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Abstract

In this work, we analyze the generalized Einstein relation for disordered or-

ganic semiconductors with a non–equilibrium Druyvesteyn–type distribution

function. The Druyvesteyn behavior of hot electrons in a solid state is asso-

ciated with the acoustic phonons–charge carriers scattering. Such a case has

been experimentally demonstrated in electroluminescent inorganic rare–earth–

doped zinc chalcogenides. Therefore, we can assume that, in a part of organic

materials used in organic light–emitting diodes (OLEDs), we can also find the

Druyvesteyn–type distribution of charge carriers under external electric fields.

It looks that the electric–field–dependent diffusion coefficient, which is observed

in the phonon–induced hopping electron transport, plays a key role here. The

theoretical analysis of the Einstein relation shows that for lower concentrations

of charge carriers, the diffusivity–mobility ratio (D/µ) reaches a value lower

than 1 (in kT/q units). The temperature dependencies of D/µ are similar to

the tendencies reported for the equilibrium conditions. The obtained satis-

factory agreement between experimental results and calculations based on the

Druyvesteyn–type distribution function confirms the usefulness of the presented

model.
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1. Introduction

Nowadays, organic semiconductors are treated as promising materials for

electronic and optoelectronic systems. Therefore, a great attention is currently

paid to the recognition of physical effects which can lead to a better efficiency of

such devices. So far, mostly organic light–emitting diodes (OLEDs) have found

commercial applications. In OLEDs, we observe an emission of light occurring

in an external electric field (the electroluminescence process). It means that

these diodes work under non–equilibrium conditions.

One of the most important parameters in the description of electrical and

photoelectrical phenomena is the diffusivity–mobility ratio for charge carriers.

In a simple case, this ratio can be written using the Einstein relation

D

µ
=
kT

q
, (1)

whereD is the diffusion coefficient, µ represents the mobility of charge, k denotes

the Boltzmann constant, T is the temperature and q represents the elementary

charge.

Most organic semiconductors are amorphous or polycrystalline materials.

The disorder existing in such structures causes that equation (1) should be re-

placed by the generalized Einstein relation known from the theory of degenerate

semiconductors [1, 2]
D

µ
=

1

q

n
dn
dEF

, (2)

where n is the carrier concentration and EF represents the energy of a quasi–

Fermi level. Recently, a generalized form of the Einstein relation has been in-

tensively studied for molecular and disordered semiconductors used in electronic

devices [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

In the solid state theory, the occupancy probability of electrons and holes is

described by the quantum Fermi–Dirac distribution function. For non–degenerate

semiconductors, this function can be approximated by the classical Maxwell–
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Boltzmann equation. Both these functions are valid only for a thermal equilib-

rium. However, they are often applied also for smaller perturbation states, such

as low and intermediate electric fields regimes. Therefore, most researchers try

to describe the generalized Einstein relation using the Fermi–Dirac function.

However, electronic devices predominantly work in higher electric fields. Thus,

it is required to apply non–equilibrium distribution functions in such studies.

Generally, there are no accurate analytical equations to describe the distribu-

tion of charge carriers under non–equilibrium conditions in a condensed matter.

One can find only approximated formulas [24]. It should be also mentioned that

equation (2) has been derived for a thermal equilibrium. Thus, its usefulness is

approximately valid only for lower and intermediate electric fields. Therefore,

different methods based on Monte–Carlo simulations, the hopping transport or

the statistical physics were used to model the diffusivity–mobility relationship

[18, 19, 25]. However, it has been analytically proved that the Einstein rela-

tion can be applied also for a non–equilibrium analysis of semiconductor devices

[26, 27].

For the electroluminescent inorganic rare–earth–doped zinc chalcogenides,

it has been theoretically considered [28, 29] and also experimentally confirmed

[30] that the non–equilibrium Druyvesteyn distribution function describes the

behavior of hot electrons in such structures. The Druyvesteyn function is often

used in plasma physics to depict the distribution of electrons in ionized gases

under electric field [31, 32, 33, 34]. This type of function has been also considered

for a solid state [35, 36, 37, 38, 39, 40]. For example, Yamashita and Watanabe

[35] have derived the Druyvesteyn–type formula for the case of the acoustic

phonons–charge carriers scattering (see supplementary material). It means that

the role of acoustic phonons becomes dominant, if this type of distribution

function is observed in materials. We should note that the influence of phonons

is currently of a great interest in different electronic devices [41]. Thus, the

impact of acoustic phonons has been previously studied in organic materials

[42, 43, 44, 45].

The Druyvesteyn–type behavior of electrons in electroluminescent inorganic
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materials leads to the conclusion that also in some organic systems this type of

distribution function can be valid. So far, there was no experimental evidence of

such a case in molecular structures. However, we cannot exclude a dominant role

of the acoustic phonons–charge carriers scattering in a part of organic materials

used in OLEDs. In these devices, electrons and holes are injected from opposite

electrodes and move toward the area where they recombine radiatively. For

amorphous molecular materials, one can expect the phonon–induced hopping

transport of electrons. The aim of this work is to examine the generalized Ein-

stein relation with the Druyvesteyn distribution function in disordered organic

semiconductors.

2. Methodology

We can calculate the concentration of charge using a formula

n =

+∞∫
−∞

g(E)f(E)dE, (3)

where E is an energy of particles, g(E) represents the density of states (DOS)

and f(E) denotes the distribution function.

For organic semiconductors, the DOS is often described with a Gaussian

distribution of states

g(E) =
Nv√
2π · σ

exp

[
−
(
E − E0√

2 · σ

)2]
, (4)

where Nv represents the effective DOS, σ is a width of the energy distribution

in the DOS and E0 denotes the energy of a Gaussian center.

In this work, we adopt the Druyvesteyn–type distribution function with

a chemical potential (a quasi–Fermi energy) in the form (see supplementary

material)

fD = exp

[
− (E − EF )2

2pk2T 2

]
. (5)

Here, p represents an electric–field–dependent parameter [35]

p =
(qF l)2

6m∗u2kT
, (6)
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where F is the electric field, l denotes the mean free path in a weak electric

field, m∗ represents the effective mass of charge carriers and u is the velocity of

a sound in a material.

We should remind that the position of a quasi–Fermi level changes with an

electric field. Therefore, we use the replacement

EF → EF − qFx, (7)

where x is a distance from the electrode.

Thus, the diffusivity–mobility ratio with the Druyvesteyn–type function can

be written as

D

µ
=
kT

q

+∞∫
−∞

exp
[
−
(
E−E0√

2·σ

)2]
exp

[
− (E−EF+qFx)2

2pk2T 2

]
dE

+∞∫
−∞

exp
[
−
(
E−E0√

2·σ

)2]
exp

[
− (E−EF+qFx)2

2pk2T 2

]
(E−EF+qFx)

pkT dE

. (8)

It will be convenient to compare D/µ calculated from equation (8) with the

diffusivity–mobility ratio obtained with the Fermi–Dirac function

fFD =
1

1 + exp
(
E−EF

kT

) . (9)

In an electric field, this ratio has a form

D

µ
=
kT

q

+∞∫
−∞

exp
[
−
(
E−E0√

2·σ

)2]
1

1+exp
(

E−EF +qFx

kT

)dE
+∞∫
−∞

exp
[
−
(
E−E0√

2·σ

)2] exp
(

E−EF +qFx

kT

)[
1+exp

(
E−EF +qFx

kT

)]2 dE . (10)

In this work, all integrals have been calculated numerically using the Gauss–

Hermite quadratures.

3. Results and discussion

First, we will discuss the values of physical parameters used in calculations.

It is known that the velocity of a sound in polymers depends on many physical

quantities, like a temperature, a frequency or a pressure. Its value can be found
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in a wide range, usually 700 – 2800 m/s and is around two times greater for

longitudinal waves than for transverse ones [46]. The mean free path of charge

carriers increases with a kinetic energy of these particles in polymers [47]. If we

consider typical electric fields applied in organic electronic and optoelectronic

devices, then the mean free path should not be greater than 1 nm.

In general, the effective masses of electrons and holes depend on the energy of

a particle at the wavevector in the band. For polymers with a simple structure,

the effective mass is around 0.1me, where me represents a free electron mass

[48]. However, we can also find a higher order of magnitude for this quantity

in the literature [49]. It has been confirmed for polymers that the value of

an effective mass increases for a charge transport along a π–stacking direction

[48, 50]. In the case of Alq3 electroluminescent compound, which is widely used

in OLEDs, the effective masses are of a few times of the bare electron mass [51].

Therefore, we will use a value 1.5me in these calculations.

Fig. 1 and Fig. 2 show the diffusivity–mobility ratio drawn as a function of

a relative Fermi energy, which can be defined as an energetic distance between

a quasi–Fermi level and the Gaussian DOS center (EF − E0). In this work,

the D/µ relationship is presented in kT/q units. Here, we have decided to

choose a greater value of the sound velocity (2000 m/s) associated with the

longitudinal acoustic wave. Fig. 1 illustrates a comparison between the ratios

D/µ obtained with the Druyvesteyn and the Fermi–Dirac distribution functions

calculated for three different electric fields (8 × 106 V/m, 1 × 107 V/m and 2 ×

107 V/m). These values are lower than typical electric fields applied in OLEDs

during the electroluminescence process (∼108 V/m). Therefore, the diffusivity–

mobility ratio can be calculated for this perturbation state using the generalized

Einstein relation given by equation (2).

Fig. 1 demonstrates that the D/µ relationship with the Druyvesteyn func-

tion increases with a field F , while it is field–independent with the Fermi–Dirac

function. We can also see that the diffusivity–mobility ratio strictly increases

for all relative Fermi energies when the acoustic phonons–charge carriers scat-

tering dominates (the Druyvesteyn case). If we use the Fermi–Dirac function,
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then D/µ has a constant value equal to 1 (in kT/q units) for almost all EF −E0

and starts to rise close to the energy center of the Gaussian DOS (E0). This

fact can be clearly interpreted based on the results presented in Fig. 2. Here,

the factor D/µ is drawn for three values of the width σ (0.05 eV, 0.1 eV and

0.15 eV). For a narrower DOS (the case of a lower σ), we describe conditions

which are closer to non–degenerate ones because the quasi–Fermi level is far-

ther from the Gaussian DOS. Then D/µ tends to 1 (in kT/q units) for a longer

range of EF −E0. The increasing of σ causes that charge carriers in the states

of DOS approach to the EF . It leads to the degenerate conditions which are

characterized by the ratio D/µ > 1 (in kT/q units).

We should note that results presented in Fig. 1 and Fig. 2 depict an un-

usual tendency for D/µ obtained with the Druyvesteyn distribution function.

It is seen that the diffusivity–mobility ratio is sometimes lower than 1 (in kT/q

units). Such a tendency does not correspond to the known Einstein relation

for degenerate or non–degenerate semiconductors. Fig. 1 shows that this effect

depends on the electric field. If F increases, then D/µ < 1 (in kT/q units) for

greater energetic distances between E0 and EF . Usually, the mobility of charge

is an electric–field–dependent parameter, while a diffusion coefficient does not

change with F . However, in disordered organic materials, a hopping transport

of electrons occurs between states localized among the quasi–Fermi energy and

the transport energy level [52]. Thus, one can find theoretical models, where

D depends on F . According to one of them, the total diffusion coefficient D

includes also an additional electric–field–dependent term DF when a multiple

trapping transport dominates [23, 53]. It has been confirmed that the ratio

DF /µ can be lower than 1 (in kT/q units). Such a case was observed for higher

charge concentrations in amorphous silicon with a combination of exponential

and Gaussian mobility–gap states [23]. However, it seems that we should not

use this interpretation here, which will be discussed in the following.

Fig. 3 shows the ratio D/µ obtained with the Druyvesteyn distribution

function versus the concentration of charge carriers drawn for two electric fields.

Solid and dashed lines represent results for σ = 0.05 eV and σ = 0.15 eV,
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respectively. We can see that a decreasing of F or σ causes a decreasing of

D/µ. It is visible that values of D/µ lower than 1 (in kT/q units) can be

obtained only for lower charge carrier concentrations. Thus, the multitrapping

transport should not be dominant here. However, we think that a concept of

the non–equilibrium electric–field–dependent diffusion coefficient (different than

the previous one) is still valid.

Fig. 4 presents the diffusivity–mobility ratio calculated with the Druyvesteyn–

type function versus the square of an electric field drawn for several sound ve-

locities (1000 m/s, 1500 m/s, 2000 m/s and 2500 m/s). Here, we have decided

to use the position of a quasi–Fermi level equal to -4.2 eV, which is 1.4 eV lower

than an energy of the Gaussian DOS center (-2.8 eV). A band gap between

HOMO and LUMO for organic electroluminescent materials often takes a value

around 2.5 – 3 eV, so we have chosen the level EF around a mid–gap. It is

observed that an increasing of the sound velocity leads to a visible decreasing

of D/µ. Thus, in general, we should consider separately independent diffusion

coefficients and mobilities of charge for longitudinal and transverse acoustic

waves. Additionally, it is clearly seen that the diffusivity–mobility ratio is a lin-

ear function of F 2. Such a linear tendency has been previously demonstrated for

a non–equilibrium case in disordered organic semiconductors using an analyti-

cal model based on the hopping transport theory [19]. We should also mention

that a quadratic growth of the diffusion coefficient has been reported for the

hopping transport in disordered materials [54]. It validates the concept that the

electric–field–dependent diffusion coefficient plays a key role here.

Fig. 5 shows the factor D/µ obtained with the Druyvesteyn distribution

drawn as a function of the charge concentration for two temperatures. Solid

and dashed lines represent results for T = 200 K and T = 300 K, respectively.

We can see that an increasing of temperature lowers values of D/µ. This effect

has been reported in the literature of organic semiconductors for the equilibrium

conditions [4, 7, 22]. In addition, the diffusivity–mobility ratio is plotted versus

the reciprocal of kT in Fig. 6. We observe a linear tendency of D/µ. It is seen

that a rise of the DOS width σ leads to an increasing of D/µ values, which
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causes that slopes of the linear functions increase. This behavior looks similarly

to the literature results obtained with the Fermi–Dirac distribution [8].

The conclusion is that a lowering of the ratio D/µ below 1 (in kT/q units)

can be explained qualitatively that an interaction between the optical phonons

and charge carriers has not been taken into account. If we consider both types

of phonons, then a jump rate for the phonon–induced hopping transport reaches

different values than for a pure acoustic phonons–charge carriers scattering [55].

It is known that the average jump rate influences the diffusion coefficient in

disordered systems [56]. Thus, such an interpretation should be in an agreement

with a concept of the electric–field–dependent diffusion coefficient.

The final step is to compare the presented theoretical model with real exper-

imental results. We have decided to find the literature data where the diffusion

coefficient changes with an electric field. As a consequence, such results ob-

tained for the donor–doped bisphenol–A–polycarbonate [57] have been used in

this paper. For an analysis, the mobility µ and the diffusion coefficient D were

taken from figures 2 and 3, respectively (both numbers of figures from [57]).

The experimental D/µ ratios drawn versus a square of the electric field are pre-

sented by triangle symbols in Fig. 7. We have chosen data measured for three

values of the donor dipole moment. It is visible that D/µ increases with both

the electric field and the dipole moment. Here, this ratio can have values lower

than 1 (in kT/q units) which was not reported before. Therefore, the selected

experimental data are good for a comparison with the theoretical model based

on the Druyvesteyn distribution function.

In order to fit these data, we need reasonable parameters for the model. It

is well known that the dipole moment of a dopant changes the width σ, which

can be written in the form [58]

σ =
√
σ2
vdv + σ2

dip. (11)

Here, σvdv and σdip represent the van der Vaals and the dipole components,
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respectively. The latter may be found from an expression

σdip =
Acbd

a2εr
, (12)

where c is the dipoles concentration, d denotes the dipole moment, a represents

the intersite distance in the lattice and εr is a dielectric constant of a material.

We should notice that when we write d in the debye unit and a in angstroms,

then the parameter σdip will be given in electronvolts. The coefficients A and b

depend on the theoretical model. It can be found in the literature that A = 3.06,

b = 2/3 [59], A = 7.03, b = 1/2 [60] and A = 8.35, b = 2/3 [57]. In this paper,

we have decided to use values from [57], because we have chosen experimental

results from this paper. To determine σdip, an average intermolecular distance

(12 Å), a doping concentration (26.3%) and the permittivity (3.0) were also

taken from [57]. The obtained dipole components are equal to 0.022 eV, 0.025

eV and 0.037 eV for 2.79 debye, 3.13 debye and 4.65 debye, respectively. We

assume that the van der Vaals component σvdv = 0.1 eV. Then, the DOS widths

calculated from equation (11) have values σ = 0.102 eV (for 2.79 debye), σ =

0.103 eV (for 3.13 debye) and σ = 0.106 eV (for 4.65 debye).

The energy of a Gaussian center E0 = -0.625 eV (the LUMO position) has

been estimated from theoretical studies of the electronic structure of bisphenol–

A–polycarbonate [61]. The calculated value of the HOMO–LUMO gap is 5.365

eV [61]. It has been demonstrated that the work function (an energetic distance

between the Fermi energy and the vacuum level) changes its value with a dipole

moment [62]. If we consider a donor–doping material, one can expect that a

quasi–Fermi energy should be above the level of a mid–gap. Here, EF is treated

as a fitting parameter. The determined values EF = -1.85 eV (for 2.79 debye),

EF = -1.55 eV (for 3.13 debye) and EF = -1.35 eV (for 4.65 debye) show that

the work function decreases with an increasing of the donor dipole moment.

The thicknesses of samples were 6–8.5 µm [57]. When we consider the bulk

of a material, we can assume that x = 3.5 µm. The temperature used in our

calculations (T = 293 K) has the same value as in the experiment [57]. Other

parameters are equal for all samples: N0 = 1026 m−3, l = 0.5 nm and m∗ =
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2.5me. The velocity of a sound can be treated as a numerical parameter. The

obtained values u= 2800 m/s (for 2.79 debye), u= 2720 m/s (for 3.13 debye) and

u = 2500 m/s (for 4.65 debye) should be associated with longitudinal acoustic

phonons. It is seen that this velocity decreases when the dipole moment of a

donor increases.

Fig. 7 illustrates the comparison between our calculations and experimental

data. The ratios D/µ obtained with the Druyvesteyn–type distribution function

drawn for three values of a dipole moment are presented by full lines. The

observed tendency looks similar to theoretical curves shown in Fig. 4. We

can see a satisfactory agreement between simulations and experimental results

which validates the usefulness of the model.

4. Summary

In summary, the Druyvesteyn–type distribution function has been used to

calculate the generalized Einstein relation for disordered organic semiconduc-

tors with a Gaussian density of states. The Druyvesteyn function is used in

a solid state when the acoustic phonons–charge carriers scattering plays a key

role. It has been experimentally demonstrated that such a distribution func-

tion can describe a behavior of hot electrons in the electroluminescent inorganic

rare–earth–doped zinc chalcogenides. Thus, we expect that in a part of organic

materials used in OLEDs, it is also possible to find the Druyvesteyn distribu-

tion of charge carriers under external electric fields. The theoretical analysis

has shown that the diffusivity–mobility ratio reaches values lower than 1 (in

kT/q units) for lower concentrations of charge carriers. The temperature de-

pendencies of the factor D/µ are similar to theoretical results obtained with

the equilibrium Fermi–Dirac distribution function. Furthermore, a compari-

son between calculations and experimental data for the donor–doped polymer

confirms a validity of the theoretical approach based on the Druyvesteyn–type

distribution function.
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Figure 1: The ratio D/µ calculated with the Druyvesteyn–type distribution function versus

a relative Fermi energy drawn for three electric fields F (solid lines). The dashed line shows

D/µ obtained with the Fermi–Dirac function. Parameters used for calculations: T = 300 K,

σ = 0.05 eV, N0 = 1026 m−3, E0 = -2.8 eV, x = 10 nm, u = 2000 m/s, l = 0.8 nm and m∗

= 1.5me.
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Figure 2: The ratio D/µ versus a relative Fermi energy drawn for three σ obtained with

the Druyvesteyn–type function (solid lines) and with the Fermi–Dirac (FD) function (dashed

lines). Parameters used for calculations: T = 300 K, N0 = 1026 m−3, E0 = -2.8 eV, F = 1

x 107 V/m, x = 10 nm, u = 2000 m/s, l = 0.8 nm and m∗ = 1.5me.

20

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1018 1019 1020 1021 1022 1023 1024 1025 1026

1

10

100

D
 / 

   
 [ 

kT
 / 

q 
]

concentration  [ m -3 ]

T = 300 K
F = 8 x 10 6 V/m      F = 3 x 10 7 V/m

  = 0.05 eV      = 0.05 eV
  = 0.15 eV      = 0.15 eV

Figure 3: The ratio D/µ calculated with the Druyvesteyn–type distribution function versus a

concentration of charge carriers drawn for two electric fields. Solid and dashed lines represent

results for σ = 0.05 eV and σ = 0.15 eV, respectively. Parameters used for calculations: T

= 300 K, N0 = 1026 m−3, E0 = -2.8 eV, x = 10 nm, u = 2000 m/s, l = 0.8 nm and m∗ =

1.5me.
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Figure 4: The ratio D/µ obtained with the Druyvesteyn–type distribution function versus a

square of the electric field drawn for four sound velocities. Parameters used for calculations:

T = 300 K, σ = 0.05 eV, N0 = 1026 m−3, E0 = -2.8 eV, EF = -4.2 eV, x = 10 nm, l = 0.8

nm and m∗ = 1.5me.
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Figure 5: The ratio D/µ calculated with the Druyvesteyn–type distribution function versus a

concentration of charge carriers drawn for two temperatures and two electric fields. Solid and

dashed lines represent results for T = 200 K and T = 300 K, respectively. Parameters used

for calculations: σ = 0.1 eV, N0 = 1026 m−3, E0 = -2.8 eV, x = 10 nm, u = 2000 m/s, l =

0.8 nm and m∗ = 1.5me.

23

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


30 40 50 60 70 80

1,0

1,5

2,0

2,5

D
 / 

   
 [ 

kT
 / 

q 
]

1 / kT  [ 1 / eV ]

  = 0.05 eV
  = 0.1 eV
  = 0.15 eV

Figure 6: The ratio D/µ obtained with the Druyvesteyn–type distribution function versus

the reciprocal of kT drawn for three values of a distribution width σ. Parameters used for

calculations: N0 = 1026 m−3, E0 = -2.8 eV, EF = -4.2 eV, F = 2 x 107 V/m, x = 10 nm, u

= 2000 m/s, l = 0.8 nm and m∗ = 1.5me.
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Figure 7: The ratio D/µ versus a square of the electric field drawn for three values of the

donor dipole moment. The triangle symbols represent experimental data taken from [57]. The

lines were calculated from equation (8). The physical quantities T = 293 K, N0 = 1026 m−3,

E0 = -0.625 eV, x = 3.5 µm, l = 0.5 nm and m∗ = 2.5me are the same for all samples. Other

values of parameters used for calculations are: EF = -1.85 eV, u = 2800 m/s and σ = 0.102

eV (for 2.79 debye); EF = -1.55 eV, u = 2720 m/s and σ = 0.103 eV (for 3.13 debye); EF =

-1.35 eV, u = 2500 m/s and σ = 0.106 eV (for 4.65 debye).
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