Sn of a Lie algebra, with time-dependent
coefficients. Most studied in the literature is the case of SU(2). The explicit expressions
for the operators U(t), known as Magnus expansion, respectively Wei-Norman expansion,
are shown to be special instances of a more general theory and correspond to specific
representations of the rotation group in R

3. A simpler expression for the operators U(t)
is obtained when the rotations are described in terms of Euler angles – see (62) and (66).
Also the case of SU(1,1) has been discussed often. The representation of the rotation
group involving Euler angles can be adapted to this case. The result is given by (77, 82).

The generator corresponding to the special solution is denoted by K(t). The result of
Proposition 1 is very convenient because it proves that the difference between the Hamil-
tonians H(t) and K(t) is a linear function of the special solution ρs(t). The conditions of
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this Proposition may not always be fulfilled. But one can fall back on the general method
described in Section 2. It suffices that the special solution ρs(0) is multiplicity free. Then
the left side of (16) is an element of a commutative algebra generated by ρs(0), and at the
same time an element of a Lie algebra. The degree of difficulty of determining the form
of ft(x) depends on how many different functions of ρs(0) are Lie-algebra valued. Never-
theless, in all cases the procedure just reduces to integration of ordinary functions. The

expression eift

(

ρs(0)
)

in (15) is easy to calculate as an exponent of a sum of commuting
operators.

Initially [1, 2], the Wei-Norman method translated the problem of obtaining explicit
expressions for the operators U(t) into sets of differential equations with time-dependent
coefficients. In the Lie-algebraic context these equations can be written into the form
ẋ = h × x, where we use the notation h × x for the Lie bracket of h and x. The main
result of the present approach is that we obtain the general solution x of these equations,
starting from a special solution – see (68) and (87, 88).

The method depends on the knowledge of a special solution. Note that the Schrödinger
and von Neumann equations with time-dependent Hamiltonian are related to the non-
linear Schrödinger and von Neumann equations. In particular, a solution of the non-linear
equation

d

dt
ρ(t) = i[ρ(t)2, H ] (156)

can be used as a special solution of the von Neumann equation (4) with time-dependent
Hamiltonian H(t) = ρ(t)H +Hρ(t). See for instance [26]. The theory of finding special
solutions for non-linear von Neumann equations can be found in [25].

We apply our method to two well-known cases, one corresponding with SU(2) sym-
metry, the other with SU(1,1). In both cases the method is shown to reproduce known
results and to produce some new results as well.

We did not try to reproduce the most general results found in the literature. We
are confident that we could do so, at the expense of writing a more technical and less
pedagogical paper. Of more interest is the application of our method to other Lie algebras.

In [21], the Lie algebra that we used in Section 4 is extended to contain 6 elements
1
2
P 2, 1

2
Q2, 1

2
(PQ + QP ), P , Q, I. With this extension it becomes possible to calculate

the time evolution in the Heisenberg picture of physically interesting quantities such as
the position Q and the momentum P . One then can calculate the classical phase portrait
by studying the orbit t → 〈ψ|Q(t)|ψ〉, 〈ψ|P (t)|ψ〉 for an arbitrary wavefunction ψ. This
will be done in a future work.

Weigert [23] has considered the general case of SU(N) symmetry. Lopez and Suslov [38]
used the Heisenberg-Weyl group N(3) to describe a forced harmonic oscillator. Finally,
Cariñena et al [39], among others, are interested in developing a superposition principle
for nonlinear equations by mapping the solutions onto the solutions of linear equations
with time-dependent coefficients.

Appendix A

Here, our method is applied to find the general solution of the Bloch equations starting
from the special solution (93).
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Following the general method of Section 4.4 the transformation V (t) is determined by
two angles φ(t), θ(t). The special solution a(t) at time t = 0 reads

a(0) = (ǫ, 0, γ)T . (A.1)

It is rotated into the fixed vector λ(0, 1, 0)T. One has

z(t) =
√

a2
1(t) + a2

2(t) =

√

ǫ2 cn2(ωt; k) + ω2 sn2(ωt; k) dn2(ωt; k),

z(0) = ǫ,

λ =
√

z2(t) + a2
3(t) =

√

ǫ2 + γ2. (A.2)

The angles φ(t) and θ(t) are determined by (62). In particular, at t = 0 is

sin(φ(0)) =
a1(0)

z(0)
= 1 and cos(φ(0)) =

a2(0)

z(0)
= 0,

sin(θ(0)) = −a3(0)

λ
= −γ

λ
and cos(θ(0)) =

z(0)

λ
=
ǫ

λ
. (A.3)

One can understand these values as follows. By a rotation of −φ(0) = −π/2 around the
third axis the initial vector a(0) becomes (0, ǫ, γ)T. Then by a rotation with angle −θ(0)
around the first axis it becomes (0, λ, 0)T. Next, the rotation R1(θ(t)), followed by the
rotation R3(φ(t)) maps this fixed vector onto the time-dependent a(t).

The Hamiltonian K(t) equals (see (64))

K(t) =
a2ȧ3

z2
S1 −

a1ȧ3

z2
S2 +

a1ȧ2 − a2ȧ1

z2
S3

=
ξ(t)

z2(t)

[

−a2
2(t)S1 + a1(t)a2(t)S2 + a1(t)a3(t)S3

]

+ ǫS3. (A.4)

The difference between this K(t) and the Hamiltonian H(t) as given by (89) makes an
extra rotation necessary. It involves the function α(t), given by (65). It evaluates to

α(t) = −a1(t)

z2(t)
ξ(t) = − 2ǫωk cn2(ωt; k)

ǫ2 cn2(ωt; k) + ω2 sn2(ωt; k) dn2(ωt; k)
. (A.5)

The final result then becomes

U(t) = eiφ(t)S3ei(θ(t)−θ(0))S1e−i(π/2)S3e−i(
R t

0
dsα(s))(ǫS1+γS3). (A.6)

Note that this expression can be simplified to

U(t) = ei(φ(t)−π/2)S3e−i(θ(t)−θ(0))S2eiλτX . (A.7)

with τ ≡ τ(t) = −
∫ t

0

ds α(s) and X =
ǫS1 + γS3

λ
. For further use note that

eiλτXSje
−iλτX = Sj + i sin(λτ)[X,Sj ] + (cos(λτ) − 1)[X, [X,Sj ]]. (A.8)

Note that (omitting time dependences and denoting θ0 ≡ θ(0))

ǫ cos(θ − θ0) − γ sin(θ − θ0) =
ǫ2 − γ2

λ
cos(θ) − 2

ǫγ

λ
sin(θ)
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γ cos(θ − θ0) + ǫ sin(θ − θ0) = 2
ǫγ

λ
cos(θ) +

ǫ2 − γ2

λ
sin(θ)

γ cos(θ − θ0) − ǫ sin(θ − θ0) = −λ sin(θ)
ǫ cos(θ − θ0) + γ sin(θ − θ0) = λ cos(θ). (A.9)

These relations can be used to calculate

U(t)(ǫS1 + γS3)U(t)∗ = −λ sin(θ)S3 + λ cos(θ)S+,
λU(t)(ǫS1 − γS3)U(t)∗ =

[

(ǫ2 − γ2) cos(θ) − 2ǫγ sin(θ) cos(λτ)
]

S+

+2γǫ sin(λτ)S−

−
[

2ǫγ cos(θ) cos(λτ) + (ǫ2 − γ2) sin(θ)
]

S3

U(t)S2U(t)∗ = − sin(λτ) cos(θ)S3 − cos(λτ)S− − sin(θ) sin(λτ)S+,
(A.10)

with

S+ = sin(φ)S1 + cos(φ)S2 and S− = cos(φ)S1 − sin(φ)S2. (A.11)

Note further that

φ̇ = −ǫ+ ξ sin(φ) tan(θ)
θ̇ = ξ cos(φ)

τ̇ =
ξ

λ

sin(φ)

cos(θ)
. (A.12)

Using these equations one can verify explicitly that the time-dependent operators (A.10)
satisfy indeed the von Neumann equation of motion.

Let us finally consider the situation when the resonance condition ǫ = ω is satisfied.
The normalisations z(t) and λ, given by (A.2) and appearing in the expressions for the
angles φ and θ (see (62)), become

z(t) = ω

√

cn2(ωt; k) + sn2(ωt; k) dn2(ωt; k), (A.13)

λ = ω. (A.14)

There follows

sin(2φ) =
2a1a2

z2
= sn(2ωt; k) (A.15)

cos(2φ) =
a2

2 − a2
1

z2
= − cn(2ωt; k) (A.16)

sin(θ) = −a3

λ
= k sn2(ωt; k), (A.17)

cos(θ) =
z

λ
=

√

cn2(ωt; k) + sn2(ωt; k) dn2(ωt; k). (A.18)

In particular is θ(0) = 0. The equations (A.10) become

U(t)S1U(t)∗ = − sin(θ)S3 + cos(θ)S+,
U(t)S3U(t)∗ = sin(θ) cos(ωτ)S+ − sin(ωτ)S− + cos(ωτ) cos(θ)S3

U(t)S2U(t)∗ = − sin(ωτ) cos(θ)S3 − cos(ωτ)S− − sin(θ) sin(ωτ)S+. (A.19)
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Appendix B

Here, our method is applied to find the general solution of the Bloch equations including
phase modulation.

Consider the special solution (109). The angles φ(t) and θ(t) are determined by (62).
In particular, at t = 0 is

sin(φ(0)) =
ǫ0
λ
, cos(φ(0)) =

ω

λ
, (B.1)

and θ(0) = 0, with λ =
√

ǫ20 + ω2. This means that by a rotation R3(−φ(0)) around
the third axis the initial vector a(0) is rotated into the fixed vector λ(0, 1, 0)T. Next,
the rotation R1(θ(t)), followed by the rotation R3(φ(t)) maps this fixed vector onto the
time-dependent a(t).

The Hamiltonian K(t) equals (see (64))

K(t) =
a2ȧ3

z2
S1 −

a1ȧ3

z2
S2 +

a1ȧ2 − a2ȧ1

z2
S3

=
ξ(t)

z2(t)

[

−a2
2(t)S1 + a1(t)a2(t)S2 + a1(t)a3(t)S3

]

+ ǫS3. (B.2)

This is the same expression as (A.4). The difference between this K(t) and the Hamil-
tonian H(t) as given by (89) makes an extra rotation necessary. It involves the function
α(t), given by (65). It evaluates to

α(t) = −a1(t)

z2(t)
ξ(t) = − ǫ0ξ0 cn(ωt; k) dn(ωt; k)

ǫ20 cn2(ωt; k) + ω2 dn2(ωt; k)
. (B.3)

The final result then becomes

U(t) = eiφ(t)S3eiθ(t)S1e−iφ(0)S3eiλτ(t)X , (B.4)

with τ(t) = −
∫ t

0

ds α(s) and X =
ǫ0S1 + ωS2

λ
. Note that (B.3) can be integrated

analytically. The result is

τ(t) =
ǫ0ξ0

2ωλµ
ln
λ+ µ sn(ωt; k)

λ− µ sn(ωt; k)
(B.5)

with µ =
√

ǫ20 + k2ω2.

One further calculates (again omitting time dependencies and denoting φ0 ≡ φ(0))

U(t)(ǫ0S1 + ωS2)U(t)∗ = λ cos(θ)S+ − λ sin(θ)S3

λU(t)(ǫ0S1 − ωS2)U(t)∗ =
[

(ǫ20 − ω2) cos(θ) + 2ǫ0ω sin(θ) sin(λτ)
]

S+

+2ǫ0ω cos(λτ)S−

+
[

2ǫ0ω cos(θ) sin(λτ) − (ǫ20 − ω2) sin(θ)
]

S3

U(t)S3U(t)∗ = cos(λτ) sin(θ)S+ − sin(λτ)S− + cos(λτ) cos(θ)S3,(B.6)

with

S+ = sin(φ)S1 + cos(φ)S2 and S− = cos(φ)S1 − sin(φ)S2. (B.7)

This result can be used to derive the general solution of ȧ = h× a.
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