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Abstract—The problem of identification of quasi-periodically
varying dynamic systems is considered. This problem can be
solved using generalized adaptive notch filtering (GANF) algo-
rithms. It is shown that the accuracy of parameter estimates can
be significantly increased if the results obtained from GANF are
further processed using a cascade of appropriately designed fil-
ters. The resulting generalized adaptive notch smoothing (GANS)
algorithm can be employed in many off-line or nearly real-time
on-line applications, such as elimination of sinusoidal interference
from a prerecorded signal or identification of a rapidly varying
telecommunication channel.

Index Terms—Adaptive signal processing, noncausal estima-
tion.

I. I NTRODUCTION

GENERALIZED adaptive notch filters (GANFs) [1] were
designed for the purpose of identification/tracking of

quasi-periodically varying complex-valued systens, i.e., sys-
tems governed by

y(t) = ϕT(t)θ(t) + v(t) (1)

where t = 1, 2, . . . denotes the normalized discrete time,
y(t) denotes the system output,ϕ(t) = [ϕ1(t), . . . , ϕn(t)]T

denotes regression vector,v(t) denotes measurement noise,
and θ(t) = [θ1(t), . . . , θn(t)]T is the vector of time-varying
system coefficients, modeled as weighted sums of complex
exponentials

θ(t) =
k∑

i=1

αi(t)ej
∑t

l=1 ωi(l) . (2)

All quantities in (1)–(2), except angular frequencies
ω1(t), . . . , ωk(t), are complex-valued. Since the complex “am-
plitudes” αi(t) = [ai1, . . . , ain]T incorporate both magnitude
and phase information, there is no explicit phase component
in (2).

An interesting application, which under certain conditions
admits the formulation presented above, is adaptive equaliza-
tion of rapidly fading multipath telecommunication channels -
see e.g. [2], [3], [4]. In this particular case,y(t) is the sampled
baseband signal, received by the mobile radio system, the re-
gression vector is made up of past input (transmitted) symbols,
θ(t) is the vector of time-varying impulse response coefficients
of the channel, and the angular frequenciesω1, . . . , ωk corre-
spond to Doppler shifts along different paths of signal arrival
(when the speed of the vehicle changes over time, Doppler
shifts are also time-varying).
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In the special case wheren = 1 and ϕ(t) ≡ 1, equations
(1)–(2) describe a mixture of complex-valued sinusoidal sig-
nals (called cisoids) buried in noise (s(t) =θ(t))

y(t) = s(t) + v(t)

s(t) =
k∑

i=1

ai(t)ej
∑t

l=1 ωi(l) (3)

and GANF filters become “ordinary” adaptive notch filters
(ANFs) – devices used for a variety of purposes, such as
line enhancement [5], mitigation of narrowband interferences
in communication channels [6], active noise and vibration
control [7], [8], biomedical signal processing [9], [10], [11],
or elimination of of narrowband disturbances (generated by
power lines and/or electronic circuitry) from audio signals
[12]. For an overview of different ANF algorithms see e.g.
[13], [14] and references therein.

GANFs/ANFs are causal estimation algorithms, which
means that at any instantt they yield estimateŝθ(t) and
ŝ(t) that are functions of current and past measurements
Y−(t) = {y(1), . . . , y(t)}. While causality is an obvious
requirement in real-time applications, such as active noise or
vibration control, many other applications exist that allow one
to either partially or entirely remove this constraint. Generally
speaking, such applications fall into two categories:

1) Near Real-Time Applications.Consider the problem of
on-line elimination of a narrowband interference from a speech
signal transmitted over a telecommunication channel. Since the
received signal is already a delayed version of the transmitted
one (due to channel and processing delays), one can usually
afford an additional decision delay ofτ sampling intervals
to improve estimation accuracy, namely to evaluate smoothed
(noncausal) estimates̃s(t − τ) = s̃[Y−(t)] that are functions
of the observation historyY−(t − τ) available at instant
t − τ , and of τ “future” samples:y(t − τ + 1), . . . , y(t).
In a statistical literature such solution is known as fixed-lag
smoothing. When appropriately designed, smoothed estimators
yield smaller estimation errors than their causal counterparts.
Another group of on-line applications, allowing one to break
causality limitations, are those exploiting the fact that in
modern telecommunication systems, signals are transmitted in
a block-by-block, rather than sample-by-sample, fashion. Once
such a block (or “frame”) of dataY = {y(1), . . . , y(N)}, of
length N , is received, local parameter and signal estimates
θ̃(t) = θ̃[Y], s̃(t) = s̃[Y], t = 1, . . . N , required e.g.
for channel equalization or interference mitigation, can be
obtained using procedures known as fixed-interval smoothing.

2) Off-line Applications.Elimination of narrowband distur-
bances from archived signals (audio, biomedical), or recon-
struction of trajectories of time-varying channel parameters
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based on prerecorded input/output sequences (e.g. for simula-
tion purposes), are examples of tasks that can be performed
off-line, using the entire data record. Again, this can be done
by employing fixed-interval smoothing.

In spite of clear advantages of smoothing, noncausal estima-
tion techniques are surprisingly absent from the literature on
adaptive notch filtering, except for a handful papers devoted
to frequency smoothing [16], [17]. The concept of adaptive
notch smoothing (ANS) and its system identification extension
(GANS) was originally developed in our earlier work [18],
and later refined in [19]. The fixed-lag smoothers proposed
there were based on compensation of estimation delays that
arise in the frequency tracking and amplitude tracking loops
of GANF/ANF algorithms.

The contribution of the current paper is twofold. First,
using the postfiltering technique (backward-time filtering of
frequency and amplitude estimates), we derive fixed-interval
GANS/ANS algorithms and study their estimation properties.
Second, we propose new versions of fixed-lag GANS/ANS
algorithms, with increased estimation capabilities. Moving
from compensation of estimation delay to postfiltering has
important implications. Since compensation techniques reduce
only the bias component of the mean-squared estimation
error (MSE), without changing its variance component, the
GANS/ANS algorithms derived in [18], [19] show adavantage
over their GANF/ANF counterparts mainly in the range of
small values of adaptation gains (because for small gains,
MSE is dominated by bias errors). In contrast with this,
postfiltering allows one to reduce both biasand variance
error components and hence – to improve results yielded by
GANF/ANF algorithms for all values of adaptation gains.

II. PROBLEM STATEMENT

To simplify further considerations, we will assume that the
analyzed system has a single frequency mode (k = 1), i.e.,
that it is governed by

y(t) = ϕT(t)θ(t) + v(t)

θ(t) = α(t)ej
∑t

l=1 ω(l). (4)

Later on we will comment on the possibility of extending the
obtained results to the multiple frequencies case.

We will assume that the complex-valued vector of “am-
plitudes” α(t) = [a1(t), . . . , an(t)]T and the real-valued
instantaneous frequencyω(t) ∈ (−π, π] are slowly varying
quantities (this statement will be made more precise later on),
but we will not request thatω(t) should be small, which means
that system parametersθ(t) may arbitrarily fast vary with time.
Additionally, we will assume that

(A1) The measurement noise{v(t)} is a zero-mean circular
white sequence with varianceσ2

v .

(A2) The sequence of regression vectors{ϕ(t)}, indepen-
dent of {v(t)}, is zero-mean, wide-sense stationary
and ergodic with known covariance matrixΦ =
E[ϕ∗(t)ϕT(t)].

The algorithm that will serve as a basis for our further
considerations, referred to as a pilot GANF, is a normalized

version of the GANF algorithm proposed and analyzed in [15]

f̂(t) = ejω̂(t)f̂(t− 1)

ε(t) = y(t)−ϕT(t)f̂(t)α̂(t− 1)

α̂(t) = α̂(t− 1) + µΦ−1ϕ∗(t)f̂∗(t)ε(t)

ω̂(t + 1) = ω̂(t)− γ Im

[
ε∗(t)ϕT(t)f̂(t)α̂(t− 1)
α̂H(t− 1)Φα̂(t− 1)

]

θ̂(t) = α̂(t)f̂(t) (5)

where∗ denotes complex conjugation andH denotes conjugate
transpose. Tracking properties of this algorithm are determined
by two user-dependent tuning coefficients: the adaptation gain
0 < µ ¿ 1, which determines the rate of amplitude adaptation,
and another adaptation gain0 < γ ¿ µ, which determines the
rate of frequency adaptation.

Pilot GANF is a causal estimation algorithm, i.e., it yields
estimateŝθ(t) that are functions of current and past measure-
mentsY−(t). Based on analysis of tracking properties of the
pilot algorithm, we will design a cascade of post-processing
filters increasing accuracy of amplitude and frequency esti-
mation. We will show that, using such multistage estimation
scheme, one can significantly improve identification results.

III. F REQUENCY SMOOTHING

We will show that, similar to the signal case tackled in [19],
statistically efficient smoothing can be achieved by means of
backward-time filtering of frequency estimates yielded by the
pilot GANF algorithm.

We will start from considering a general postfiltering
scheme, incorporating any linear noncausal filter. Then we will
show that the best results can be obtained when the smoothing
filter is anticausal and “matched” to the frequency tracking
characteristic of optimally tuned GANF. We will prove, and
confirm this using simulation results, that under Gaussian
assumptions and for random-walk (RW) frequency variations,
the resulting estimation scheme is statistically efficient, i.e., the
mean-squared frequency estimation error achieves the Cramér-
Rao-type lower smoothing bound. Finally, we will explain why
the proposed scheme should work satisfactorily (although not
optimally) for any slow frequency variations, not necessarily
of the RW type, and forany adaptation gains, not necessarily
optimally tuned.

A. Frequency Tracking Properties of Pilot GANF

To analyze frequency tracking properties of the pilot al-
gorithm (5), we will assume that the signal amplitude is
unknown but constantα(t) = α, ∀t, and that the instantaneous
frequencyω(t) changes according to the RW model

ω(t) = ω(t− 1) + w(t) (6)

where

(A3) The sequence of one-step frequency changes, independent
of {ϕ(t)} and{v(t)}, is a zero-mean white sequence of
real-valued random variables with varianceσ2

w.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3

The RW model of frequency variation is often used in tracking
studies as it leads to analytical results. It will allow us to reveal
important features of the frequency tracking loop.

Denote by∆ω̂(t) = ω̂(t) − ω(t) the frequency estimation
error. Using the approximating linear filter (ALF) technique1,
one can show that [15]

∆ω̂(t) ∼= F (q−1)− 1
1− q−1

w(t) + (1− q−1)F (q−1)e(t) (7)

wheree(t) = Im[αHϕ∗(t)f∗(t)v(t)/a2], a2 = αHΦα, q−1

denotes the backward shift operator,

F (q−1) =
γq−1

1− (λ + δ)q−1 + λq−2

and δ = 1 − γ, λ = 1 − µ. Note that, similarly to{v(t)},
{e(t)} is a zero-mean circular white sequence with variance
σ2

e = σ2
v/(2a2).

Due to mutual orthogonality of{w(t)} and {e(t)}, the
mean-squared frequency estimation error can be expressed in
the form

E{|∆ω̂(t)|2} ∼= 1
2π

∫ π

−π

h
[
F (e−jξ)

]
dξ (8)

whereξ denotes standard Fourier-domain normalized angular
frequency variable,

h[F ] = (F − 1)(F ∗ − 1)∆∆∗ σ2
w +

FF ∗

∆∆∗ σ2
e

and∆(q−1) = 1/(1− q−1).

B. Postfiltering

To obtain a smoothed estimate ofω(t), further denoted by
ω̃(t), we will pass the estimateŝω(t) through a noncausal filter
G(q−1) = . . . + g−1q

−1 + g0 + g1q
1 + . . .

ω̃(t) = G(q−1)ω̂(t) . (9)

The filter G(q−1) will be designed so as to minimize the
mean-squared frequency estimation errorE{[∆ω̃(t)]2} where
∆ω̃(t) = ω̃(t)− ω(t). Combining (7) with (9), one arrives at

∆ω̃(t) =
X(q−1)− 1

1− q−1
w(t) + (1− q−1)X(q−1)e(t) (10)

E{[∆ω̃(t)]2} ∼= 1
2π

∫ π

−π

h
[
X(e−jξ)

]
dξ (11)

where

X(q−1) = F (q−1)G(q−1) . (12)

Minimization of (11) is pretty straightforward – the problem
can be solved by minimizingh[X(e−jξ)] for every value

1The ALF technique is a linearization approach introduced by Tichavský
and Ḧandel [20] for the purpose of analysis of classical adaptive notch filters.
When carrying out the ALF analysis one examines dependence of estimation
errors∆ω̂(t) on v(t) and w(t), neglecting higher than first-order terms of
all quantities listed above, including all cross-terms.

of ξ ∈ [−π, π]. Requiring that∂h/∂X∗|X=X0 = 0, where
X0(q−1) is the optimal transfer function and

∂

∂z
=

1
2

[
∂

∂Re[z]
− j

∂

∂Im[z]

]

∂

∂z∗
=

1
2

[
∂

∂Re[z]
+ j

∂

∂Im[z]

]

denote the so-called Wirtinger derivatives – symbolic deriva-
tives with respect to a complex variablez, applicable to
nonanalytic functions, such ash(·). Using Wirtinger calculus
[21], one obtains

X0(q−1) =
2κω

2κω + (1− q−1)2(1− q)2
(13)

where

κω =
a2σ2

w

σ2
v

(14)

is a scalar coefficient that can be regarded as a measure of
system nonstationarity [15].

One can check that

X0(q−1) = F0(q−1)F0(q) (15)

whereF0(q−1) = F (q−1|µ = µω, γ = γω), andµω, γω denote
optimal values ofµ, γ that can be obtained by solving

γ2
ω

1− µω
= 2κω ,

µ2
ω

2− µω
= γω . (16)

After combining both conditions in (16), one obtains

µ4
ω − 2(1− µω)(2− µω)2κω = 0 . (17)

Note that the substitution

u =
µ2

ω

1− µω
(18)

turns the fourth-order equation (17) into the second-order
equationu2 − 2κωu− 8κω = 0 which, for u > 0, leads to

u = κω +
√

κ2
ω + 4κω . (19)

Solving (18) forµω, one obtains

µω =
−u +

√
u2 + 4u

2
, γω =

µω
2

2− µω
.

To evaluate the steady-state mean-squared frequency estima-
tion error (11), one can use the method of residue calculus
[22]. Let

I[W (z)] =
1
2π

∫ π

−π

W (e−jξ)W (ejξ)dξ

=
1

2πj

∮
W (z−1)W (z)

dz

z

where W (z−1) denotes any stable proper rational transfer
function and the second integral is evaluated along the unit
circle in thez-plane.

For µ = µω andγ = γω, (11) can be rewritten in the form

E{[∆ω̃(t)]2|µ = µω, γ = γω}
∼= I[A+(z−1)]σ2

w + I[B+(z−1)]σ2
e (20)
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whereA+ andB+ denote stable factors ofA = (X0−1)(X∗
0−

1)∆∆∗ andB = X0X
∗
0/∆∆∗, respectively:

A+(q−1) =
1

4κ2
ω

(1− q−1)3F 2
0 (q−1)

B+(q−1) = (1− q−1)F 2
0 (q−1) . (21)

Based on (21), the mean-squared estimation error can be
evaluated numerically using formulas given in [22].

C. Comparison with the Lower Smoothing Bound

Suppose that, in addition to (A1)–(A3), the identified sig-
nal/system obeys the following condition

(A4) The processes{v(t)} and{w(t)} are Gaussian.
1) Signal Case:The signal case (n = 1, ϕ(t) ≡ 1) was

studied in [17] and [23]. The analytical expression for the
Craḿer-Rao-type lower smoothing bound (LSB), derived by
Tichavsḱy and Ḧandel [17], has the form

E{[∆ω̃(t)]2} ≥ 4(4− ϑ)(2− ϑ)
ϑ(32− 16ϑ + ϑ2)

σ2
w = LSBω (22)

where
ϑ = −u +

√
u2 + 4u

andu is given by (19). Note that for sufficiently small values
of κω it holds thatu ∼= √

8κω, ϑ ∼= 2
√

u = 2 4
√

8κω and
LSBω

∼= σ2
w/ϑ.

Fig. 1 shows the plot of the relative difference between
the mean-squared frequency estimation errorE{[∆ω̃(t)]2|µ =
µω, γ = γω}, evaluated according to (20), and the lower
smoothing bound obtained from (22)

ε(κω) =
|E{[∆ω̃(t)]2|µ = µω, γ = γω} − LSBω|

LSBω
.

Although it is difficult to prove this analytically, very small rel-
ative differences (smaller than5 ·10−6 for κω ∈ [10−6, 10−2])
suggest that the expressions (20) and (22) may well be
mathematically equivalent.

It is clear from the analysis carried up above that for
random-walk frequency variations, and under Gaussian as-
sumptions, the optimally tuned two-stage frequency smoothing
algorithm described above is – in spite of its simplicity – a sta-
tistically efficient noncausal frequency estimation procedure.

2) System Case:For quasi-periodically varying systems
obeying (A1)–(A4), the lower smoothing bound is identical
with (22), and can be obtained by combining results presented
in [15] (derivation of the posterior information matrix), [23]
(derivation of the implicit LSB formula), and [17] (derivation
of the explicit LSB formula). Hence, the final conclusion is
identical with that reached in the signal case.

To check validity of theoretical results, the following two-
tap FIR system (inspired by channel equalization applications)
was simulated

y(t) = θ1(t)u(t) + θ2(t)u(t− 1) + v(t) (23)

whereu(t) denotes a white 4-QAM input sequence (u(t) =
±1 ± j, σ2

u = 2) and v(t) denotes a complex-valued
Gaussian measurement noise. The impulse response coeffi-
cients of this system were modeled as nonstationary cisoids

ε[κω]

10
−6

10
−4

10
−210

−15

10
−10

10
−5

κω

Fig. 1. Dependence of the relative approximation error onκω .

E{ [ω̃(t)− ω(t)]2}

0 10 20 30
10

−8

10
−6

10
−4

10
−2

SNR [dB]

Fig. 2. Comparison of the theoretical values of the lower smoothing bound
(solid lines) with experimental results obtained for the signal with randomly
drifting frequency for three different speeds of frequency variation:σw =
0.01 (∗), σw = 0.001 (×), σw = 0.0001 (+), and 16 different SNR values.

θi(t) = aie
j

∑t
τ=1 ω(τ), i = 1, 2, with time-invariant complex

“amplitudes”α = [a1, a2]T = [2− j , 1 + 2j ]T. Note that in
this caseϕ(t) = [u(t), u(t− 1)]T andΦ = I2σ

2
u.

Figure 2 shows a comparison of the theoretical values of the
lower smoothing bound with experimental results obtained for
the analyzed system, for three different speeds of frequency
variation σw (0.01, 0.001 and 0.0001) and 16 different SNR
values, ranging from 0 dB to 30 dB. The mean-squared
frequency estimation errors were evaluated (for the optimally
tuned GANS algorithm) by means of joint time and ensemble
averaging. First, for each realization of the measurement noise
sequence and each realization of the frequency trajectory, the
mean-squared errors were computed from 200 iterations of the
GANS filter (after the algorithm has reached its steady state).
The obtained results were next averaged over 50 realizations
of {w(t)}, 50 realizations of{u(t)} and 50 realizations of
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{v(t)} (50× 50× 50).
Note the good agreement between the theoretical curves

and the results of computer simulations. The worst fit can be
observed for the fastest frequency changes (σw = 0.01), which
is understandable since in this case the associated degrees of
signal nonstationarityκω range from10−4 (for SNR=0dB)
to 10−1 (for SNR=30dB), i.e. , they violate the “satisfactory
tracking” conditionκω ≤ 10−5 [15].

D. Frequency Smoothing Procedure

Transfer function of the optimal smoothing filter is given
by G0(q−1) = X0(q−1)/F0(q−1) = F0(q). This suggests the
following form of frequency smoothing

ω̃(t) = F (q)ω̂(t) . (24)

Since the filterF (q) is anticausal, the smoothed estimateω̃(t)
can be obtained by means of backward-time filtering of the
estimates yielded by the pilot algorithm:

ω̃(t) = (λ + δ)ω̃(t + 1)− λω̃(t + 2)
+ γω̂(t + 1), t = N − 1, . . . , 1 (25)

with initial conditions set to:̃ω(N +1) = ω̂(N +1), ω̃(N) =
ω̂(N).

The proposed smoothing formula was derived under ide-
alized assumptions. Therefore some robustness analysis is
needed to confirm its usefulness under more realistic condi-
tions, e.g. for frequency changes that are not governed by the
RW model and/or in the presence of amplitude variations.

First, it should be noticed that the relationship (7), which
is the cornerstone of the smoothing procedure, remains valid
even if the sequence of one-step frequency changesω(t) −
ω(t− 1) = w(t) is not a white noise process, i.e. it holds for
arbitrary slow frequency variations.

Second, and equally importantly, careful examination of the
derivation presented in [15] shows that the relationship (7)
remains approximately valid even if the vector of amplitudes
α(t) is not constant, but slowly varies with time – the only
thing that should be changed in this more general case is
the definition ofe(t): e(t) = Im[αH(t)ϕ∗(t)f∗(t)v(t)/a2(t)],
a2(t) = αH(t)Φα(t). This observation is consistent with the
known fact that the results of frequency estimation of narrow-
band signals are usually pretty insensitive to the results of their
amplitude estimation (but notvice versa!) [24].

For zero-mean measurement noise it holds thatE[e(t)] = 0,
hence the relationship (7) entails

E[ω̂(t)|ω(s), s ≤ t] ∼= F (q−1)ω(t) .

SinceF (q−1) is a lowpass filter with unity static gainF (1) =
1, when the instantaneous frequency varies slowly with time,
the mean path of frequency estimates is roughly the time-
delayed version of the true traqjectory

E[ω̂(t)|ω(s), s ≤ t] ∼= ω(t− tω)

where tω = int[µ/γ] denotes nominal (low-frequency) delay
introduced by the filterF (q−1) [18]. The lag error results in
estimation bias which, especially for small adaptation gains,

may severely degrade cancellation/extraction efficiency of the
pilot algorithm.

The situation is different when smoothing is applied. Since
the nominal delay of the filterF (q−1)F (q) is equal to zero,
one arrives at the following approximate relationship

E[ω̃(t)|ω(s),−∞ < s < ∞] ∼= F (q−1)F (q)ω(t) ∼= ω(t)

which shows that smoothing, in the proposed form, reduces
estimation biasirrespectiveof the shape of the estimated fre-
quency trajectory. Additionally, by the very nature of smooth-
ing, the variance component of the mean-squared estimation
error is also reduced.

Remark: The idea of two-directional processing, which is
a cornerstone of fixed-interval Kalman smoothing, inspired
the authors of [16] to design a simplead hoc frequency
smoothing algorithm: it was proposed to process the data
independently forward and backward using a tracking (ANF)
algorithm and combine both estimates – for example, estimate
the instantaneous frequency as an arithmetic average of the
frequency estimates obtained in the forward and backward
runs, respectively. We note that this simple scheme, which
can be easily extended to the system identification case, has
two obvious drawbacks compared to the solution based on
postfiltering. First, as later remarked by the same authors [17],
it does not utilize all available information efficiently – for
example, under RW frequency variation, averaging the forward
and backward frequency estimates reduces the variance of the
frequency smoothing error, compared to the variance of the
frequency tracking error, by the factor of two, whereas in
the statistically efficient scheme, such as the one based on
posfiltering, the variance is reduced by the factor of (approxi-
mately) four. Second, due to a very low computational cost of
postfiltering (equal to 3 real multiplications per time update)
the postfiltering scheme is computationally about two times
less demanding than the forward-backward filtering scheme.

IV. A MPLITUDE SMOOTHING

Smoothed frequency estimates can be used for the pur-
pose of re-estimation of amplitude coefficients. The resulting
frequency-guided GANF algorithm will serve as a basis for
amplitude smoothing. We will show that, similar to frequency
smoothing, the best results can be achieved when the am-
plitude estimates, yielded by frequency-guided GANF, are
processed by a “matched” filter operating backward in time.
Finally, we will point to certain robustness features of the
proposed amplitude smoothing scheme, which make it work
satisfactorily under much more realistic conditions than those
initially assumed.

A. Frequency-Guided GANF and its Amplitude Tracking
Properties

The smoothed frequency estimatesω̃(t) can be used to
obtain more accurate amplitude estimates. A simple way of
doing this, suggested in [18], is run – in addition to (5) – the
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following frequency-guided GANF

f̃(t) = ejω̃(t)f̃(t− 1)

ε̄(t) = y(t)−ϕT(t)f̃(t)ᾱ(t− 1)

ᾱ(t) = ᾱ(t− 1) + µΦ−1ϕ∗(t)f̃∗(t)ε̄(t)

θ̄(t) = ᾱ(t)f̃(t) . (26)

We will analyze amplitude tracking properties of this algo-
rithm under the assumption that the time-varying instantaneous
frequencies are known exactly, i.e.,ω̂(t) = ω(t),∀t. Even
though obviously violated for the pilot algorithm (5), this
assumption is approximately fulfilled [for small values ofµ
and γ in (5), and for sufficiently slow frequency variations]
by the frequency-guided algorithm (26). Additionally, we will
assume that the vector of “amplitudes”α(t) evolves according
to the random-walk model

α(t) = α(t− 1) + n(t) (27)

where
(A5) The sequence of one-step amplitude changes{n(t)},

independent of{ϕ(t)} and{v(t)}, is zero-mean circular
white, and has covariance matrixΣn = σ2

nI.
After settingω̃(t) ≡ ω(t) in (26), one arrives at

f(t) = ejω(t)f(t− 1)

ε̄(t) = y(t)−ψT(t)ᾱ(t− 1)

ᾱ(t) = ᾱ(t− 1) + µΦ−1ψ∗(t)ε̄(t)
θ̄(t) = ᾱ(t)f(t) (28)

whereψ(t) = f(t)ϕ(t).
Denote by∆ᾱ(t) = ᾱ(t)−α(t) and∆θ̄(t) = θ̄(t)− θ(t)

the amplitude tracking and parameter tracking errors, respec-
tively. Observe that||∆θ̄(t)|| = ||∆ᾱ(t)||. Using

y(t) = ψT(t)α(t) + v(t)

one arrives at

∆ᾱ(t) =
[
I− µΦ−1ψ∗(t)ψT(t)

]
∆ᾱ(t− 1)

− [
I− µΦ−1ψ∗(t)ψT(t)

]
n(t) + µΦ−1ψ∗(t)v(t) . (29)

Since, for small values ofµ and for slow amplitude changes,
the estimation error∆ᾱ(t) varies slowly compared to the mod-
ified regression vectorψ(t), recursion (29) can be analyzed
using the stochastic averaging technique. This results in the
following approximation

∆ᾱ(t) ∼= λ∆ᾱ(t− 1)− λn(t) + µΦ−1ψ∗(t)v(t)

or equivalently

∆ᾱ(t) ∼= H(q−1)− 1
1− q−1

n(t) + H(q−1)ζ(t) (30)

whereζ(t) = Φ−1ψ∗(t)v(t), Σζ = cov[ζ(t)] = Φ−1σ2
v and

H(q−1) = µ/(1− λq−1).

Due to mutual orthogonality of{n(t)} and {ζ(t)}, the
mean-squared parameter estimation error can be expressed in
the form

E{||∆ᾱ(t)||2} =
1
2π

∫ π

−π

g
[
H(e−jξ)

]
dξ (31)

where

g[H] = (H − 1)(H∗ − 1)∆∆∗ tr[Σn] + HH∗ tr[Σζ ] . (32)

B. Postfiltering

Consider the smoothed estimate ofα(t)

α̃(t) = E(q−1)ᾱ(t) (33)

whereE(q−1) is a transfer function of a linear noncausal filter.
The filterE(q−1) will be designed so as to minimize the mean-
squared estimation errorE{||∆θ̃(t)||2} = E{||∆α̃(t)||2},
where∆θ̃(t) = θ̃(t) − θ(t), θ̃(t) = α̃(t)f(t), and∆α̃(t) =
α̃(t)−α(t). Combining (30) with (33), one obtains

∆α̃(t) =
Y (q−1)− 1

1− q−1
n(t) + Y (q−1) ζ(t) (34)

E{||∆α̃(t)||2} =
1
2π

∫ π

−π

g
[
Y (e−jξ)

]
dξ (35)

where

Y (q−1) = H(q−1)E(q−1) . (36)

Minimization of (35) can be carried out in an analogous way
as minimization of (11). Requiring that∂g/∂Y ∗|Y =Y0 = 0,
whereY0(q−1) is the optimal transfer function, one obtains

Y0(q−1) =
κα

κα + (1− q−1)(1− q)
(37)

where

κα =
tr[Σn]
tr[Σζ ]

=
nσ2

n

σ2
vtr[Φ−1]

. (38)

It can be checked that

Y0(q−1) = H0(q−1)H0(q) (39)

whereH0(q−1) = H(q−1|µ = µα) andµα – the optimal value
of µ – can be obtained by solving the following equation

µ2
α

1− µα
= κα .

This leads to

µα =
−κα +

√
κ2

α + 4κα

2
. (40)

After elementary but tedious calculations, one can show that

E{||∆α̃(t)||2|µ = µα} =
µα

2− µα
σ2

v tr[Φ−1]. (41)

C. Comparison with the Lower Smoothing Bound

Suppose that the identified signal/system obeys assumptions
(A1)–(A3) and (A5).
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1) Signal Case:Under Gaussian assumptions the efficient
noncausal estimate of signal amplitude (given that its instanta-
neous frequency is known exactly) is provided by the Kalman-
type Rauch-Tung-Streibel smoothing algorithm [25], which
can be expressed in the form:

forward pass:

â(t|t− 1) = â(t− 1|t− 1)

p(t|t− 1) = p(t− 1|t− 1) + σ2
n

k(t) =
p(t|t− 1)f(t)
σ2

v + p(t|t− 1)
ε(t) = y(t)− â(t|t− 1)f(t)

â(t|t) = â(t− 1|t− 1) + k(t)ε(t)

p(t|t) = p(t|t− 1)− p2(t|t− 1)
σ2

v + p(t|t− 1)
(42)

t = 1, . . . , N

backward pass:

â(t|N) = â(t|t) +
p(t|t)

p(t + 1|t) [â(t + 1|N)− â(t + 1|t)]

p(t|N) = p(t|t) +
p2(t|t)

p2(t + 1|t) [p(t + 1|N)− p(t + 1|t)]
(43)

t = N − 1, . . . , 1

whereâ(t|t−1) = E[a(t)|Y−(t−1)], â(t|t) = E[a(t)|Y−(t)],
and â(t|N) = E[a(t)|Y] denote predictive, filtered and
smoothed amplitude estimates, respectively, andp(t|t − 1),
p(t|t), p(t|N) denote the corresponding estimation error vari-
ances.

Denote the steady-state variances by

p̄∞ = lim
t→∞

p(t|t− 1), p∞ = lim
t→∞

p(t|t), p̃∞ = lim
t→∞

p(t|2t)

Then, according to (42) and (43), it holds that

p̄∞ = p∞ + σ2
n

p∞ = p̄∞ − p̄2
∞

σ2
v + p̄∞

p̃∞ = p∞ +
p2
∞

p̄2∞
[p̃∞ − p̄∞] . (44)

Solving equations (44) for̃p∞, one finally arrives at the fol-
lowing expression for the lower smoothing (posterior Cramér-
Rao) bound

LSBa = p̃∞ =
κa√

κ2
a + 4κa

σ2
v . (45)

where

κa =
σ2

n

σ2
v

.

Since it can be easily checked thatµa/(2 − µa) =
κa/

√
κ2

a + 4κa, one obtains

E{|∆ã(t)|2|µ = µa} = LSBa

i.e., for random-walk amplitude variations, and under Gaussian
assumptions, the optimally tuned two-step amplitude smooth-
ing procedure described above is statistically efficient.

2) System Case:According to [26], when the rate of system
nonstationarityκα is sufficiently small, the lower smoothing
bound for the system governed by (27) can be expressed in
the form

E{||∆α̃(t)||2} ≥ 1
2

σnσvtr[Φ−1/2] = LSBα . (46)

Note that for smallκα it holds thatµα
∼= √

κα, 2− µα
∼= 2,

leading to [cf. (40)]

E{||∆α̃(t)||2|µ = µα} ≥ σ2
v

2
√

κα = σnσv

√
ntr[Φ−1]

= LSBα .

Using the Cauchy-Shwartz inequality, one obtains

tr[Φ−1/2] ≤
√

ntr[Φ−1]

where equality holds iffΦ is similar to the identity matrix:
Φ = σ2

ϕI. Hence, apart from the special case mentioned above,
the two-step amplitude smoothing algorithm is not statistically
efficient. To guarantee efficiency one would have to run a much
more complicated Kalman smoothing algorithm – a system
counterpart of (42)–(43).

D. Amplitude Smoothing Procedure

According to (39), when the tracking algorithm (28) is
optimally tuned, i.e.,H(q−1) = H0(q−1), transfer function of
the optimized smoothing filter is given byE0(q−1) = H0(q).
This suggests the following form of amplitude smoothing

α̃(t) = H(q)ᾱ(t) . (47)

Since the filter H(q), similarly as F (q), is anticausal,
the smoothed estimatẽα(t) can be obtained by means
of backward-time filtering of the estimates yielded by the
frequency-guided algorithm

α̃(t) = λα̃(t + 1) + µᾱ(t), t = N − 1, . . . , 1 (48)

with α̃(N) set equal toᾱ(N).
The results of robustness analysis of the amplitude smooth-

ing procedure resemble those obtained for frequency smooth-
ing. Since the relationship (30) remains valid for arbitrary am-
plitude changes (the sequence of one-step amplitude changes
α(t)−α(t−1) = n(t) must not be white for (30) to hold), for
zero-mean measurement noise and slow amplitude variations
one arrives at

E[ᾱ(t)|α(s), s ≤ t] = H(q−1)α(t) ∼= α(t− tα)

wheretα = int[λ/µ] is the nominal delay introduced by the
lowpass filterH(q−1).

When smoothing is applied one obtains

E[α̃(t)|α(s),−∞ < s < ∞] = H(q−1)H(q)α(t) ∼= α(t)

which stems from the fact that the nominal delay of the filter
H(q−1)H(q) is zero andH(1) = 1. Therefore, whether opti-
mal or not, for small adaptation gains the proposed smoothing
procedure can significantly improve accuracy of amplitude
estimation.
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TABLE I
FIXED-INTERVAL GENERALIZED ADAPTIVE NOTCH SMOOTHER

pilot filter :

f̂(t) = ejω̂(t)f̂(t− 1)

ε(t) = y(t)−ϕT(t)f̂(t)α̂(t− 1)

α̂(t) = α̂(t− 1) + µΦ−1ϕ∗(t)f̂∗(t)ε(t)

ω̂(t + 1) = ω̂(t)− γ Im
[

ε∗(t)ϕT(t)f̂(t)α̂(t−1)

α̂H(t−1)Φα̂(t−1)

]

t = 1, . . . , N

frequency smoother :

ω̃(N + 1) = ω̂(N + 1)

ω̃(N) = ω̂(N)

ω̃(t) = (λ + δ)ω̃(t + 1)− λω̃(t + 2) + γω̂(t + 1)

t = N − 1, . . . , 1

frequency−guided filter :

f̃(t) = ejω̃(t)f̃(t− 1)

ε̄(t) = y(t)−ϕT(t)f̃(t)ᾱ(t− 1)

ᾱ(t) = ᾱ(t− 1) + µΦ−1ϕ∗(t)f̃∗(t)ε̄(t)

t = 1, . . . , N

amplitude smoother :

α̃(N) = ᾱ(N)

α̃(t) = λα̃(t + 1) + µᾱ(t)

t = N − 1, . . . , 1

output filter :

θ̃(t) = α̃(t)f̃(t)

t = 1, . . . , N

V. FIXED-INTERVAL GENERALIZED ADAPTIVE NOTCH

SMOOTHER

After combining the results of frequency smoothing and
amplitude smoothing, the smoothed estimate of the parameter
vectorθ(t) can be obtained in the form

f̃(t) = ejω̃(t)f̃(t− 1)

θ̃(t) = α̃(t)f̃(t) . (49)

The proposed adaptive smoothing algorithm is a five-step
procedure, combining results yielded by the: pilot GANF algo-
rithm (5), frequency smoother (25), frequency-guided GANF
algorithm (26), amplitude smoother (48) and output filter (49).
For the reader’s convenience, all steps are summarized in Table
I.

Computational complexity of this algorithm is equal to
12n2 + 28n + 29 real multiplications and 1 real division
per time update (1 complex multiplication is counted as an
equivalent of 4 real ones).

When the covariance matrixΦ is not known and/or it is

TABLE II
FIXED-INTERVAL ADAPTIVE NOTCH SMOOTHER

pilot filter :

ε(t) = y(t)− ejω̂(t)ŝ(t− 1)

ŝ(t) = ejω̂(t)ŝ(t− 1) + µε(t)

ω̂(t + 1) = ω̂(t)− γ Im

[
ε∗(t)ejω̂(t)

ŝ∗(t−1)

]

t = 1, . . . , N

frequency smoother :

ω̃(N + 1) = ω̂(N + 1)

ω̃(N) = ω̂(N)

ω̃(t) = (λ + δ)ω̃(t + 1)− λω̃(t + 2) + γω̂(t + 1)

t = N − 1, . . . , 1

frequency−guided filter :

ε̄(t) = y(t)− ejω̃(t)s̄(t− 1)

s̄(t) = ejω̃(t)s̄(t− 1) + µε̄(t)

t = 1, . . . , N

output filter :

s̃(N) = s̄(N)

s̃(t) = λe−jω̃(t+1)s̃(t + 1) + µs̄(t)

t = N − 1, . . . , 1

time-varying, one can replace it with the following exponen-
tially weighted estimate

Φ̂(t) = λoΦ̂(t− 1) + (1− λo)ϕ∗(t)ϕT(t)

where0 < λo < 1 denotes the forgetting constant. We note
that the inverse of̂Φ(t) can also be evaluated recursively by
exploiting the well-known matrix inversion lemma [21].

In the signal case, the algorithm listed above can be rewrit-
ten in an equivalent form that alleviates the need to compute
the quantitiesf̂(t), â(t), f̄(t), ā(t) and ã(t). This reduces
the computational burden by approximately 40% from 44 real
multiplications and 1 real division, to 28 real multiplications
and 1 real division, per time update. The resulting cost-
optimized ANS algorithm is summarized in Table II.

Based on the results presented in [18], the proposed
GANS/ANS algorithms can be easily extended to real-valued
systems/signals, and to the multiple frequencies system and
signal cases, governed by (1)–(2) and (3), respectively.

VI. F IXED-LAG GENERALIZED ADAPTIVE NOTCH

SMOOTHER

The fixed-interval GANS/ANS algorithms are suitable for
off-line or block-oriented on-line applications. When the
smoothed estimates must be continuously updated to maintain
a fixed decision delay ofτ sampling intervals, one needs a
fixed-lag smoother. The fixed-lag GANS/ANS can be obtained
by restricting postprocessing of GANF/ANF estimates to the
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TABLE III
FIXED-LAG GENERALIZED ADAPTIVE NOTCH SMOOTHER

pilot filter :

f̂(t) = ejω̂(t)f̂(t− 1)

ε(t) = y(t)−ϕT(t)f̂(t)α̂(t− 1)

α̂(t) = α̂(t− 1) + µΦ−1ϕ∗(t)f̂∗(t)ε(t)

ω̂(t + 1) = ω̂(t)− γ Im
[

ε∗(t)ϕT(t)f̂(t)α̂(t−1)

α̂H(t−1)Φα̂(t−1)

]

frequency smoother :

ω̃t(t + 1) = ω̂(t + 1)

ω̃t(t) = ω̂(t)

ω̃t(i) = (λ + δ)ω̃t(i + 1)− λω̃t(i + 2) + γω̂(i + 1)

i = t− 1, . . . , t− τ

frequency−guided filter :

f̃t(t− τ − 1) = f̃t−1(t− τ − 1)

α̃t(t− τ − 1) = α̃t−1(t− τ − 1)

f̃t(i) = ejω̃t(i)f̃t(i− 1)

ε̄t(i) = y(i)−ϕT(i)f̃t(i)ᾱt(i− 1)

ᾱt(i) = ᾱt(i− 1) + µΦ−1ϕ∗t (i)f̃∗t (i)ε̄t(i)

i = t− τ, . . . , t

amplitude smoother :

α̃t(t) = ᾱt(t)

α̃t(i) = λα̃t(i + 1) + µᾱt(i)

i = t− 1, . . . , t− τ

output filter :

θ̃t(t− τ) = α̃t(t− τ)f̃t(t− τ)

recent τ time-steps only. The resulting “sawtooth” smooth-
ing algorithms (inspired, to some extent, by the work of
Johnston and Krishnamurthy on sawtooth extended Kalman
filters/smoothers [27]), are summarized in Tables III and IV.
The smoothed estimates ofθ(t− τ) ands(t− τ), evaluated at
instantt, are denoted bỹθt(t−τ) ands̃t(t−τ), respectively. To
avoid confusion, all other quantities updated during the post-
filtering steps (frequency smoothing, amplitude re-estimation,
and amplitude smoothing) were also indexed byt.

Additional computational cost of carrying out postprocess-
ing steps, i.e., the computational overhead of smoothing, grows
linearly with the lagτ , and is equal to(4n2 + 16n + 9)τ + 4
real multiplications per time update for the GANS algorithm,
and 17τ real multiplications per time update for the ANS
algorithm.

Remark: The estimation accuracy improvements, offered by
smoothing, gradually saturate with growingτ . In the case con-
sidered, only marginal improvements can be expected whenτ
is increased beyond the “principal” delayτ0 = max{τω, τα}.

TABLE IV
FIXED-LAG ADAPTIVE NOTCH SMOOTHER

pilot filter :

ε(t) = y(t)− ejω̂(t)ŝ(t− 1)

ŝ(t) = ejω̂(t)ŝ(t− 1) + µε(t)

ω̂(t + 1) = ω̂(t)− γ Im

[
ε∗(t)ejω̂(t)

ŝ∗(t−1)

]

frequency smoother :

ω̃t(t + 1) = ω̂(t + 1)

ω̃t(t) = ω̂(t)

ω̃t(i) = (λ + δ)ω̃t(i + 1)− λω̃t(i + 2) + γω̂(i + 1)

i = t− 1, . . . , t− τ

frequency−guided filter :

s̄t(t− τ − 1) = s̄t−1(t− τ − 1)

ε̄t(i) = y(i)− ejω̃t(i)s̄t(i− 1)

s̄t(i) = ejω̃t(i)s̄t(i− 1) + µε̄t(i)

i = t− τ, . . . , t

output filter :

s̃t(t) = s̄t(t)

s̃t(i) = λe−jω̃t(i+1)s̃t(i + 1) + µs̄t(i)

i = t− 1, . . . , t− τ

VII. C OMPUTER SIMULATIONS

Our optimization study, presented in Sections III and IV, is
of more theoretical than practical importance. From a practical
viewpoint the most important question is whether the derived
algorithms can cope favorably with “arbitrary” frequency and
amplitude variations, including deterministic changes. The
simulation study presented below aims to show that, even
though our analysis was carried out under assumption that
either the instantaneous frequency or complex amplitudes drift
according to random-walk model, the proposed GANS/ANS
algorithms are robust to frequency/amplitude model misspeci-
fication, and that they yield better estimation results, compared
to GANF/ANF, irrespectively of the choice of adaptation
gains. Even though it is difficult to prove this theoretically,
we have rich simulation evidence suggesting that, no matter
how system/signal parameters vary with time, and no matter
how the coefficintsµ andγ are chosen, one always gains, in
terms of estimation accuracy, by switching from GANF/ANF
to GANS/ANS. Additionally, and rather paradoxically, the
attainable rates of improvement are usually much higher for
systems/signals subject to smooth deterministic changes than
for systems/signals with stochastic changes – even though the
latter better fit the assumed model of time-variation.

A. ANS Algorithms

To check performance of the fixed-interval ANS algorithm,
a noisy quas-iperiodically varying signal (3) was generated
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Fig. 3. Dependence of the mean-squared cancellation error on adaptation
gainµ (γ = µ2/2) for the pilot estimatês(t) (+) and smoothed estimatẽs(t)
(×), for two signal-to-noise ratios: 5 dB (two upper plots) and 20 dB (two
lower plots). All plots (solid lines) were evaluated on a grid of 100 equidistant
values ofµ. The analyzed signal was subject to fast amplitude and frequency
changes.

with fast sinusoidal amplitude and frequency changes

a(t) = cos(2πt/2000) , ω(t) = sin(2πt/2000) . (50)

Fig. 3 shows comparison of the steady-state mean-squared
signal estimation errors, yielded by the pilot ANF algorithm
and by the proposed ANS algorithm, for different values of
the adaptation gainµ and for two noise intensities:σv = 0.56
(SNR=5 dB) andσv = 0.01 (SNR=20 dB). To reduce the
number of design degrees of freedom the adaptation gain
γ was set toµ2/2 – see [15] for further explanations. All
MSE values were obtained by means of joint time averaging
(the evaluation interval [2001,4000] was placed inside a wider
analysis interval [1,6000]) and ensemble averaging (100 real-
izations of measurement noise were used). As expected, the
ANS algorithm yielded uniformly better results than the ANF
algorithm. The peak-to-peak (or, more adequately, bottom-to-
bottom) variance reduction is approximately equal to 10 dB.

Fig. 4 shows MSE plots, analogous to those presented in
Fig. 3, obtained for a signal with very fast amplitude and
frequency variations, governed by

a(t) = cos(2πt/200) , ω(t) = sin(2πt/200) . (51)

Even though the corresponding changes – ten times faster
than those considered in in the previous example – can be
hardly regarded as “slow”, qualitative comparison of ANS
versus ANF leads to identical conclusions: smoothing can
considerably improve estimation results in the entire range of
adaptation gains.

Fig. 5 shows true signal and its estimates obtained for a
typical realization of measurement noise (SNR=10 dB) in the
case whereµ = 0.08. Close-up views of these plots are shown
in Fig. 6.

Finally, Fig. 7 shows how efficacy of a fixed-delay ANS,
compared to ANF, depends on decision delayτ . The presented

MSE
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10
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10
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10
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5 dB

20 dB

µ

Fig. 4. Dependence of the mean-squared cancellation error on adaptation gain
µ (γ = µ2/2) for the pilot estimatês(t) (+) and smoothed estimatẽs(t) (×),
for two signal-to-noise ratios: 5 dB (two upper plots) and 20 dB (two lower
plots). All plots (solid lines) were evaluated on a grid of 100 equidistant values
of µ. The analyzed signal was subject to very fast amplitude and frequency
changes.
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Fig. 5. Real parts of the noisy signaly(t) (top left figure), noiseless signal
s(t) (top right figure), pilot estimatês(t) (bottom left figure) and smoothed
estimatẽs(t) (bottom right figure).

results were obtained by combined time and ensemble aver-
aging (in the same way as described above), for the signal
governed by (50), SNR=10 dB, andµ = 0.08. Reduction
of MSE attained forτ = 5, 10, 20, 40, and 100, is equal to
2.8, 6.7, 12.7, 18.7 and 25, respectively. Note that whenτ is
increased beyondτ0 = 40, only a small further reduction of
MSE can be achieved.
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Fig. 6. Real parts of a selected fragment of the noisy signaly(t) (top figure),
noiseless signals(t) (bottom figure - solid line), pilot estimatês(t) (bottom
figure - dotted line) and smoothed estimates̃(t) (bottom figure - broken line).
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Fig. 7. ANS/ANF estimation error variance reduction ratio as a function of
decision delayτ ; the principal delayτ0 is marked with a vertical line.

B. GANS Algorithm

The simulated plant was governed by (23). The instanta-
neous frequency evolved according to the random-walk model
(σw = 0.001), and complex amplitudes were subject to
sinusoidal changes

a1(t) = (2− j) sin(2πt/2000)
a2(t) = (1 + 2j) cos(2πt/2000) .

White 4-QAM sequence was used as an input signal (u(t) =
±1± j). Finally, the measurement noise varianceσ2

v was set
equal0.4.

Denote by

Σθ̂ =
1

2000

4000∑
t=2001

||θ̂(t)− θ(t)||2

the time-averaged parameter estimation error computed for the
pilot estimatorθ̂(t) = α̂(t)f̂(t), and denote byΣθ̄ andΣθ̃ the
analogous errors evaluated for the frequency-guided estimator
θ̄(t) = ᾱ(t)f̃(t) and fixed-interval GANS estimator̃θ(t) =
α̃(t)f̃(t), respectively. Similarly to the signal case, to arrive
at steady-state results the evaluation interval [2001,4000] was
placed inside a wider analysis interval [1, 6000].

Fig. 8 shows dependence onµ of the average values of
Σθ̂, Σθ̄ and Σθ̃. All ensemble averages were computed for
50 realizations of{u(t)}, 50 realizations of{w(t)} and 50
realizations of{v(t)} (50×50×50). Similarly as before,γ
was set toµ2/2. Note that while the frequency-guided GANF
algorithm is capable of improving estimation results in the
range of small values ofµ only, the proposed GANS algorithm
yields uniformly better results for all values ofµ.

Fig. 9 shows the analogous results obtained for the system
with linear frequency changes

ω(t) = 0.2 + 0.008t

(all other details, including the model of amplitude variations,
remained unchanged). Note that although there are no qualita-
tive differences compared to the previous case, the attainable
margin of improvement is, under such a fully deterministic
scenario, considerably larger.

VIII. C ONCLUSION

Identification of quasi-periodically varying dynamic systems
can be carried out using generalized adaptive notch filters
(GANFs). Based on analysis of parameter tracking properties
of GANF algorithms, we have designed a cascade of post-
processing filters increasing accuracy of frequency and ampli-
tude estimation. We have shown that the resulting noncausal
generalized adaptive notch smoothing (GANS) algorithms
yield significantly improved estimation results compared to
their causal (GANF) counterparts.
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[18] M. Niedźwiecki and A. Sobocínski, “A simple way of increasing
estimation accuracy of generalized adaptive notch filters,”IEEE Signal
Process. Lett., vol. 14, pp. 217–220, 2007.
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