
ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 96 (2010) 807 – 813

DOI 10.3813/AAA.918338

Generation of the Vorticity Mode by Sound in a
Relaxing Maxwell Fluid

Anna Perelomova, Pawel Wojda
Gdansk University of Technology, Faculty of Applied Physics and Mathematics, ul. Narutowicza 11/12,
80-233 Gdansk, Poland. [anpe, pwojda]@mif.pg.gda.pl

Summary
This study develops a new theory of nonlinear acoustics investigating interactions between acoustical and other
non-acoustical modes, such as vorticity modes, in a fluid. The ideas proposed by the authors make possible to
derive instantaneous equations describing interaction between different modes in a relaxing Maxwell fluid. The
procedure of deriving of a new dynamic equation governing the vorticity mode which is generated by sound, is
discussed in details. It uses only instantaneous quantities and does not include averaging over sound period. The
resulting equation applies to both periodic and aperiodic sound of any waveform as the origin of the vorticity
mode. The theory is illustrated by two representative examples of generation of the vorticity mode in a relaxing
Maxwell fluid, caused by periodic sound beam and a sound beam with a stationary but aperiodic waveform.

PACS no. 43.25.-x, 43.25.Nm

1. Introduction

The theory of sound propagation and phenomena associ-
ated with it in a thermoviscous nonlinear flow began to
develop rapidly in the fifties of the 20th century and has
achieved undoubted success. The most widely used model
equation for describing the combined effects of diffraction,
absorption and nonlinearity in directional sound beams is
the KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation.
It was derived in 1971 [1]. Analytical methods for solving
the fully nonlinear form of the Khokhlov-Zabolotskaya
equation (that is, the lossless form of the KZK equation)
have been proposed only recently. One method incorpo-
rates analytical techiques used in nonlinear geometrical
acoustics [2]. An approximate axial solution is derived
for the preshock region of a beam radiated by a monofre-
quency source. The second method is based on combining
the perturbation technique referred to as renormalization
with what amounts to an application of weak shock theory
[3]. This method is more general in that it applies to pulses,
both on and off axis, and takes into account shock forma-
tion. Gaussian amplitude shading at the source is assumed
in both approaches.

However, in a thermoviscous flow, secondary nonlin-
ear effects induced by sound are also of great importance
for medical and technical applications. These effects in-
clude acoustic streaming and heating, e.g. nonlinear gener-
ation of vorticity and entropy modes by an acoustic mode.
Acoustic streaming is the mean motion of a fluid caused
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by acoustic waves. Extensive reviews on this subject ex-
ist in the references [4, 5, 6]. More recent discussion of
acoustic streaming can be found in [7, 8, 9, 10]. The au-
thors of [9, 10] suggest that there is an unresolved issue
concerning acoustic streaming, the effect of compressibil-
ity: indeed, the starting point is usually equations describ-
ing incompressible liquids. The usual method to identify
the different modes of motion (acoustic, entropy and vor-
ticity modes) consists in two successive steps: first, im-
plementation of averaging the continuity and momentum
equations over the sound period, and, second, the linear
combination of appropriate equations [5, 11]. It does not
account for energy balance and, therefore, discards ther-
mal conductivity. It is well-understood, however, that the
streaming velocity depends on the total attenuation, in-
cluding thermal conductivity [9, 12]. The effects of com-
pressibility and heat conduction upon acoustic streaming
are exhibited by noting the dependence of the streaming
velocities on the Prandtl number and the specific heat ratio
of the fluid. Larger streaming velocities are obtained for
compressible fluids and are more evident in a gas than in
a liquid [9]. The usual method includes also many inter-
mediate discussions of an individual contribution of every
term forming an acoustic force, the quantity averaged over
the sound period [5, 11]. The next weak point of the theory
is inconsistency when distinguishing between the vorticity
and entropy modes. Indeed, the formerly applied method-
ology assumes zero temporal average over the sound pe-
riod of partial derivative of total density with respect to
time, ∂ρ/∂t. However, in the thermoviscous flow, an ex-
cess density includes, besides an acoustic term, a slowly
decreasing part belonging to the isobaric entropy mode. So
that an averaged value of ∂ρ/∂t can no longer be zero. The
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part of mean velocity attributable to the entropy mode is
also non-zero if the heat conduction of a fluid differs from
zero. We can avoid these inconsistencies by means of im-
mediate projection of the initial equations onto dynamic
equations governing each specific mode (section 2).

We first need to determine every branch of acoustic and
non-acoustic types of motion in a Maxwell fluid. That al-
lows to derive individual dynamic equations governing ev-
ery mode in a weakly nonlinear flow. The procedure was
proposed and applied by one of the authors in analysis of
acoustic heating and streaming in fluids with the standard
attenuation [13, 14]. This method is valid for both periodic
and aperiodic sound. It uses instantaneous quantities and
therefore does not require averaging over the sound period
at any stage. Actually, the method is useful in the general
problems of modes interactions, not only those studying
acoustic streaming and dealing with the mean fields. Rel-
atively to generation of the vortical mode in the field of
sound, the method makes it possible to derive dynamic
equations considering every branch of acoustic and vor-
tical motions individually. It applies in a weakly nonlinear
flow and distributes the nonlinear terms between dynamic
equations of different modes correctly. The method is free
from inconsistencies of the traditional scheme. An acous-
tic driving force of the vorticity mode transforms into the
well-known formula in the case of periodic sound being
averaged over the sound period. The first ones who de-
rived the equations of interacting modes in a viscous heat-
conducting compressible gas, were Chu and Kovasznay
[15]. Unfortunately, Chu and Kovasznay could not con-
clude about the acoustic force of the vorticity or entropy
modes. The reason for that was an insufficiently high or-
der of evaluations in the important paper [15] (section 2).

In the present study, we consider a relaxing Maxwell
fluid, whose attenuation differs from the standard one. Re-
laxation of a fluid to the equilibrium state is described by
an integral operator. Agreement of the final equation with
the well-known result in the field of nonlinear acoustics
(case of standard attenuation in a thermoviscous fluid and
periodic sound as an origin of the vorticity mode) may be
easily verified. It is sufficient to replace the integral oper-
ator by a constant factor and to consider a periodic sound
(section 4). Note this study investigates only flows within
an unbounded volume of fluid.

2. Decomposition of the vorticity and sound
modes for a relaxing Maxwell fluid

2.1. Basic equations describing motion of a relaxing
and heat conducting fluid

The momentum and energy equations and the mass con-
servation equation in the relaxing and heat conducting
fluid flow without external forces are

∂v

∂t
+ v · ∇ v =

1
ρ

−∇p + Div P ,

∂e

∂t
+ v · ∇ e = (1)

1
ρ

−p ∇ · v + χΔT + P : grad v ,

∂ρ

∂t
+ ∇ · ρv = 0,

where v denotes velocity of the fluid, ρ, p are its density
and pressure, e, T mark the specific internal energy (per
unit mass) and temperature, χ is the thermal conductivity,
xi, t denote spatial Cartesian coordinates and time. Oper-
ator Div denotes the tensor divergence, grad is the dyad
gradient, and P is the viscous stress tensor. The equation
relating the viscous viscous stress tensor and the vector
of particle displacements u(r, t) fits the Maxwell viscous
model, in two following equivalent forms

∂Pi,k
∂t

+
1
τR
Pi,k = µ

∂

∂t

∂ui
∂xk

+
∂uk
∂xi

, (2)

Pi,k = µ
t

−∞

∂vi
∂xk

+
∂vk
∂xi

e−(t−t )/τR dt ,

where τR denotes time of relaxation to the equilibrium
state, and µ which is a generalized viscosity, measures
the magnitude order of the relaxation process. Note that,
when the relaxation time τR tends to infinity (or in the high
frequency regime ωτR → ∞) the Maxwell fluid behaves
as a classical Newtonian fluid. The system (1) is supple-
mented by the two thermodynamic state equations e(p, ρ)
and T (p, ρ) which can be expanded as a Taylor series up
to quadratic nonlinear terms,

e =
E1

ρ0
p +

E2p0

ρ2
0

ρ +
E3

p0ρ0
p 2

+
E4p0

ρ3
0

ρ 2 +
E5

ρ2
0

ρ p , (3)

T =
Θ1

ρ0Cv
p +

Θ2p0

ρ2
0Cv

ρ +
Θ3

p0ρ0Cv
p 2

+
Θ4p0

ρ3
0Cv

ρ 2 +
Θ5

ρ2
0Cv

ρ p .

Primes denote perturbations, the ambient quantities are
marked by index 0, and Cv is the specific heat coefficient at
constant volume. We assume that the fluid is homogeneous
in composition, that its unperturbed density and pressure
are uniform, and the thermal conductivity is constant. The
series expansion for the excess internal energy and temper-
ature (3) allow to consider thermodynamic state of a fluid
in the most general form, where E1, . . .Θ5 are dimension-
less coefficients. Noting that a small change in entropy is a
total differential, provides the ratio of the first coefficients
in the series (3)

Θ2 =
Cvρ0T0

E1p0
− (1 − E2)Θ1

E1
. (4)

The common practice in nonlinear acoustics is to focus on
the equations of the second order of acoustic Mach number
M = v0/c0, where v0 is a typical particle velocity magni-
tude, c0 = (1 − E2)p0/(E1ρ0) is an infinitely small sig-
nal velocity. We use also small dimensionless parameters
responsible for relaxation m = µ/(ρ0c

2
0) and thermal con-

ductivity δ = χT0/(c3
0ΛE

2
1ρ0) (Λ is a characteristic scale
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of a flow). We shall discard O(M3) terms in all expan-
sions. To facilitate implementation of the ordering scheme,
we introduce a generic parameter δ that characterizes the
smallness of m and δ. Our primary objective is to derive
dynamic equations valid at order δM2.

The dispersion relations describing the three indepen-
dent modes follow from the linearized version of equa-
tions (1). They are: acoustic (two branches), thermal (or
entropy), and vorticity (two branches) modes. From these
dispersion relations we are able to suggest a linear model
propagation equation for every mode in an unbounded
fluid. In general, each of the field variables contains con-
tributions from each of three modes, for example, v =
va+ vent+ vvort. That allows to decompose not only overall
vector of perturbations into specific parts, but also to split
the governing equations themselves. The method proposed
in [13] and developed by the authors in the present study,
enables splitting of the initial system (1) into specific dy-
namic equations for every mode (and, moreover, for ev-
ery branch of acoustic or vorticity modes) using specific
properties of each mode in a weakly nonlinear and ther-
moviscous flow. It is convenient to rearrange formulae in
the dimensionless quantities as follows

pnd =
p

c2
0 · ρ0

, ρnd =
ρ

ρ0
, vnd =

v

c0
,

xnd =
x

Λ
, ynd =

y

Λ
, znd =

z

Λ
,

tnd =
c0

Λ
t, τnd =

c0

Λ
τR. (5)

Everywhere below in the text, superscripts by dimension-
less quantities will be omitted. In the dimensionless quan-
tities, equations (1) read

∂vx
∂t

+
∂p

∂x
− A vx +

∂

∂x
∇ · v =

− v · ∇ vx + ρ
∂p

∂x
− ρA vx +

∂

∂x
∇ · v ,

∂vy

∂t
+
∂p

∂y
− A vy +

∂

∂y
∇ · v =

− v · ∇ vy + ρ
∂p

∂y
− ρA vy +

∂

∂y
∇ · v ,

∂vz
∂t

+
∂p

∂z
− A vz +

∂

∂z
∇ · v =

− v · ∇ vz + ρ
∂p

∂z
− ρA vz +

∂

∂z
∇ · v ,

∂p

∂t
+ ∇ · v − δ1Δp − δ2Δρ = (6)

− v · ∇ p + D1p +D2ρ ∇ · v

+
1
E1

2
∂vx
∂x

A
∂vx
∂x

+ 2
∂vy

∂y
A
∂vy

∂y
+ 2

∂vz
∂z

A
∂vz
∂z

+
1
E1

∂vx
∂z

+
∂vz
∂x

A
∂vx
∂z

+
∂vz
∂x

+
∂vx
∂y

+
∂vy

∂x
A

∂vx
∂y

+
∂vy

∂x

+
1
E1

∂vz
∂y

+
∂vy

∂z
A

∂vz
∂y

+
∂vy

∂z

+ δ3Δ(p2) + δ4Δ(ρ2) + δ5Δ(ρp),
∂ρ

∂t
+ ∇ · v = − v · ∇ ρ − ρ ∇ · v ,

where ∇ = (∂/∂x ∂/∂y ∂/∂z), = ∂2/∂x2 + ∂2/∂y2 +
∂2/∂z2, and A denotes the dimensionless operator which
is applied on a scalar function φ(x, y, z, t),

Aφ = m
t

−∞
φe−(t−t )/τ dt . (7)

Equations (6) include the dimensionless quantities

δ1 =
χΘ1

ρ0c0ΛCvE1
, δ2 =

χΘ2

ρ0c0ΛCv (1 − E2)
,

δ3 =
Θ3χ

E1ρ0c0ΛCv

1 − E2

E1
, δ4 =

Θ4χ

(1 − E2)ρ0cΛCv
,

δ5 =
Θ5χ

E1ρ0cΛCv
, (8)

D1 =
1
E1

−1 + 2
1 − E2

E1
E3 + E5 ,

D2 =
1

1 − E2
1 + E2 + 2E4 +

1 − E2

E1
E5 .

The sum of δ1 and δ2 is the sound attenuation due to the
thermal conductivity,

δ = δ1 + δ2. (9)

The parameter of nonlinearity B/A in any fluid equals
−D1 −D2 − 1, that for ideal gases gives γ − 1 (γ denotes
the ratio of specific heats, D1 = −γ, D2 = 0).

2.2. Modes in a flow of infinitely-small magnitude.
Projection onto the vorticity mode

The equivalent form of the system (6) is

∂Ψ
∂t

+ LΨ = Ψnl, (10)

where Ψ = ( vx vy vz p ρ )T , L is a linear matrix oper-
ator including spatial derivatives, Ψnl denotes a nonlinear
vector.

Studies of motions of infinitely-small amplitudes begin
usually by representing all perturbations as a sum of planar
waves,

f (r, t) =
R3
f (k, t) exp(−ikr) dk, (11)

(f (k, t) denotes the Fourier transform of f (r, t), f (k, t) =
1/(2π)3

R3 f (r, t)e ikr dr). Five eigenvalues of the lin-
earized version of equations (10) (when Ψnl = 0), λn
(n = 1, . . . , 5), determine wave (two branches of sound,
n = 1 and n = 2) and non-wave (the entropy mode, n = 3,
and two vorticity branches, n = 4 and n = 5) types of
motion that may exist in a fluid. The relations between the
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Fourier transforms of perturbations of both acoustic modes
in the leading order are following (n = 1, 2):

Ψn = vx,n vy,n vz,n pn ρn
T

= − iλnkx
Δ

, − iλnky
Δ
, − iλnkz

Δ
, 1 − δλn, 1

T

ρn,

λ1 = − Δ − β

2
Δ, λ2 = Δ − β

2
Δ, (12)

where Δ corresponds to the Laplacian (Δ is applied in the
Fourier transforms space), β reflects the attenuating prop-
erties of a fluid due to relaxation and heat conduction,

Δ = −k2
x − k2

y − k2
z , Δ = i k2

x + k2
y + k2

z ,

β = 2A + δ. (13)

Multiplying by −ikl in the space of Fourier transforms cor-
responds to evaluating of partial derivative ∂/∂l. Among
others, equation (12) implies the important property satis-
fied by sound velocity in the (r, t) space,

∇ × va,1 = 0, ∇ × va,2 = 0. (14)

That is the well-known property of sound velocity to be
irrotational field.

The entropy type of motion in the considered formula-
tion of the problem specifies non-zero velocity only if the
thermal conductivity differs from zero. Velocity of the en-
tropy mode is also a potential field, its excess pressure is
zero, but its excess density differs from zero:

∇ × vent = 0, pent = 0, vent = δ2∇ρent. (15)

There exist also two branches of the solenoidal vorticity
flow determined by relations as

∇ · vvort,4 = 0, pvort,4 = 0, ρvort,4 = 0,

∇ · vvort,5 = 0, pvort,5 = 0, ρvort,5 = 0. (16)

The projection matrix operators may be determined by use
of equations (14)–(16). Every individual mode may be ob-
tained by applying the appropriate projector on the vector
Ψ. For example, applying the operator Pvort on the vector
Ψ, decomposes it into a sum of the two vorticity modes,

PvortΨ = Ψvort = Ψvort,4 + Ψvort,5. (17)

The sum of all projectors is the unit matrix, projectors are
orthogonal to one another, and, if squared, they are all
equals to themselves [13, 14]. Every projector is a ma-
trix of spatial operators consisting of five rows and five
columns. The part of the vorticity projector, which is ap-
plied on the velocity vector, Pvort,v , consists of three rows
and three columns. As a result, it decomposes the vorticity
part of velocity,

Δ−1




∂2

∂y2 +
∂2

∂z2 − ∂2

∂x∂y − ∂2

∂x∂z

− ∂2

∂x∂y
∂2

∂x2 +
∂2

∂z2 − ∂2

∂y∂z

− ∂2

∂x∂z − ∂2

∂y∂z
∂2

∂x2 +
∂2

∂y2


 (18)

 vx,a + vx,ent + vx,vort
vy,a + vy,ent + vy,vort
vz,a + vz,ent + vz,vort

 =

 vx,vort
vy,vort
vz,vort

 .

Equation (18) manifests in fact a certain way of appli-
cation of the Helmholtz vector decomposition theorem,
which enables us to decompose irrotational and solenoidal
vector fields. It is easy to prove that Pvort,v satisfies the
equality

−∇ × (∇ × ϕ) = ΔPvort,vϕ, (19)

where ϕ is any three-component vector.

2.3. Equation governing the vorticity mode induced
by sound

The linearized theory does not indicate any interaction
among the modes as long as the domain of interest is far
from solid boundaries and it may be valid as long as the
fluctuations are weak. However, the projection method can
be applied also in the study of a weakly nonlinear flow as
well. It is of importance, that applying the projector which
decomposes a certain mode, reduces all other modes in
the linear part of equations. The projection distributes the
nonlinear terms between dynamic equations in the cor-
rect manner. Applying Pvort on the system (10) cancels
all acoustic and entropy terms in the linear part, but gives
rise to a nonlinear acoustic source in its right-hand nonlin-
ear part. The nonlinear part of resulting equations includes
mixed quadratic terms of all modes, but only acoustic ones
will be kept in the frames of this study.

Applying of Pvort,v on the first three equations from
the system (10) (they represent the momentum equation),
results in the dynamic equation governing the vorticity
mode,

∂vvort
∂t

− AΔvvort = (20)

Pvort,v


 −(v · ∇)vx + ρ ∂p∂x − ρA Δvx + ∂

∂x (∇ · v)

−(v · ∇)vy + ρ ∂p∂y − ρA Δvy + ∂
∂y (∇ · v)

−(v · ∇)vz + ρ ∂p∂z − ρA Δvz + ∂
∂z (∇ · v)




a

,

where in the right-hand side only acoustic terms should be
considered. It may be rearranged into

∂vvort
∂t

− AΔvvort = (21)

Pvort,v −ρa
∂

∂t
va = Pvort,v −

2

n=1

ρa,n ·
∂

∂t

2

n=1

va,n

= Fa.

One can obtain another form of equation (21) in terms of
vorticity Ω = ∇ × vvort:

∂Ω
∂t

− AΔΩ = ∇ × −ρa
∂

∂t
va . (22)

It is useful to compare the right-hand side of equation (22)
with that derived by Chu and Kovasznay [15] in the stan-
dard thermoviscous flows (the shear viscosity stands on
the left-hand side of the equation instead of operator A
in the formula (3.5a) of the cited paper). The right-hand
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acoustic source from [15] in the dimensionless quantities
takes the form

∇ × −pa
∂

∂t
va −

1
2
∇(v2

a ) + O(δM2) = (23)

−1
2
∇ × ∇ p2

a + v2
a + O(δM2) = O(δM2).

and exceeds accuracy of the ordering scheme used in [15]
(terms of order δM2 were not considered, only those pro-
portional to M2). However, the terms of order δM2 are of
importance, they reflect actually the origins of the acous-
tic force inducing the vorticity mode, such as nonlinearity
and absorption. By the use of relations (12), equation (22)
may be rearranged into the following one with a non-zero
acoustic source only if operator β differs from zero:

∂Ω
∂t

− AΔΩ = ∇ρa × ∇ β
∂ρa
∂t

(24)

= −∇ρa × β∇(∇ · va) = ∇ρa × βΔva.

An acoustic excess density itself satisfies the analog of
the Westervelt equation [16], which describes dynamics of
both acoustic branches and therefore includes the second-
order partial derivative with respect to time in its linear
part of order δ0. The dynamic equation includes also ab-
sorption due to relaxation:

∂2ρa

∂t2
− Δρa − β

∂3ρa

∂t3
− 1 −D1 −D2

2
∂2ρ2

a

∂t2
= 0. (25)

The projection of the system (6) onto dynamic equations
for every branch of sound results in two equations for each
acoustic mode individually. The governing equation for
the first acoustic branch takes the form

∂ρa,1

∂t
+ Δρa,1 −

β

2
Δρa,1 = (26)

1
2

(D1 +D2)ρa,1 ∇ · va,1 − va,1 · ∇ρa,1 .

2.4. Quasi-planar geometry of a flow

Until this point, no restriction on a type of flow geom-
etry was done. Let y designate the nominal axis of the
sound beam pointing in the propagation direction, and let
x, z be the coordinates perpendicular to that axis. The fol-
lowing assumptions will be made regarding the source: it
is defined at the plane y = 0, it has a characteristic ra-
dius a, and it radiates at frequencies satisfying inequal-
ity |k|a 1. The last assumption ensures that the beam
is reasonably directional. Introducing one more small pa-
rameter = 1/(|k|a)2, responsible for diffraction, consid-
erably simplifies modes and projectors, allowing to expand
the Laplacian in a power series in the small parameter :

Δ = ∂2/∂y2 + Δ⊥, Δ ≈ ∂/∂y + 0.5 Δ⊥ dy, (27)

where Δ⊥ = ∂2/∂x2 + ∂2/∂z2. Accounting for relations
specific for the acoustic modes from section 2.2 (equa-
tion 12), equation (21) may be readily rearranged into

∂vvort
∂t

− A
∂2vvort

∂y2
= (28)

Pvort,v (ρa,1 + ρa,1)β∇ ∂

∂y
ρa,2 − ρa,1 .

If sound is associated with a beam propagating in the posi-
tive direction of axis y only (ρa = ρa,1), one gets the equa-
tion governing the longitudinal component of the vorticity
mode velocity vy,vort:

∂vy,vort

∂t
− A

∂2vy,vort

∂y2

= −
 − ∂

∂x dy
Δ⊥ dy dy
− ∂
∂z dy

T

ρaβ∇
∂ρa
∂y

=
∂

∂x
dy ρaβ

∂2ρa
∂x∂y

(29)

− Δ⊥ dy dy ρaβ
∂2ρa

∂y2
+
∂

∂z
dy ρaβ

∂2ρa
∂y∂z

.

In the practically important case of a cylindrically sym-
metric flow, ρa is a function of two spatial coordinates,
ρa(x, y, z, t) = ρa(r = x2 + z2, y, t). That allows us to
write the previous formula as

∂vy,vort

∂t
− A

∂2vy,vort

∂y2

= dy
∂ρa
∂r

β
∂2ρa
∂r∂y

+ ρaβΔ⊥
∂ρa
∂y

− Δ⊥ dy dy ρaβ
∂2ρa

∂y2
, (30)

where Δ⊥ = 1/r∂/∂r + ∂2/∂r2. It is the diffusion equa-
tion for the vorticity part of velocity induced by nonlinear
losses in acoustic momentum. An excess acoustic density
in the beam propagating in the positive direction of axis y,
is a solution of equation

∂ρa,1

∂t
+
∂ρa,1

∂y
+

2
Δ⊥ρa,1 dy (31)

−β
2
∂2ρa,1

∂y2
+

1 −D1 −D2

2
ρa,1

∂ρa,1

∂y
= 0.

Equation (31) is analogous to the famous KZK equation
[1, 5] with β replacing the standard attenuation. It may
also be derived by projecting of the initial system (6) onto
dynamic equation of the first acoustic branch by means of
the appropriate projector [13] and performing the paraxial
approximations (equation 27).

3. Examples

In the previous sections, two forms of equation have been
derived, that govern acoustic streaming in a heat conduct-
ing relaxing Maxwell fluid, one which does not refer to
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quasi-planar flows, equation (21) (and its modified form,
equation 24), and the second one valid in a quasi-planar
flow, equation (30). It includes a double integral, origi-
nating from the series expansion of the Laplacian (equa-
tion 27). That makes necessary to determine integration
constants corresponding to the physical setting of a prob-
lem. In general, evaluation of acoustic force of the vor-
ticity mode is a very difficult problem because an ex-
cess acoustic density itself should satisfy equation (26) or
equation (31).

3.1. Periodic sound

It is possible to evaluate the right-hand side of equa-
tion (21) in some simple cases analytically. Let an excess
acoustic density take the form (r = x2 + z2)

ρa = M exp − r2 sin t − y . (32)

It may be considered as an approximate solution of equa-
tion (31) in the limiting case of very weak attenuation,
nonlinearity and diffraction. An acoustic force of stream-
ing in accordance with equation (21) takes the form

Fa = Pvort,v ρaβ∇
∂ρa
∂t

, (33)

which gives the longitudinal acoustic force

Fa,y = M2 mτ

1 + τ2
+
δ

2
exp − 2r2 . (34)

This example belongs to the field of interest of acoustic
streaming in its classical meaning, because the acoustic
acoustic force in the right-hand side of equation (34) rep-
resents the mean field. In its derivation, however, we did
not use averaging over sound period at any stage.

3.2. Stationary sound

As the next example we consider the stationary sound
waveform depending exclusively on the retarded time ξ =
t− x in a pure relaxing fluid without heat conduction. The
one-dimensional form of equation (31) is

1 −D1 −D2

2
ρa

dρa
dξ

(35)

+ m
ξ

−∞

d2ρa

dξ 2
exp − (ξ − ξ )/τ dξ = 0.

Equation (35) can be integrated to obtain [17]

ρa +
m

γ + 1
dρa
dξ

+
ρ2
a

2τ
= const. (36)

We consider a density jump 2M from −M ahead of the
wave front to M behind. Applying the boundary condi-
tions at ξ = −∞: ρa = −M , dρa/dξ = 0 and ξ = ∞:
ρa = M , dρa/dξ = 0, gives the integration constant

M2/2τ and results after separating of variables and inte-
grating to the expression for ξ [18, 19],

ξ = τ ln
(1 + ρa/M)G−1

(1 − ρa/M)G+1
, (37)

where G = 2m/(1 − D1 − D2)M measures the ratio of
relaxation effects to nonlinear effects. In the limit of weak
nonlinearity G 1, the solution (37) can be inverted an-
alytically [5, 17]:

ρa(ξ) = M tanh ξ/2Gτ . (38)

The waveform

ρa(ξ) = M exp − r2 tanh ξ/2Gτ (39)

may be considered as an approximate formula describing
weakly diffracting acoustic beam. The corresponding lon-
gitudinal acoustic force of the vorticity mode is found to
be

Fa,y =
M2

4τG2
m +

δ

2τ
exp − 2r2

· cosh
ξ

τG
cosh−4 ξ

2τG
. (40)

It is positive and decreases rapidly with enlarging of |ξ|.

4. Conclusions

New instantaneous equations governing a secondary sole-
noidal flow nonlinearly induced by sound, equations (21),
(24) and equation (30), are derived (the latter one is valid
in a quasi-planar geometry of a flow). Each equation takes
the form of a diffusion equation with a nonlinear acous-
tic force in the right-hand side. The operator A describes
relaxation to the equilibrium state, and β accounts for the
relaxation and heat conduction, δ. It is of importance, that
equations (21), (24), (30) may be easily rearranged in the
case of the standard attenuation, by means of replacing
of A by dimensionless shear viscosity, η

ρ0c0λ
, and β by the

diffusivity, consisting of shear, bulk viscosity and thermal
conductivity,

4η
3ρ0c0λ

+
ηB

ρ0c0λ
+ δ.

Equation (34) agrees with the well-known formula on
acoustic radiation force caused by periodic sound (equa-
tion 32) in a fluid flow with the standard attenuation

Fa,y =
4η

3ρ0c0λ
+

ηB
ρ0c0λ

+ δ
∂ρa
∂t

2

, (41)

where angular brackets denote temporal averaging over
the sound period. It is remarkable, that the acoustic force
depends on the total attenuation, including the thermal
one. There are many articles including experimental data
confirming equation (41) for periodic sound as the origin
of the vorticity mode (among other, [20]).

Coefficients in the series of the internal energy (first
equation from equations 3) participate in equation govern-
ing the vorticity mode by means of the sound which is its
origin. Equations (26), (31) include these coefficients.
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