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Abstract: Nonlinear stimulation of the vorticity mode caused by losses in the momentum of sound in a chemically re-
acting gas is considered. The instantaneous dynamic equation for the vorticity mode is derived. It includes
a quadratic nonlinear acoustic source, which reflects the fact that the reason for the interaction between
sound and the vorticity mode is nonlinear. Both periodic and aperiodic sound may be considered as the
origin of the vorticity flow. The equation governing the mean flow (the acoustic streaming) in the field of peri-
odic sound is also derived. In the non-equilibrium regime of a chemical reaction, there may exist streaming
vortices whose direction of rotation is opposite to that of the vortices in the standard thermoviscous flows.
For periodic sound, this is illustrated by an example. The theory and the example describe both equilibrium
and non-equilibrium chemical reactions.
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1. Introduction, basic equations,
and starting points

The reason for vorticity flow in the field of sound is thenonlinear loss in the momentum of the sound wave. Anacoustic source periodic in time can generate mean motion,a phenomenon known as acoustic streaming. There areextensive reviews on this subject [1–3]. Although acous-
∗E-mail: anpe@mif.pg.gda.pl (Corresponding author)
†E-mail: pwojda@mif.pg.gda.pl

tic streaming has been studied in detail both theoreti-cally and experimentally for over a century, the spatialand temporal distribution of the radiation force as a func-tion of diffraction, absorption, and the geometry of theflow is still poorly understood. The main difficulty is thenonlinear origin of the phenomenon. The second originof acoustic and non-acoustic mode interactions is absorp-tion. It is evident that any relaxation process contributesto the vortices caused by sound and in particular to thestreaming. Relaxation processes of different types mani-fest themselves, among other attributes, through absorp-tion.
The interest in relaxation phenomena, and especially in
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non-equilibrium ones in the physics of gases, primarilyoriginated from observations of anomalous dispersion andabsorption of ultrasonics waves in a gas with excited non-equilibrium internal degrees of freedom. The reason forthese anomalies is the mechanism of retarded energy ex-change between the internal and translational degrees offreedom of the molecules [4, 5]. Intensive investigations ofthe flow of thermodynamically non-equilibrium gases be-gan in connection with advances in laser engineering andplasma aerodynamics in the 1960s. The hydrodynamicsof the non-equilibrium fluids remains one of the new andquickly developing fields of modern hydrodynamics. Stud-ies in this field are passing through a stage of revealingnew physical effects and the formulation of fundamentalconclusions. The anomalous dispersion and amplificationof sound becomes a physical reality in gases out of ther-mal equilibrium and in gases where irreversible reactionsoccur [5, 6]. The peculiarities of sound propagation ingases where a chemical reaction takes place, look similarto those in gases with excited internal degrees of free-dom. The nonlinear interaction of sound with non-acoustictypes of motion in relaxing fluids is presently poorly an-alyzed. It was first pointed out by Molevich that acousticheating (i.e., the generation of a thermal mode) or stream-ing may be reversed in a vibrationally excited moleculargas with negative second viscosity [7]. The standard atten-uation itself always leads to a positive excess temperatureassociated with the thermal mode and to streaming whosevelocity in an unbounded volume is directed accordinglyalong the direction of sound [2, 8].
We start from the linear determination of modes as specifictypes of gas motion in a gas where a chemical reactiontakes place (Sec. 2). The definition of any mode fixesthe relations for the dynamic perturbations belonging tothis mode. This is necessary for the correct decomposi-tion of equations governing sound and non-acoustic modesaccounting for the interaction of all modes in a weaklynonlinear flow (Sec. 3). This also resolves an existing in-consistency in the traditional theory of streaming. Whilecompressibility is a necessary condition for sound propa-gation, the traditional analysis is limited to incompress-ible fluids (for a discussion of this topic, see [9, 10]). Thisallows the elimination of the equation for energy balanceand the derivation of results by averaging the equationsof continuity and momentum with respect to the period ofsound. The traditional analysis is valid only for periodicsound because it requires the averaged partial derivativeof every perturbation with respect to time to be zero [2, 8].It is then impossible to consider the thermal mode, and itrequires verification in the case of gases that are stronglycompressible. The decomposition of modes based on in-stantaneous relations of perturbations specific for every

mode gives the possibility to decompose also all equa-tions governing different modes in a weakly nonlinear flow.Where necessary, we will use the asymptotic methods ofnonlinear acoustics, which are based on the presence ofparameters of relatively small magnitude. Consequently,under some assumptions the equations can be simplified.For example, the diminutive parameter M (the Mach num-ber) and the weak diffraction of the sound beam µ will beemployed along with some other parameters connectedwith chemical reactions. They will be introduced in thefollowing sections.The present study considers the simplest model of gas dy-namics in which a chemical reaction of the type A → Btakes place. This model can also be used for the de-scription of acoustical properties of reacting media withcomplex branching reactions [11]. The system is governedby the two equations for momentum and energy as wellas by the continuity equation:
ρd~vdt =− ~∇P,

CV ,∞
R

dT
dt −

T
ρ
dρ
dt =Q,

dρ
dt + ρ( ~∇ · ~v) =0.

(1)

In the equations above, ~v denotes the gas velocity, ρ and Pare the density and the pressure of the gas, T is the tem-perature measured in Joules per molecule (actually the or-dinary temperature multiplied by the Boltsmann constant
kB), CV ,∞ and CP,∞ are the “frozen” heat capacities atconstant volume and constant pressure, respectively (i.e.,the corresponding processes take place at infinitely highfrequencies), R = CP,∞ − CV ,∞ is the universal gas con-stant, Q = HmW

ρ represents the heat produced in a mediumper molecule due to a chemical reaction (W is the volumerate of formation of the reaction product B, H denotesthe reaction enthalpy per unit mass of the reagent A, and
m denotes the averaged molecular mass). The relaxationequation for the mass fraction Y of reagent A and theequation of state complement the system (1):

dY
dt = −Wρ , P = ρT

m . (2)
Equations (1) do not account for the standard attenuationdue to shear viscosity and thermal conductivity. A briefdiscussion of how to include standard attenuation in theinitial equations is given in the concluding remarks below.
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2. Dispersion relations and motions
of infinitely small amplitude and their
decomposition
2.1. Dispersion relations
Let us consider a two-dimensional gas flow of infinitelysmall amplitude in the plane OXY . Every quantity ε rep-resents the sum of an unperturbed value ε0 and its varia-tion ε′, where |ε′| � |ε0|. Following Molevich [7, 12], weassume that the stationary quantities Y0, T0, P0, and ρ0are maintained by transverse pumping, so that the back-ground is homogeneous in the longitudinal direction per-pendicular to the plane OXY . The equations for momen-tum, energy, mass-fraction balance, and continuity read:

∂v ′x
∂t + 1

ρ0
∂P ′
∂x ≡

∂v ′x
∂t + T0

mρ0
∂ρ′
∂x + 1

m
∂T ′
∂x = 0,

∂v ′y
∂t + 1

ρ0
∂P ′
∂y ≡

∂v ′y
∂t + T0

mρ0
∂ρ′
∂y + 1

m
∂T ′
∂y = 0,

∂T ′
∂t + (γ∞ − 1)(T0 ∂v ′x∂x + T0 ∂v ′y∂y −QT

Q0
T0 T ′

−Qρ
Q0
ρ0 ρ′ −QY

Q0
Y0 Y ′

) = 0,
∂Y ′
∂t + 1

Hm

(
QT

Q0
T0 T ′ +Qρ

Q0
ρ0 ρ′ +QY

Q0
Y0 Y ′

) = 0,
∂ρ′
∂t + ρ0

(
∂v ′x
∂x + ∂v ′y

∂y

) = 0,

(3)

where
γ∞ = CP,∞

CV ,∞denotes the frozen adiabatic exponent, and the quantities
QT , Qρ, QY are evaluated in the equilibrium state:

QT = T0
Q0
(
∂Q
∂T

)
T0,ρ0,Y0 ,

Qρ = ρ0
Q0
(
∂Q
∂ρ

)
T0,ρ0,Y0 ,

QY = Y0
Q0
(
∂Q
∂Y

)
T0,ρ0,Y0 .

(4)

In the first two equations in (4), the excess pressure isexpressed in terms of the excess density and temperaturein accordance with the equation of state (i.e., the secondequation in (2)). Studies of motion of infinitely small am-plitude usually begin by representing all perturbations asplanar waves:
ε′(x, y, t) = ε̃(kx , ky) exp [i(ωt − kxx − kyy)] . (5)

Some intermediate steps are necessary to determine theheat capacity under constant pressure, CP , and under con-stant volume, CV . Both of these quantities depend on thefrequency ω,
CP =CP,∞ +mHR

(
∂Y
∂T

)
P
,

CV =CV ,∞ +mHR
(
∂Y
∂T

)
V
.

(6)
They enter the dispersion equation, whose roots deter-mine all possible types of motion in a reacting gas. Fromthe fourth equation in system (3), the following equalitiesarise:(

∂Y
∂T

)
V

=− QT

QY (1 + iωτc) Y0
T0 ,(

∂Y
∂ρ

)
T

=− 1
ρ20
(
∂Y
∂V

)
T

= − Qρ

QY (1 + iωτc) Y0
ρ0 ,

(7)
where V = 1

ρ is the specific gas volume, and
τc = HmY0

Q0QY
(8)

is the characteristic duration of the chemical reaction. Theequation of state (i.e., the second equation in (2)) alongwith the thermodynamic equality(
∂Y
∂T

)
P

= (∂Y∂T
)
V

+ (∂Y∂V
)
T

(
∂V
∂T

)
P
, (9)

result in the following expression(
∂Y
∂T

)
P

= (Qρ −QT )
QY (1 + iωτc) Y0

T0 . (10)
The dispersion equation determining two acoustic (wave)types of motion and three non-wave ones then takes theform:
ω2 (ω3 − i CV ,0

CV ,∞τc
ω2 − c2

∞∆̃ω+ i CP,0
CP,∞τc

c2
∞∆̃) = 0,(11)where ∆̃ = k2

x + k2
y , c∞ = √

γ∞ T0
m is the frozen linearsound velocity (i.e., the one for sound of infinitely largefrequency as compared with the inverse time of the chemi-cal reaction, and infinitely small magnitude), and CP,0 and

CV ,0 denote the low-frequency heat capacities
CP,0 =CV ,∞ (γ∞ + (γ∞ − 1)Q0τc(Qρ −QT )

T0
)
,

CV ,0 =CV ,∞ (1− (γ∞ − 1)Q0τcQT

T0
)
.

(12)
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The approximate roots of the dispersion equation foracoustic branches in one dimension were first derived andadequately studied by Molevich [12]. There are five dis-persion relations in two-dimensional flow: two acousticmodes indexed by 1 and 2 and three non-wave ones. Thethird non-acoustic root describes the relaxation due to thechemical reaction; its approximate value depends on thespatial scale of the perturbation. The last two roots (thefourth denoting the thermal mode and the fifth denotingthe vorticity mode) equal zero,
ω4 = 0, ω5 = 0. (13)

The vorticity mode appears as one of various possibletypes of motions in flows exceeding one dimension. Asfor the two branches of sound, their dispersion relationsdepend on the ratio between the sound period and thecharacteristic duration of the chemical reaction τc .
2.1.1. Dispersion relations for high-frequency soundThe first limiting case pertains to the domain of acousticfrequencies large compared to the inverse duration of thechemical reaction:

1
|ω1,2τc| ≈

1
|c∞
√∆̃τc| ≡ δ∞ � 1. (14)

The condition below reminds us that sound is a wave pro-cess, so that dispersion and attenuation during the soundperiod are small:
|Dδ∞| �

∣∣∣∣CV ,∞CV ,0
∣∣∣∣ , D = (

c2
∞ − c20)
c2
∞

, (15)
where D denotes the dispersion, and

c0 =√CP,0T0
CV ,0m

is the linear sound velocity at very low frequencies. Theinequality (15) is valid if
|Q0 [Qρ + (γ∞ − 1)QT ]| � ∣∣∣∣ γ∞T0

δ∞(γ∞ − 1)τc
∣∣∣∣ . (16)

In view of Eqs. (14) and (15), the leading-order high-frequency acoustic roots of the dispersion equation (11)take the form
ω1 =c∞√∆̃ + iD2 CV ,0

CV ,∞τc
,

ω2 =− c∞√∆̃ + iD2 CV ,0
CV ,∞τc

.
(17)

Amplitudes of excess acoustic quantities increase if
Q0[Qρ + (γ∞ − 1)QT ] > 0, (18)

and decrease otherwise. The inequality (18) determinesthe area of irreversibility of the chemical reaction; it alsoestablishes the following inequality [12]:
c2
∞ − c20 =T0

m

(
CP,∞
CV ,∞

− CP,0
CV ,0

)
=(γ∞ − 1)Q0(Qρ + (γ∞ − 1)QT )T0τc

m(Q0QTτc(γ∞ − 1)− T0) < 0, (19)
if CV ,0 > 0. Thus, the sign of D distinguishes between anequilibrium (positive D) and a non-equilibrium irreversiblechemical reaction (negative D).
2.1.2. Dispersion relations for low-frequency soundIn the other limiting case,

|ω1,2τc| ≈ |c0√∆̃τc| ≡ δ0 � 1, (20)
the approximate acoustic roots of Eq. (11) equal

ω1 =c0√∆̃ + iD2 CP,∞c20τc
CP,0 ∆̃,

ω2 =− c0√∆̃ + iD2 CP,∞c20τc
CP,0 ∆̃. (21)

The terms responsible for attenuation (amplification) ofsound are of second order in the small parameter δ0. Thiscoincides with the general idea about weak attenuationof low-frequency sound (proportional to its square fre-quency) in fluids with standard attenuation.
2.1.3. Definition of modesSubstitution of the approximate roots of the dispersionequation in Eqs. (3) readily produces the relationshipsof the Fourier transforms of the perturbations specific forevery mode. The relations for both acoustic branches de-termined by the roots ω1 and ω2 are the following:

ψ̃i =



ṽx,i

ṽy,i

T̃ ′i

Ỹ ′i

ρ̃′i


=



ωikx∆̃
ωiky∆̃

T0 (γ∞ − 1− (γ∞ − γ0)R̂)
c2∞−c20
H(γ∞−1) R̂
ρ0


ρ̃′i
ρ0 ,

(22)
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where i = 1, 2, and R̂ denotes an integral operator actingon scalar functions φ(x, y, t) as follows:
R̂φ = CV ,0

CV ,∞τc

∫ t

−∞
φe−(t−t′) CV ,0

CV ,∞τc dt′. (23)
The relaxation modes are derived for the two limitingcases, high frequency (δ∞ � 1) and low frequency (δ0 �1), i.e., we will utilize these limits to simplify calculationsof the stimulation of non-acoustic modes in the field ofsound. We still use the nomenclature “high frequency”and “low frequency,” although they actually refer to theregimes c∞√∆̃τc � 1 and c0√∆̃τc � 1:

ψ̃3,h =



ṽx,3
ṽy,3
T̃ ′3
Ỹ ′3
ρ̃′3


h

=



ω3,hkx∆̃
ω3,hky∆̃
−T0
c2∞

H(γ∞−1)
ρ0


ρ̃′3
ρ0 ,

ψ̃3,l =



ω3,lkx∆̃
ω3,lky∆̃

−T0 − m∆̃
(

CV ,0
CV ,∞τc

)2
c2∞

H(γ∞−1) + 1
H(γ∞−1)∆̃

(
CV ,0

CV ,∞τc

)2
ρ0


ρ̃′3
ρ0 ,

ω3,h =i CP,0
CP,∞τc

,

ω3,l =i CV ,0
CV ,∞τc

.

(24)

The relations for the perturbations in the thermal modeare free of partial derivatives with respect to coordinatesand therefore neither refer to the low-frequency nor to thehigh-frequency regime,

ψ̃4 =



ṽx,4
ṽy,4
T̃ ′4
Ỹ ′4
ρ̃′4


=



0
0
−T0

−
c2∞( CP,0

CP,∞
−1)

H(γ∞−1)
ρ0


ρ̃′4
ρ0 . (25)

The same applies also to the vorticity mode. The latter isdetermined by the following relationships:
~∇ · ~v5 = 0, T̃ ′5 = 0, Ỹ ′5 = 0, ρ̃′5 = 0. (26)

The velocity field of the two sound modes and that ofthe third and fourth modes are potential: ~∇ × ~vn = ~0,
n = 1, . . . , 4, and the last mode is rotational in accordancewith Eqs. (26). The overall linear velocity is a sum of allthe individual parts:

~v = 5∑
n=1 ~vn. (27)

The linear flow may be uniquely decomposed into its in-dividual modes at any time. This may be achieved by theuse of a set of matrix projectors. The matrix projectorswere derived and exploited by one of the authors in someproblems of nonlinear hydrodynamics in media with stan-dard absorption [13, 14]. For example, in order to extractthe vorticity part from the overall velocity-vector field, itis sufficient to apply the operator P̃v to the vector of theFourier transforms of the velocity components:
P̃v

 ṽx

ṽy

 = 1̃∆
 k2

y −kxky

−kxky k2
x


 ṽx

ṽy


=
 ṽx,5
ṽy,5

 .

(28)

Pv , operating in (x, y) space, satisfies the equality
Pv∆ =

 ∂2
∂y2 − ∂2

∂x∂y

− ∂2
∂x∂y

∂2
∂x2

 , (29)
where ∆ = ∂2

∂x2 + ∂2
∂y2 denotes the Laplacian operating in(x, y) space.

2.2. The quasi-planar sound, relations for per-
turbations and dynamic equations
In order to simplify the mathematical context and to focuson the physically interesting case of quasi-planar soundpropagating in the direction of the OX axis, let us assumethat all acoustic perturbations vary much faster in the di-rection of the OX axis than along OY : kx � ky. Thisallows us to expand the relations for sound perturbationsin powers of the small parameter

µ = k2
y

k2
x
.

For propagation in the positive OX direction, the leading-order relationships in the high-frequency and low-frequency limits take the form:
744
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v ′x,1(x, y, t)
v ′y,1(x, y, t)
T ′1(x, t)
Y ′1(x, t)
ρ′1(x, t)


h

=



c∞ + c∞2 ∂2
∂y2 ∫ dx ∫ dx + D2 CV ,0

CV ,∞τc

∫
dx

c∞ ∂
∂y
∫
dx

(γ∞ − 1)T0 − T0γ∞D CV ,0
CV ,∞τc

∫
dt

Dc2∞
H(γ∞−1) CV ,0

CV ,∞τc

∫
dt

ρ0


ρ′1
ρ0 ,



v ′x,1(x, y, t)
v ′y,1(x, y, t)
T ′1(x, t)
Y ′1(x, t)
ρ′1(x, t)


l

=



c0 + c02 ∂2
∂y2 ∫ dx ∫ dx − D2 CP,∞c20τc

CP,0 ∂
∂x

c0 ∂
∂y
∫
dx

(γ0 − 1)T0 + T0γ0D CP,∞τc
CP,0 ∂

∂t

Dc2∞
H(γ∞−1)

(1− CV ,∞τc
CV ,0 ∂

∂t

)
ρ0


ρ′1
ρ0 .

(30)

Only terms up to linear order in µ have been kept. We consider the small parameters µ, δ0, δ∞, and M of the sameorder. In view of relations (30), the leading-order equations governing the acoustic excess density of sound propagatingin the positive OX direction are
∂ρ′1
∂t + c∞

∂ρ′1
∂x + c∞2 ∂2

∂y2
∫
ρ′1dx + D2 CV ,0

CV ,∞τc
ρ′1 =0 for high frequencies,

∂ρ′1
∂t + c0 ∂ρ′1∂x + c02 ∂2

∂y2
∫
ρ′1dx − D2 CP,∞c20τc

CP,0
∂2ρ′1
∂x2 =0 for low frequencies. (31)

The propagation equations (31) can not only be deter-mined from Eqs. (30), but also from the dispersion rela-tions (17) and (21) recalling that
√∆̃ = kx + 12 k2

y

kx
+O(µ2) ≈ kx + 12 k2

y

kx
.

3. Equations governing sound and
the vorticity mode in a weakly nonlin-
ear flow

3.1. Second-order nonlinear terms in the hy-
drodynamic system

Because the quadratic nonlinear terms are of importancewhen studying weakly nonlinear flows, only these termswill be considered. At quadratic order in the nonlinearterms, the governing system (1) together with (2) is in two

dimensions readily rearranged into the following system:
∂vx
∂t + T0

mρ0
∂ρ′
∂x + 1

m
∂T ′
∂x + (~v · ~∇)vx

−T0ρ′
mρ20

∂ρ′
∂x + T ′

mρ0
∂ρ′
∂x = 0,

∂vy
∂t + T0

mρ0
∂ρ′
∂y + 1

m
∂T ′
∂y + (~v · ~∇)vy

−T0ρ′
mρ20

∂ρ′
∂y + T ′

mρ0
∂ρ′
∂y = 0,

∂T ′
∂t + (γ∞ − 1)[(T0 + T ′)( ~∇ · ~v)−QT

Q0
T0 T ′

−Qρ
Q0
ρ0 ρ′ −QY

Q0
Y0 Y ′

]+ (~v · ~∇)T ′ = 0,
∂Y ′
∂t + 1

Hm

[
QT

Q0
T0 T ′ +Qρ

Q0
ρ0 ρ′ +QY

Q0
Y0 Y ′

]
+(~v · ~∇)Y ′ = 0,

∂ρ′
∂t + ρ0( ~∇ · ~v) + (~v · ~∇)ρ′ + ρ′( ~∇ · ~v) = 0,

(32)
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where ~∇ in two dimensions denotes
~i ∂∂x + ~j ∂∂y

(~i and ~j are the corresponding basis vectors of unit length).We remark that in Eqs. (32) we have disregarded termsinvolving second-order derivatives of Q, such as
∂2Q
∂T 2 .

This restricts the accuracy of our conclusions.
3.2. Decomposition of the intense-sound and
vorticity-mode equations and acoustic stream-
ing
In studies of weakly nonlinear dynamics, we still workwith linear relations of perturbations in accordance withEqs. (22), (24), (25), and (26), and we will consider everyfield perturbation as a sum of perturbations of different

modes. The main idea is to decompose the equations gov-erning different modes by applying the corresponding pro-jector to the system that includes weakly nonlinear termslike (32) [13, 14]. Every equation includes nonlinear termsof order not lower than M2 pertaining to all modes andreflecting the nonlinear interactions of modes in a weaklynonlinear flow. The solution of the final dynamic equa-tions depends on the contribution of every mode in theoverall field perturbation. Let the propagation of soundin the positive direction be intense in comparison to allother modes. This means that the characteristic amplitudeof the velocity associated with the first branch of sound inthe considered domain is much greater than that of othermodes:
max |v1| � max |vn|, n = 2, . . . , 5. (33)

We will only keep dominant terms corresponding to soundpropagating towards the right in the nonlinear terms in allformulae below. In view of the relations specific for sound,the governing equations for an excess acoustic density(ρa ≡ ρ′1) are at leading order given by

∂ρa
∂t + c∞

√∆ρa − c∞Bρa + 12 [γ∞ρa( ~∇ · ~va) + (~va · ~∇)ρa] = 0,
∂ρa
∂t + c∞

∂ρa
∂x + c∞2 ∂2

∂y2
∫
ρadx − c∞Bρa + (γ∞ + 1)c∞2ρ0

∂ρa
∂x ρa = 0,

∂ρa
∂t + c0√∆ρa − D2 CP,∞c20τc

CP,0 ∆ρa + 12 [γ0ρa( ~∇ · ~va) + (~va · ~∇)ρa] = 0,
∂ρa
∂t + c0 ∂ρa∂x + c02 ∂2

∂y2
∫
ρadx −

D2 CP,∞c20τc
CP,0

∂2ρa
∂x2 + (γ0 + 1)c02ρ0

∂ρa
∂x ρa = 0,

(34)

for the high-frequency, the high-frequency quasi-planar, the low-frequency, and the low-frequency quasi-planar cases,respectively. In these equations, we have abbreviated
B = − D2c∞ CV ,0

CV ,∞τc
. (35)

In order to decompose the dynamical equation for the velocity of the vorticity mode, it is sufficient to apply the matrixoperator Pv , determined by Eq. (29), to the momentum equations (i.e., the first two equations in the system (32)). Asa result, all terms corresponding to the potential velocity vector are reduced in the linear part of equations. On theright-hand side, we keep only acoustic terms. Applying of Pv then yields the dynamic equation for the vorticity mode inthe field of intense sound in these two equivalent forms:
∂~Ω
∂t = 1

ρ0 ~∇×
(
ρa
∂~va
∂t

)
, ∂~vv

∂t = 1
ρ0Pv

(
ρa
∂~va
∂t

)
. (36)
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Here, ~Ω = ~∇×~vv is the vorticity of the flow, with ~vv replacing ~v5. Accounting for Eqs. (22), one finally gets the followingequations in terms of ~vv and ~Ω:
∂~vv
∂t = −2Bc3

∞
ρ20 Pv

[(−→∇ρa) ∫ ρadt
]
, ∂~Ω

∂t = 2Bc3
∞

ρ20 ( ~∇ρa)× ∫ ~∇ρadt,

∂~vv
∂t = 2Bc2

∞
ρ20 Pv

[(−→∇ρa) ∫ ρadx
]
, ∂~Ω

∂t = −2Bc2
∞

ρ20 ( ~∇ρa)× ∫ ~∇ρadx,

∂~vv
∂t = −Dc20

ρ20
CP,∞τc
CP,0 Pv

[( ~∇ρa)∂ρa∂t
]
, ∂~Ω

∂t = Dc20
ρ20

CP,∞τc
CP,0 ( ~∇ρa)× ~∇∂ρa

∂t ,

∂~vv
∂t = Dc30

ρ20
CP,∞τc
CP,0 Pv

[( ~∇ρa)∂ρa∂x
]
, ∂~Ω

∂t = −Dc30
ρ20

CP,∞τc
CP,0 ( ~∇ρa)× ~∇∂ρa

∂x .

(37)

Here, the first, second, third, and fourth line refers to thehigh-frequency, the high-frequency quasi-planar, the low-frequency, and the low-frequency quasi-planar case, re-spectively. In the evaluation of the equations describingthe effects of quasi-planar sound, we have approximated
Pv by the leading terms of a power series in µ accordingto Eq. (28):

Pv ≈

 ∂2
∂y2 ∫ dx ∫ dx − ∂

∂y
∫
dx

− ∂
∂y
∫
dx 1

 . (38)

4. The vorticity mode generated by
periodic sound
The difficulties in the description of the vorticity modecaused by sound are obviously nonlinearity, absorption,and diffraction in both equations governing sound and thevorticity mode. The solution of the planar version of thesecond equation in Eqs. (34) for a periodic transducer,
∂ρa
∂t + c∞

∂ρa
∂x − c∞Bρa + (γ∞ + 1)c∞2ρ0

∂ρa
∂x ρa = 0, (39)

takes the form [2, 5]:
ρa(X, τ) =ρA exp (BshX )

∞∑
n=1

2Jn(nK{exp[BshX ]− 1}) sin (nωτ)
nK{exp[BshX ]− 1} ,

(40)
where τ = t−x

c∞ denotes the retarded time, ω is the soundfrequency,
K =(γ∞ + 1)ωρA2ρ0c∞B ,

xsh = 1
B ln(1 + 1

K

)

is the distance for forming a shock front of sound,
X = x

xsh

is a dimensionless coordinate, and Bsh = Bxsh. Jn denotesthe Bessel function of order n. The solution (40) accountsfor nonlinearity and absorption; it is valid at distancesfrom the transducer within which a saw-like front has notformed yet: 0 6 X < 1. In the case of a weakly diffractingbeam, it can be represented by the following formula:
ρa(X, Y , τ) =ρA exp (BshX − Y 2)

∞∑
n=1

2Jn(nK{exp[BshX ]− 1}) sin (nωτ)
nK{exp[BshX ]− 1} .

(41)
Y = y

L denotes the dimensionless transverse coordinate,where L marks the characteristic transverse width of thesound beam. Substituting the solution (41) into the “high-frequency” equation for Ω (i.e., Eq. (37)), and averagingthe equation over one period of sound 2π
ω , one arrives ata solution for 〈~Ωt〉, which equals the driving force of thevorticity mode averaged over the sound period

〈~Ωt〉 = ω2π
∫ t+ 2π

ω

t

∂~Ω
∂t dt

=2Bc3
∞

ρ20
〈[( ~∇ρa)× ∫ ~∇ρadt

]〉
.

(42)

Considering averaged quantities reduces the problem ofthe generation of the vorticity mode to the problem ofacoustic streaming in its classic meaning. The first twocomponents 〈Ωt,x〉 and 〈Ωt,y〉 are zero, and the third one
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〈Ωt,z〉 is nonzero:
E〈Ωt,z〉 =8Y exp[2(BshX − Y 2)]

K 2{exp[BshX ]− 1}
∞∑
n=1

1
n2 Jn(nK{exp[BshX ]− 1})2, (43)

where
E = ρ20L

ρ2
ADc∞

CV ,∞τc
CV ,0 = − L2M2Bc2

∞
. (44)

Figure 1 shows the distribution of the longitudinal forceof acoustic streaming along the OX axis. We have plotted
〈Ωt,z〉 versus X for different values of K (and thus different
Bsh) and different values of Y . In the evaluations, only thefirst five terms in the series (43) were taken into account.

a b

c d

Figure 1. Longitudinal force of acoustic streaming versus X for different transversal distances from the sound beam Y and differentK (i.e., different
Bsh).

The vorticity 〈Ωz〉 depends on time and may be calculatedby the use of 〈Ωt,z〉 by means of the relation
〈Ωz〉 = (t + π

ω

)
〈Ωt,z〉. (45)

The plots in the Fig. 1 show that the sign of the acous-tic force of streaming depends on the sign of B, whichis apparent from dependence of E on B. Therefore, aninversion of the direction of streamlines occurs in the
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equilibrium regime of a chemical reaction (when B < 0)as opposed to non-equilibrium chemical reactions (when
B > 0). This is the main conclusion of this section. ForGaussian beams, the absolute value of the vorticity pro-duction per unit time, |〈Ωt,z〉|, is maximal for Y = 0.5 and
Y = −0.5, and the streamlines are symmetric with respectto the beam-propagation axis. The absolute value of thevorticity production in the equilibrium regime of a chemi-cal reaction (when B < 0, Figs. 1a and 1c) decreases withthe distance from the transducer, otherwise (when B > 0,Figs. 1b and 1d) it increases. The rate of enhancement orreduction of the absolute value of the vorticity depends on
|K |: it is larger for smaller |K | (and thus for larger valuesof |B|). The absolute value of the mean vorticity |〈Ωz〉|grows linearly with time for any dimensional coordinates
X and Y .
5. Concluding remarks

The objective of this study has been to make possibledetailed evaluations of the vorticity-mode generation bysound (in particular, acoustic streaming) in a chemicallyreacting gas. Acoustic streaming in gases is of greater im-portance than in liquids; its velocity may achieve dozens ofmeters per second. The mean flow associated with stream-ing may transport not only heat perturbations, but alsosolid or fluid particles. It may be governed remotely bysound. Data on the streaming velocity may be useful forinvestigations of chemical reactions that take place in agas. The novelty of this study is the analysis of nonlin-ear phenomena differing from those in a Newtonian fluid.The equations describe sound and are associated withnonlinear phenomena in a gas with excited (reversibly ornot) oscillatory degrees of freedom of molecules [5, 7, 15].These gases are widely used in lasers. It may be con-cluded that our results are applicable to some classesof relaxation processes; although conceptually somewhatdifferent, these processes are described by similar equa-tions. The equations derived in this study (Eqs. (37)) de-scribe the nonlinear generation of the vorticity mode thatis not necessarily associated with acoustic streaming; theyare valid for any sound, including aperiodic, and they arenot averaged. A chemically reacting gas is a dispersivemedium, so that two limits of sound frequencies (as com-pared to the inverse duration of the chemical reaction)were considered.The two-dimensional weakly nonlinear flow of a chem-ically reacting gas was considered in this study. Theinclusion of one more dimension would yield one morevorticity mode and essentially complicate the mathemati-cal content of the study. This would, in fact, not give new

results in comparison with those obtained in the presentstudy. Equations (34) and (36), which describe the dy-namics of sound and the vorticity mode, respectively, werederived within an approximation taking terms up to or-der M2 into account. The accuracy of our conclusionsis restricted because we have neglected second partialderivatives of the heat release Q(ρ, T , Y ). An analysisundertaken by the authors has revealed that the inclusionof higher-order derivatives in Q would result in the sameequation governing streaming, but would yield correctionsto the dynamical equation for the dominant sound mode.Our conclusions are valid in temporally and spatially con-fined domains, where sound remains dominant with respectto other modes (vorticity, entropy, and chemical).It is of importance to note that the attenuation (or am-plification) of sound considered in this study occurs ex-clusively due to the presence of a chemical reaction aswell as the nonlinear generation of the vorticity mode.In particular, the necessary condition of mode interactiondiffers from Newtonian viscosity. Moreover, there existsa regime in the chemical reaction, in which sound is am-plified during its propagation, and the generation of thevorticity mode is different from that in Newtonian flows.This study does not take into account the thermal and vis-cous (standard, Newtonian) attenuation of a reacting gas.The terms reflecting these phenomena (they originate fromthe stress tensor and the energy flux associated with ther-mal conductivity) should complement the momentum andenergy equations in the system (1). The attenuation oflow-frequency sound is ignorable. The equation describ-ing the high-frequency excess density in a planar soundwave, which accounts for the standard attenuation, takesthe form
∂ρa
∂t +c∞ ∂ρa∂x +c∞ (γ∞ + 1)2ρ0 ρa

∂ρa
∂x −c∞Bρa−

b2 ∂2ρa
∂x2 = 0.(46)Here, b = bV + bT is the diffusivity of sound, where

bV = 4η3ρ0
and

bT = κ
( 1
CV ,∞
− 1

CP,∞

)
ρ0 .

The quantities η and κ denote the shear viscosity and thethermal conductivity, respectively. The standard attenua-tion always leads to a linear damping of sound during itspropagation. The balance of the last two terms in Eq. (46)determines the linear amplification or damping of sound:if, for periodic sound,
2c∞B − b ω2

c2
∞
< 0,
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the amplitude of the various sound quantities decrease.Otherwise they increase with time during sound propaga-tion. This is of importance in evaluation of the vorticitymode caused by sound.An important problem to overcome is the transverse spa-tial inhomogeneity of the ambient quantities of the gas,which grows simultaneously with increasing heat power
Q0. Taking into account the background inhomogeneityessentially complicates the mathematical analysis, but itmay lead to new, physically significant conclusions. Thestudy of the spatial inhomogeneity of a gas with excitedinternal degrees of freedom has proved that the area ofnon-equilibrium states of such gas becomes much larger[16, 17]. This may also hold true for a chemically reactinggas.
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