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a b s t r a c t

In the paper we introduce and study a new problem of finding a minimum global edge
alliance in a graph which is related to the global defensive alliance (Haynes et al., 2013;
Hedetniemi, 2004) and the global defensive set (Lewoń et al., 2016).

We proved the NP-completeness of the global edge alliance problem for subcubic
graphs andwe constructed polynomial time algorithms for trees.We found the exact values
of the size of the minimum global edge alliance for certain classes: paths, cycles, wheels,
complete k-partite graphs and complete k-ary trees. Moreover, we proved some lower
bounds for arbitrary graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the following we consider only simple nonempty graphs, and we use standard notations of the graph theory. Let G be
a graph and let X ⊂ V (G). By an open neighborhood of X in graph G we mean the set {v ∈ V (G): ∃u∈X {v, u} ∈ E(G)}, denoted
by NG(X). By a closed neighborhood of X in graph Gwemean set X ∪NG(X), denoted by NG[X]. Set X is a dominating set of G iff
V (G) = NG[X], and X is a total dominating set iff V (G) = NG(X). By γt (G) we denote the size of the minimum total dominating
set in G.

Let S ⊂ V (G). We define for any non-empty subset X of S the predicate SECG,S(X) = true iff |NG[X] ∩ S| ≥ |NG[X] \ S|. In
the following, we use the notation SEC(X) instead of SECG,S(X) if G and S are clearly given.

By G[A], where A ⊂ V (G), we denote a subgraph of G induced by set A, and by G \ A we mean the graph G[V \ A]. For
the sake of notation simplicity, we write NG[v] and NG[v, u] instead of NG[{v}] and NG[{v, u}], respectively, and analogously,
SEC(v) and SEC(v, u). Let degG(v) = |NG(v)| be the degree of a vertex v ∈ V (G). By n(G), ∆(G) and δ(G) we denote the number
of vertices of G, the maximum and the minimum degree of a vertex of G, respectively. By an isolated vertex (in a graph G)
we mean a vertex v ∈ V (G) with degG(v) = 0, and by an isolated edge (in a graph G) we mean an edge {u, v} such that
degG(u) = degG(v) = 1. Set X ⊂ V (G) is an independent set iff each vertex of X is isolated in G[X]. By a pendant vertex we
mean a vertex of degree 1. We call each neighbor of a pendant vertex in a tree a support vertex. Let diam(G) = max{dG(v, u):
u, v ∈ E(G)}, where dG(v, u) is the length of a shortest path in G between v and u.

Let S ⊂ V (G) for a given graph G. Set S is an edge alliance in G iff G[S] has no isolated vertices and for each edge
e = {v, u} ∈ E(G[S]) we have SEC(v, u) = true. An edge alliance S is a global edge alliance in G if it also dominates G. By
γea(G) we denote the size of the minimum global edge alliance in graph G.
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Fig. 1. The examples of the global alliance number and the global edge alliance number: (a) γa = 2 < γea = 3 and (b) γea = 3 < γa = 5.

1.1. Related problems and our contribution

A set S is a defensive alliance (or alliance) iff for each vertex v ∈ S we have SEC(v) = true. If S is also a dominating set of
G, we say that S is a global defensive alliance (or global alliance). By γa(G) we mean the size of the minimum global alliance
in G. The concept of alliances and global alliances in graphs is due to [16] and [15]. The problem has certain interesting
applications in web communities [12] or fault-tolerant computing [22].

In [15] the authors proved bounds on theminimum global alliance for general graphs (lower bounds:
√
4n+1−1

2 and n
⌈

∆
2 ⌉+1

,

upper bound: n − ⌈
δ
2⌉), for bipartite graphs (lower bound: ⌈

2n
∆+3⌉), and trees (lower bound: n+2

4 , upper bound: 3n
5 ). For the

other bounds on trees, see [1,2,8]. The exact values of the minimum global alliance were given in [15] for complete graphs,
complete bipartite graphs, cycles, paths and wheels, for k-ary trees (k ∈ {2, 3, 4}) in [6], and independently in [14] (for
k ∈ {2, 3}), and for star graphs in [17]. In [5] the authors proved the NP-completeness of the minimum global alliance
problem for general graphs, in [18] the author proved it for bipartite or chordal graphs, and in [20] the authors proved
NP-completeness for subcubic bipartite planar graphs. In [21] the authors study the problem of finding two disjoint global
alliances in graphs.

Set S is a defensive set in G iff for each vertex v ∈ S we have: SEC(v) = true or there exists a neighbor u ∈ S of v
(i.e. {v, u} ∈ E(G)) such that SEC(v, u) = true. If S is also a dominating set of G, we say that S is a global defensive set. By
γds(G) we denote the size of the minimum global defensive set in G. The concept of defensive sets introduced and studied
in [20] arises from the concept of alliances, but is a kind of relaxation of the alliance problem. In [20] the authors proved
the NP-completeness of the minimum global defensive set problem for subcubic bipartite planar graphs, they constructed
polynomial time algorithm for trees, and proved some bounds on γds.

Set S is a secure set in G iff ∀X⊂SSEC(X) = true. The concept of secure sets was introduced in [3] and studied in certain
papers, e.g., [4,9–11].

In the paper we introduce and study the global edge alliance problem. The concept of edge alliance arises from the idea of
alliances and it is a restriction of defensive sets. In the alliance problem a vertex being under an attack (say x) can be defended
by itself and some of its neighbors, and it is possible iff SEC(x) = true. In the defensive set problem [20], if SEC(x) = false,
we allow one of the neighbors of x, say y, to join ‘the war’, i.e., an attack can be simultaneously done on two vertices x and
y, and in that case each attack on x and y can be defended, whenever SEC(x, y) = true. In the edge alliance problem, instead
of defending the nodes, we defend the links between them, i.e., the structure being under an attack is an edge which can be
defended by its end vertices and some of their neighbors. Note that an edge alliance is a defensive set.

We prove the NP-completeness of the global edge alliance problem for subcubic graphs and we construct polynomial
time algorithm for trees. We find the exact values of the size of the minimum global edge alliance for certain classes: paths,
cycles, wheels, complete k-partite graphs and complete k-ary trees. We prove the lower bound for arbitrary graphs.

2. Bounds on the minimum global edge alliance

By Gea(G) we denote {S ⊂ V (G): S is a global edge alliance of G}. If δ(G) ≥ 1, then Gea(G) ̸= ∅.
Let G be a graph with δ(G) ≥ 1, and let S ⊂ V (G) be a global edge alliance. Since S is a dominating set of G and G[S] has

no isolated vertices, we have that S is a total dominating set of G. Moreover, S is a global defensive set. Thus,

Proposition 2.1. Let G be a graph with δ(G) ≥ 1. Then,

γea(G) ≥ max{γds(G), γt (G)}. □

There is no such a relation, in general, between the global alliance number and the global edge alliance number, which is
shown in Fig. 1. For subcubic graphs with δ ≥ 2 by [15] we have that γt = γa. Thus,

Proposition 2.2. Let G be a graph with δ(G) ≥ 2 and ∆(G) ≤ 3. Then,

γea(G) ≥ γa(G). □

Following [20], we prove the lower bound on γea for arbitrary graphs. By ν(G) wemean the size of themaximummatching
in graph G (i.e., set of edges no two of which have a common end). For a given global edge alliance S in graph G, by νS(G) we
mean ν(G[S]). Finally, let us define by νea(G) = max{νS(G): S ∈ Gea(G) ∧ γea(G) = |S|}.
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Theorem 2.1. Let G be a graph with δ(G) ≥ 1. Then,

γea(G) ≥

√
4n(G) + (νea(G) − 1)2 + νea(G) − 1

2
.

Proof. Let S be any global edge alliance such that |S| = γea(G) and νea(G) = νS(G), and let V = V (G), n = n(G), s = |S|
and ν = νea(G). Obviously, ν > 0. The thesis is equivalent to s2 − (ν − 1)s − n ≥ 0. Let us assume to the contrary that
s2 − (ν − 1)s − n < 0. Since S is a total dominating set of Gwe have |NG[S] ∩ (V \ S)| = |V \ S| = n − s > s2 − νs.

On the one hand, let M = {{vi, ui} : i ∈ {1, . . . , ν}} be a maximum matching in G[S], and let U =
⋃ν

i=1 {vi, ui}.
Since SEC(vi, ui) = true, we have that |NG[vi, ui] ∩ (V \ S)| ≤ |NG[vi, ui] ∩ S| ≤ s. Hence, by |NG[S \ U] ∩ (V \ S)| +∑ν

i=1 |NG[vi, ui] ∩ (V \ S)| ≥ |(NG[S \ U] ∪
⋃ν

i=1 NG[vi, ui]) ∩ (V \ S)| = |V \ S| > s2 − νs, we get |NG[S \ U] ∩ (V \ S)| >
s(s − 2ν).

On the other hand, since for every w ∈ S there is u ∈ S such that {w, u} ∈ E(G[S]) and SEC(w, u) = true, we have that
|NG[w] ∩ (V \ S)| ≤ |NG[w, u] ∩ (V \ S)| ≤ |NG[w, u] ∩ S| ≤ s. Thus, |NG[S \ U] ∩ (V \ S)| ≤

∑
w∈S\U |NG[w] ∩ (V \ S)| ≤

s(s − 2ν), a contradiction. □

Following [20], let us observe that for any r ≥ 1 and l ≥ r there is a graph G with n(G) = l + r + l(l + r) vertices and
νea(G) = r such that the lower bound proved in Theorem 2.1 is tight. Let G = K ∗

r,l be the graph obtained from the complete
bipartite graph Kr,l by attaching l+ r vertices to each vertex of the part with l vertices. It is easy to notice that γea(G) = l+ r
and γ 2

ea(G) − γea(G)(νea(G) − 1) = n(G).

Proposition 2.3. Let G be a graph with δ(G) ≥ 1. Then,

νea(G) ≥ ⌈
diam(G) + 1

5
⌉.

Proof. Let d = diam(G), and let v and u be vertices of G such that dG(v, u) = d. Let Ai = {w ∈ V (G): dG(v, w) = i}, for
i ∈ {0, . . . , d}. Obviously, A0 = {v} and u ∈ Ad. Let us observe that for each edge {x, y} ∈ E(G), if x ∈ Ai and y ∈ Aj, then
|i − j| ≤ 1.

Let S ⊂ V (G) be a global edge alliance of G such that γea(G) = |S|. Since S is a total dominating set we have S ∩ A1 ̸= ∅

and there is {v0, u0} ∈ E(G) such that {v0, u0} ⊂ S ∩ (A0 ∪ A1 ∪ A2). If d ≤ 4, the thesis holds.
Let d = 5k + i, where k ≥ 1 and 0 ≤ i ≤ 4. Let us observe that for each l ∈ {0, . . . , d − 2}, S ∩ (Al ∪ Al+1 ∪ Al+2) ̸= ∅.

Thus, for each j ∈ {1, . . . , k − 1} there is an edge {vj, uj} ∈ E(G) such that {vj, uj} ⊂ S ∩ (A5j−2 ∪ A5j−1 ∪ A5j ∪ A5j+1 ∪ A5j+2).
If j = k, then there is an edge {vk, uk} ∈ E(G) such that {vk, uk} ⊂ S ∩ (A5k−2 ∪ A5k−1 ∪ A5k ∪ · · · ∪ A5k+i).

Since {{v0, u0}, . . . , {vk, uk}} is the matching in G[S], we have νea(G) ≥ νS(G) ≥ k + 1 = ⌈
diam(G)+1

5 ⌉. □

Corollary 2.4. Let G be a graph with δ(G) ≥ 1. Then,

γea(G) ≥

√
4n(G) + (⌈diam(G)+1

5 ⌉ − 1)2 + ⌈
diam(G)+1

5 ⌉ − 1

2
. □

3. Global edge alliance of certain graph classes

In this section we give the exact formulas for the global edge alliance number of the following classes: paths, cycles,
wheels, complete multipartite graphs and complete k-ary trees.

Let G be a graph with δ(G) ≥ 1 and ∆(G) ≤ 2. Hence, we have that |NG[u, v] \ {u, v}| ≤ 2 for each {u, v} ∈ E(G), and so
γea(G) = γt (G). Thus,

Proposition 3.1. Let G be a path of order n ≥ 2 or a cycle of order n ≥ 3. Then,

γea(G) =

{ n
2AMZ@Pif 4 | n,
⌊
n
2⌋ + 1AMZ@Potherwise. □

Let us recall that bywheelWk (k ≥ 3)wemean a graph obtained from cycle Ck by adding the central vertex vc and joining it
with all other vertices of the cycle Ck. Hence, we have |NWk [vc]| = |V (Wk)| = k+1,∆(Wk) = k and for each v ∈ V (Wk)\ {vc}

we have degWk
(v) = 3.

Proposition 3.2. Let G be a wheel of order n. Then,

γea(G) = ⌈
n
2
⌉.

Proof. Let G be a wheel of order n. If n = 4, then γea(G) = 2. Let n ≥ 5 and let vc ∈ V (G) be the central vertex of wheel G. Let
S ⊂ V (G) be any global edge alliance of G. If vc ∈ S, then there is v ∈ V (G) \ {vc} such that v ∈ S. Hence, NG[v, vc] = V (G),
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so |S| ≥ ⌈n/2⌉. Let vc /∈ S. For each {v, u} ∈ E(G[S]) we have |NG[v, u] \ {v, u}| = 3, so |S ∩ NG[u, v]| ≥ 3. Hence, each
connected component of graph G[S] has at least three vertices. Since S is a dominating set of G, we have |S| ≥ ⌈3(n − 1)/5⌉.
Thus, |S| ≥ min{⌈n/2⌉, ⌈3(n − 1)/5⌉} = ⌈n/2⌉. Take any S ⊂ V (G) such that vc ∈ S and |S ∩ V (G)| = ⌈n/2⌉. Thus, S is a
global edge alliance and γea(G) = ⌈

n
2⌉. □

Theorem 3.1. Let G be a complete multipartite graph of order n ≥ 3. Then,

γea(G) = ⌈
n
2
⌉.

Proof. Let G be a complete multipartite graph of order n ≥ 3. For each edge {u, v} ∈ E(G) we have NG[u, v] = V (G). Let
S ⊂ V (G) be any global edge alliance ofG, and let {u, v} ∈ E(G[S]). Then, SEC(u, v) ⇔ |V (G) ∩ S| ≥ |V (G) \ S| ⇔ |S| ≥ ⌈n/2⌉.
Thus, γea(G) ≥ ⌈n/2⌉.

Let V (G) = V1 ∪ · · · ∪ Vk, where k ≥ 2, and all Vi are maximal independent sets and pairwise disjoint. Let ri = |Vi|, for
each i ∈ {1, . . . , k}. If for each i ∈ {1, . . . , k} an integer ri is even, then let S ⊂ V (G) be any set such that |S ∩ Vi| = ri/2. Thus,
S is a global edge alliance and |S| = n/2.

Without loss of generality, let us assume that r1, . . . , rl are odd integers, and rl+1, . . . , rk are even integers, for some
1 ≤ l ≤ k. Take any S ⊂ V (G) such that |S ∩ Vi| = ⌈ri/2⌉ for each i ∈ {1, . . . , ⌈l/2⌉}, |S ∩ Vi| = ⌊ri/2⌋ for each
i ∈ {⌈l/2⌉ + 1, . . . , l}, and |S ∩ Vi| = ri/2 for each i ∈ {l + 1, . . . , k}. Hence, δ(G[S]) ≥ 1 and |S| = ⌈n/2⌉. Thus, S is a
global edge alliance. □

3.1. Complete k-ary trees

Let us remind that the exact formulas for the minimum global alliance of complete k-ary trees are known only for
k ∈ {2, 3, 4} [6]. In this section we give the exact formulas for the minimum global edge alliance of complete k-ary trees for
arbitrary k ≥ 2.

Let δ(G) ≥ 1 and A ⊂ V (G). By γea(G, A) we mean min{|S ∩ A|: S ∈ Gea(G)}.

Observation 3.3. Let G be a graph with δ(G) ≥ 1, and let Ai ⊂ V (G), for i ∈ {1, . . . , p}, where p ≥ 1. If sets A1, . . . , Ap are
pairwise disjoint, then

p∑
i=1

γea(G, Ai) ≤ γea(G,

p⋃
i=1

Ai) ≤ γea(G). □

By a complete k-ary tree of height h, k ≥ 2, h ≥ 1 (both integers), denoted by T h
k , we mean a tree with a vertex set and

an edge set, respectively,

V (T h
k ) = {v0

1, v
1
1, . . . , v

1
k , v

2
1, . . . , v

2
k2 , . . . , v

h−1
1 , . . . , vh−1

kh−1 , v
h
1, . . . , v

h
kh},

E(T h
k ) =

h−1⋃
l=0

kl⋃
i=1

i·k⋃
j=(i−1)k+1

{{vl
i, v

l+1
j }}.

Let T = T h
k . Let us observe that degT (v0

1) = k, and for each i ∈ {1, . . . , h} and j ∈ {1, . . . , ki}, dT (v0
1, v

i
j) = i and, if i ̸= h,

degT (vi
j) = k+ 1. Set of all leaves in T is {vh

1, . . . , v
h
kh

}, and dT (v0
1, v

h
j ) = h, for each j ∈ {1, . . . , kh}. By r(T ) we mean the only

vertex of degree k in T .
For each l ∈ {0, . . . , h}, let us define Ll = {vl

1, . . . , v
l
kl
} (obviously, Ll = {v ∈ V (T ): dT (v, r(T )) = l}) and let Lh+i = ∅,

for i ≥ 1. Let v ∈ Lp, for some p ∈ {0, . . . , h}. By C(T , v) we mean NT (v) ∩ Lp+1, and for each A ⊂ V (G), by C(T , A)
we mean

⋃
v∈A C(T , v). Obviously, |C(T , v)| = k, and C(T , Lh) = ∅. Let us define C0(T , v) = {v}, and for each l ≥ 1, let

C l(T , v) = C(T , C l−1(T , v)). Let T l
v = T [

⋃l
i=0 C

i(T , v)], and Tv = T h−p
v .

Lemma 3.4. Let T = T h
k , h ≥ 2, k ≥ 2, and let l ∈ {1, 2, 3}. Then,

γea(T , V (T l−1
r(T ))) ≥

kl−1
− 1

k − 1
.

Proof. Let r = r(T ). If l ≤ 2, then the thesis is obvious. Let l = 3 and S ∈ Gea(T ). If r ∈ S, then there is u ∈ L1 ∩ S. Since
SEC(r, u) = true and |NT [{r, u}]| = 2k+1, |NT [{r, u}] ∩ S| ≥ k+1. Hence, γea(T , V (T 2

r )) ≥ k+1. If r /∈ S, then for each u ∈ L1,
γea(T , V (T 1

u )) ≥ 1. Since NT [r] ∩ S ̸= ∅, there is u ∈ L1 ∩ S. Since NT [u] ∩ S ̸= ∅, |S ∩ V (T 1
u )| ≥ 2. Thus, by Observation 3.3,

γea(T , V (T 2
r )) ≥

∑
u∈L1

γea(T , V (T 1
u )) ≥ k + 1. □

Lemma 3.5. Let T = T h
k , h ≥ 2, k ≥ 2. Then,

γea(T , Lh−2 ∪ Lh−1 ∪ Lh) ≥ (k + 1)kh−2.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


R. Lewoń, A. Małafiejska, M. Małafiejski et al. / Discrete Applied Mathematics 261 (2019) 305–315 309

Fig. 2. Subgraphs of T h
k discussed in Lemmas 3.5 (a) and 3.6 (b).

Proof. Let v ∈ Lh−2, and let L = C2(T , v) and U = C1(T , v) (see Fig. 2(a)). Let S ∈ Gea(T ). Since L ⊂ Lh and NT (L) = U , U ⊂ S.
If v ∈ S, then |S ∩ V (Tv)| ≥ k + 1. If v /∈ S, then for each u ∈ U , |S ∩ V (Tu)| ≥ 2. Thus, γea(T , V (Tv)) ≥ k + 1.

Since |Lh−2| = kh−2, and
⋃

v∈Lh−2
V (Tv) = Lh−2 ∪ Lh−1 ∪ Lh, by Observation 3.3 we get the thesis. □

Lemma 3.6. Let T = T h
k , h ≥ 5, k ≥ 2. For each l ∈ {0, . . . , h − 5},

γea(T , Ll ∪ Ll+1 ∪ Ll+2 ∪ Ll+3) ≥ (k + 1)kl.

Proof. Let l ∈ {0, . . . , h − 5} and v ∈ Ll. Let B = C3(T , v), M = C2(T , v) and U = C1(T , v) (see Fig. 2(b)). Let S ∈ Gea(T ).
Since NT (M) = B ∪ U , for each u ∈ U , |S ∩ V (T 2

u )| ≥ 1. If v ∈ S, then |S ∩ V (Tv)| ≥ k + 1. If v /∈ S, then for each u ∈ U ,
|S ∩ V (T 2

u )| ≥ 2. Thus, γea(T , V (Tv)) ≥ k + 1.
Since |Ll| = kl, and

⋃
v∈Ll

V (T 3
v ) = Ll ∪ Ll+1 ∪ Ll+2 ∪ Ll+3, by Observation 3.3 we get the thesis. □

Lemma 3.7. Let T = T h
k , h = 4p + 2, p ≥ 0, k ≥ 2. Then,

γea(T ) = (k + 1)
kh+2

− 1
k4 − 1

.

Proof. Let Ai = L4i ∪ L4i+1 ∪ L4i+2 ∪ L4i+3, for each i ∈ {0, . . . , p − 1}, and let Ap = L4p ∪ L4p+1 ∪ L4p+2. By Observation 3.3
and by Lemmas 3.5 and 3.6, γea(T ) ≥

∑p
i=0 γea(T , Ai) = (k + 1)

∑p
i=0 k

4i
= (k + 1) k

h+2
−1

k4−1
.

Let S =
⋃p

i=0(L4i ∪ L4i+1). Since S ∈ Gea(T ) and |S| = (k + 1) k
h+2

−1
k4−1

, γea(T ) = |S|. □

Lemma 3.8. Let T = T h
k , k ≥ 2, and let h = q + 4p + 2 ≥ 2, where q ∈ {1, 2, 3} and p ≥ 0. Then,

γea(T ) =
kq−1

− 1
k − 1

+ (k + 1)
kh+2

− kq

k4 − 1
.

Proof. Let h = q + 4p + 2 ≥ 2, where q ∈ {1, 2, 3} and p ≥ 0. Let r = r(T ). Let Ai = Lq+4i ∪ Lq+4i+1 ∪ Lq+4i+2 ∪ Lq+4i+3, for
each i ∈ {0, . . . , p − 1}, and let Ap = Lq+4p ∪ Lq+4p+1 ∪ Lq+4p+2. Since V (T ) = V (T q−1

r ) ∪
⋃p

i=0 Ai, by Observation 3.3 and by
Lemmas 3.4 and 3.7 we get γea(T ) ≥

kq−1
−1

k−1 + (k + 1) k
h+2

−kq

k4−1
.

Let Ŝ =
⋃p

i=0(Lq+4i ∪ Lq+4i+1). Let S1 = ∅, S2 = {u}, where u ∈ NT (r), and S3 = V (T 1
r ). Let us observe that for each

q ∈ {1, 2, 3}, S = Ŝ ∪ Sq ∈ Gea(T ), and |S| =
kq−1

−1
k−1 + (k + 1) k

h+2
−kq

k4−1
. Thus, γea(T ) = |S|. □

By Lemmas 3.7 and 3.8 we conclude

Theorem 3.2. Let T = T h
k , h ≥ 2, k ≥ 2. Then,

1. if h ≡ 0 mod 4, then γea(T ) =
k+1
k4−1

(kh+2
− k2) + 1,

2. if h ≡ 1 mod 4, then γea(T ) =
k+1
k4−1

(kh+2
− k3) + k + 1,

3. if h ≡ 2 mod 4, then γea(T ) =
k+1
k4−1

(kh+2
− 1),

4. if h ≡ 3 mod 4, then γea(T ) =
k+1
k4−1

(kh+2
− k). □

4. NP-completeness for subcubic graphs

In this section we prove theNP-completeness of the global edge alliance problem for subcubic graphs, by the reduction
from the NP-complete 3DM problem [13].
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Fig. 3. Graph Cv replacing vertex v ∈ V of degree 2. Note that pv, qv /∈ V (Cv), but pv ∈ V (Hp), qv ∈ V (Hq).

Fig. 4. Graph Dv replacing vertex v ∈ V of degree 3. Note that pv, qv, rv /∈ V (Dv), but pv ∈ V (Hp), qv ∈ V (Hq), rv ∈ V (Hr ).

3DM

Instance: A subcubic bipartite graph G = (V ∪ Q , E) without pendant vertices, where V and Q is a
bipartition of G, V = X ∪ Y ∪ Z , |X | = |Y | = |Z | = m, |V | = 3m. For each vertex q ∈ Q ,
degG(q) = 3 and q is adjacent to exactly one vertex from each X, Y and Z , and for each vertex
v ∈ V , degG(v) ∈ {2, 3}.

Question: Is there a subset Q ′
⊂ Q of cardinality |Q ′

| = m dominating all vertices in V , i.e., NG(Q ′) = V?

Theorem 4.1. The global edge alliance problem for subcubic graphs is NP-complete.

Proof. The proof proceeds by the reduction from the problem 3DM. Let G = (V ∪ Q , E) be a subcubic bipartite graph with
bipartition V andQ , such that V = X∪Y ∪Z , |X | = |Y | = |Z | = m, |V | = 3m, and |Q | = t . For each vertex q ∈ Q , degG(q) = 3
and q is adjacent to exactly one vertex from each of the sets X, Y and Z , and for each vertex v ∈ V , degG(v) ∈ {2, 3}. Let
Vi = {v ∈ V : degG(v) = i}, and mi = |Vi|, for i ∈ {2, 3}. We construct a subcubic graph G∗ such that there is a subset
Q ′

⊂ Q of cardinality |Q ′
| = m dominating all vertices in V iff there is a global edge alliance S in graph G∗ such that

|S| ≤ 2m2 + 5m3 + 9t .
We shall transform (in polynomial time) graph G into graph G∗ in four steps:

(S1) each v ∈ V2, where NG(v) = {p, q} ⊂ Q , replace with graph Cv (Fig. 3),
(S2) each v ∈ V3, where NG(v) = {p, q, r} ⊂ Q , replace with graph Dv (Fig. 4),
(S3) each q ∈ Q , where NG(q) = {x, y, z} ⊂ V and x ∈ X, y ∈ Y , z ∈ Z , replace with graph Hq (Fig. 5),
(S4) each {v, q} ∈ E(G), where v ∈ V , q ∈ Q , replace with edge {vq, qv} ∈ E(G∗).

Formally, all graphs {Cv}v∈V2 are isomorphic and pairwise vertex disjoint (analogously, {Dv}v∈V3 and {Hq}q∈Q ), so

V (G∗) =

⋃
v∈V2

V (Cv) ∪

⋃
v∈V3

V (Dv) ∪

⋃
q∈Q

V (Hq)

E(G∗) =

⋃
v∈V2

E(Cv) ∪

⋃
v∈V3

E(Dv) ∪

⋃
q∈Q

E(Hq) ∪

⋃
v∈V ,q∈Q ,{v,q}∈E(G)

{{vq, qv}}

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


R. Lewoń, A. Małafiejska, M. Małafiejski et al. / Discrete Applied Mathematics 261 (2019) 305–315 311

Fig. 5. Graph Hq replacing vertex q ∈ Q . Note that xq, yq, zq /∈ V (Hq).

It is easy to observe that ∆(G∗) ≤ 3.
(⇒) Suppose thatQ ′

⊂ Q dominates all vertices in V and |Q ′
| = m. Since |X | = |Y | = |Z | = m, we have |NG(v) ∩ Q ′

| = 1,
for each v ∈ V . Hence, let {q(v)} = NG(v) ∩ Q ′, for each v ∈ V . Moreover, if v ∈ V2, then let {p(v)} = NG(v) ∩ (Q \ Q ′) and
if v ∈ V3, then let {p(v), r(v)} = NG(v) ∩ (Q \ Q ′). For each q ∈ Q , if NG(q) = {x, y, z} ⊂ V and x ∈ X, y ∈ Y , z ∈ Z , then let
Q+
q = {qx, qy, qz, q3, q4, q9, q10, q15, q16} ⊂ V (Hq) and Q−

q = {q1, q2, q3, q7, q8, q9, q13, q14, q15} ⊂ V (Hq) (see Fig. 5). Let

S =

⋃
v∈V2

{v1, vq(v)} ∪

⋃
v∈V3

{vq(v), bvq(v), uvp(v), vp(v)r(v), uvr(v)} ∪

⋃
q∈Q ′

Q+

q ∪

⋃
q∈Q\Q ′

Q−

q .

For each v ∈ V2, set {v1, vq(v)} ⊂ V (Cv) is a dominating set of Cv , and for each v ∈ V3, set {vq(v), bvq(v), uvp(v), vp(v)r(v), uvr(v)}

⊂ V (Dv) is a dominating set of Dv . If q ∈ Q ′, then Q+
q is a dominating set of Hq, and if q ∈ Q \ Q ′, then Q−

q is a dominating
set of Hq. Thus, S is a dominating set of G∗.

Each edge of G∗
[S] belongs to the one graph from {Cv}v∈V2 ∪ {Dv}v∈V3 ∪ {Hq}q∈Q , or is equal to {vq, qv} for some q ∈ Q ′

and v ∈ V .
Let e ∈ E(G∗

[S]). If e is one of the edges {q3, q4}, {q9, q10} or {q15, q16} for some q ∈ Q ′, then SEC(e) = true. Otherwise, e is
not an isolated edge in G∗

[S]. Thus, by ∆(G∗) ≤ 3, we have that S is a global edge alliance, and |S| ≤ 2m2 + 5m3 + 9|Q ′
| +

9|Q \ Q ′
| = 2m2 + 5m3 + 9t .

(⇐) Let S be any global edge alliance of G∗ such that |S| ≤ 2m2 +5m3 +9t . In the following we refer to the notation from
Figs. 3–5.

Claim 4.1. For each v ∈ V2, |S ∩ V (Cv)| ≥ 2. Moreover, if |S ∩ V (Cv)| = 2, then |S ∩ {vp, vq}| = 1, and, {v1, vp, pv} ⊂ S or
{v1, vq, qv} ⊂ S, where NG(v) = {p, q}.

Proof. Let v ∈ V2, and let NG(v) = {p, q}. Since S is a total dominating set of G∗, v1 ∈ S. If v3 ∈ S, then |NG∗ [v2] ∩ S| ≥ 1
and |S ∩ V (Cv)| ≥ 3. Otherwise, vp ∈ S or vq ∈ S. Since S is an edge alliance, pv ∈ S and qv ∈ S. Thus, {v1, vp, pv} ⊂ S or
{v1, vq, qv} ⊂ S. □

Claim 4.2. For each v ∈ V3, |S ∩ V (Dv)| ≥ 5. Moreover, if |S ∩ V (Dv)| = 5, then |S ∩ {vp, vq, vr}| = 1, and, {bvp, vp, pv} ⊂ S
or {bvq, vq, qv} ⊂ S or {bvr , vr , rv} ⊂ S, where NG(v) = {p, q, r}.

Proof. Let v ∈ V3 and NG(v) = {p, q, r}. Let us remind that S is a global edge alliance.
Suppose {bvp, bvq, bvr}∩S = ∅. Hence, {vp, vq, vr} ⊂ S. If v1 ∈ S, then there is u ∈ NG∗ [v1]∩S such that |S ∩ NG∗ [u]| ≥ 3.

Thus, |S ∩ V (Dv)| ≥ 6. Let v1 /∈ S, and let us assume without loss of generality that vpr ∈ S. If |NG∗ [vpr ] ∩ S| ≥ 3, then
|S ∩ V (Dv)| ≥ 6. Let |NG∗ [vpr ] ∩ S| = 2. If uvr ∈ S (uvp ∈ S, analogously), then NG∗ [vpq] ∩ S ̸= ∅. Thus, |S ∩ V (Dv)| ≥ 6.

Suppose S ∩ {bvp, bvq, bvr} ̸= ∅. If |S ∩ {bvp, bvq, bvr}| ≥ 2, then analogously to the case S ∩ {bvp, bvq, bvr} = ∅ we get
|S ∩ V (Dv)| ≥ 6. Thus, without loss of generality, let us assume that bvq ∈ S and S ∩ {bvp, bvr} = ∅. Hence, vq ∈ S and we
consider two cases uvq ∈ S or qv ∈ S. Let U = NG∗ [vpr ] and U1 = NG∗ [U].

Let {bvq, vq, uvq} ⊂ S. If vpr ∈ S, then |S ∩ U1| ≥ 3. Since {bvq, vq, uvq} ∩U1 = ∅, we have |S ∩ V (Dv)| ≥ 6. So, let vpr /∈ S.
Let us observe that S ∩ {vpq, vqr} ̸= ∅. If {vpq, vqr , v1} ⊂ S, then |S ∩ V (Dv)| ≥ 6. If vqr /∈ S (vpq /∈ S, analogously), then
vpq ∈ S and |S ∩ NG∗ [{vpr , uvr}]| ≥ 2. Thus, |S ∩ V (Dv)| ≥ 6. So, let S ∩ {vpq, vqr , v1} = {vpq, vqr}. Since S ∩ U ̸= ∅, we have
|S ∩ V (Dv)| ≥ 6.
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Let {bvq, vq, qv} ⊂ S, and let U2 = NG∗ [U1] ∩ V (Dv). Since S ∩ U ̸= ∅ and U2 ∩ {bvq, vq} = ∅, we have |S ∩ U2| ≥ 3. Thus,
|S ∩ V (Dv)| ≥ 5. □

Claim 4.3. For each q ∈ Q , |S ∩ V (Hq)| ≥ 9.

Proof. Let q ∈ Q and NG(q) = {x, y, z}, where x ∈ X, y ∈ Y , z ∈ Z . Let us remind that S is a global edge alliance. We prove
that |S ∩ {qx, q1, q2, q3, q16, q17, q18}| ≥ 3. Let qx ∈ S and |S ∩ {q2, q17}| ≤ 1. If q2 ∈ S (q17 ∈ S, analogously), then q1 ∈ S or
q3 ∈ S. If S ∩ {q2, q17} = ∅, then S ∩ {q1, q3} ̸= ∅ and S ∩ {q16, q18} ̸= ∅. Let qx /∈ S. If q1 ∈ S (q18 ∈ S, analogously), then
there is u ∈ NG∗ [q1] such that |S ∩ NG∗ [u]| ≥ 3. If S ∩ {q1, q18} = ∅, then {q2, q17} ⊂ S, and so S ∩ {q3, q16} ̸= ∅. Analogously,
we have |S ∩ {qy, q4, q5, q6, q7, q8, q9}| ≥ 3 and |S ∩ {qz, q10, q11, q12, q13, q14, q15}| ≥ 3. Thus, |S ∩ V (Hq)| ≥ 9. □

Claim 4.4. |S| = 2m2 + 5m3 + 9t, and

(i) For each v ∈ V2, |S ∩ V (Cv)| = 2. Moreover, |S ∩ {vp, vq}| = 1 and {vu, uv} ⊂ S for exactly one u ∈ NG(v) = {p, q}.
(ii) For each v ∈ V3, |S ∩ V (Dv)| = 5. Moreover, |S ∩ {vp, vq, vr}| = 1 and {vu, uv} ⊂ S for exactly one u ∈ NG(v) = {p, q, r}.
(iii) For each q ∈ Q , |S ∩ V (Hq)| = 9. Moreover, {qx, qy, qz, xq, yq, zq} ⊂ S or S ∩ {qx, qy, qz, xq, yq, zq} = ∅, where

NG(q) = {x, y, z}.

Proof. Since |S| ≤ 2m2 + 5m3 + 9t , by Claims 4.1–4.3 we have that |S| = 2m2 + 5m3 + 9t , and the properties (i) and (ii)
hold.

(iii). Let q ∈ Q and NG(q) = {x, y, z}, where x ∈ X, y ∈ Y , z ∈ Z . Since |S| = 2m2 + 5m3 + 9t , we have by properties (i)
and (ii) that |S ∩ V (Hq)| = 9. From the proof of Claim 4.3 we have

|S ∩ {qx, q1, q2, q3, q16, q17, q18}| = 3 (1)
|S ∩ {qy, q4, q5, q6, q7, q8, q9}| = 3 (2)

|S ∩ {qz, q10, q11, q12, q13, q14, q15}| = 3 (3)

By properties (i) and (ii) we have that

for each v ∈ NG(q), if vq ∈ S, then qv ∈ S. (4)

In the following we prove that

for each v ∈ NG(q), if qv ∈ S, then S ∩ NG∗ (qv) = {vq}. (5)

Without loss of generality, let v = x (see Fig. 5). Let us assume to the contrary that qx ∈ S and S ∩ {q1, q18} ̸= ∅.
Hence by Eq. (1), we have that |S ∩ {q2, q3, q16, q17}| ≤ 1. Thus, we consider three cases: (a) |S ∩ {q2, q17}| = 1, or (b)
|S ∩ {q3, q16}| = 1, or (c) |S ∩ {q1, q18}| = 2.

Case (a). Let q17 ∈ S (q2 ∈ S, analogously). Hence, q18 ∈ S and S∩{q2, q3, q16} = ∅, and so, {q4, q5, q14} ⊂ S. If qy ∈ S, then
by Eq. (2) we have SEC({q4, q5}) = false, a contradiction. Thus, qy /∈ S. Hence by Eq. (4), we have that yq /∈ S, implying that
q6 ∈ S. Further, by (2), we have that S ∩{q8, q9} = ∅, and so {q10, q11} ⊂ S. Since q14 ∈ S, by (3) we get S ∩{q12, q13, qz} = ∅,
which contradicts (4).

Case (b). Let q3 ∈ S (q16 ∈ S, analogously). Hence, we have that q18 ∈ S, otherwise S ∩NG∗ [q17] = ∅. So, {q4, q14, q15} ⊂ S,
and by (3) and (4) we get q13 ∈ S. Thus, {q8, q9} ⊂ S, and by Eq. (2) we get SEC({q8, q9}) = false, a contradiction.

Case (c). Let {q1, q18} ⊂ S. Hence, S ∩ {q2, q3, q16} = ∅, and so, {q4, q5, q14} ⊂ S. The proof goes analogously to case (a).
Thus, we proved property (5).

In the following we prove that {qx, qy, qz} ⊂ S or S ∩ {qx, qy, qz} = ∅. It suffices to prove that if qx ∈ S, then qy ∈ S.
Let us assume to the contrary that qx ∈ S and qy /∈ S. By (1) and (5), we have that xq ∈ S, S ∩ {q1, q18} = ∅ and
|S ∩ {q2, q3, q16, q17}| = 2. If {q2, q17} ⊂ S, then by (1) we have SEC({q2, q17}) = false, implying that |S ∩ {q2, q17}| ≤ 1
and |S ∩ {q3, q16}| ≥ 1. If q3 /∈ S, then {q16, q17} ⊂ S, and so q4 ∈ S. If q3 ∈ S, then q17 /∈ S, and so q4 ∈ S. Analogously, we
have q15 ∈ S. Thus, {q4, q15} ⊂ S. Since qy /∈ S, we have by (4) that yq /∈ S. Hence by (2), we have that 1 ≤ |S ∩ {q6, q7}| ≤ 2,
and so {q4, q5, q6} ⊂ S. Further, S ∩ {q8, q9} = ∅, and so {q10, q11} ⊂ S. By (3), we have that SEC({q10, q11}) = false, a
contradiction.

By (4) and (5), we have that for each v ∈ NG(q), vq ∈ S ⇔ qv ∈ S. Thus, {qx, qy, qz, xq, yq, zq} ⊂ S or S ∩

{qx, qy, qz, xq, yq, zq} = ∅. □

For each q ∈ Q , let us define NG(q) = {x(q), y(q), z(q)}, where x(q) ∈ X, y(q) ∈ Y , z(q) ∈ Z . Let

Q ′
= {q ∈ Q : {qx(q), qy(q), qz(q)} ⊂ S}.

Let v ∈ V . By Claim 4.4 (i) and (ii) there is q ∈ NG(v) such that {vq, qv} ⊂ S. Hence by Claim 4.4 (iii), we have that q ∈ Q ′.
Thus, set Q ′ dominates V , and so 3|Q ′

| =
∑

q∈Q ′ |NG(q)| ≥ |NG(Q ′)| = |V | = 3m. By Claim 4.4, we have that for every
p, q ∈ Q ′ and p ̸= q, NG(p) ∩ NG(q) = ∅. Thus, |Q ′

| = m. This establishes Theorem 4.1. □
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5. O(n∆2 log∆)-time algorithm for trees

In [6] the authors constructed O(n log∆)-time algorithm for finding the minimum global alliance in trees. In this section
we present O(n∆2 log∆)-time algorithm for finding a minimum global edge alliance in trees.

We construct the optimal solution for a given tree T using the bottom-up technique in accordance with a defined
orientation of T . First, we orient all edges of T in an in-tree manner with a leaf as root, i.e., we choose any leaf r as root
and orient all edges of tree T towards the root r . As a result, for each vertex v ∈ V (T ) \ {r}, there is exactly one oriented edge
outcoming from a vertex v towards r , let us denote this edge by ev = {v, rv}. By Tv we denote a subtree of T rooted at v and
consisting of all (oriented) edges that lead to vertex v. By T ∗

v wemean the tree Tv with an attached edge ev , i.e., T ∗
v = Tv ∪ ev .

Let p(v) = degT (v) − 1 and let Nb
v = {v1, . . . , vp(v)} be the set of vertices adjacent to v and different from rv .

The key idea of the approach is to use the recursive scheme, in which we build a data structure Av , related to the vertex
v, from data structures Av1 , . . . , Avp(v) related to the children of vertex v (i.e., Nb

v ). We will use some auxiliary data structure
(Bv) to clarify the process of building Av from Av1 , . . . , Avp(v) . It is important to ensure that one can apply the data structures
associated with all children of vertex v to build Av . The algorithm goes as follows:

1. Starting from leaves, first build Av , and go towards root r .
2. Traversing tree T for each vertex v ̸= r:

(i) construct an auxiliary data structure Bv using Av1 , . . . , Avp(v) ,
(ii) construct Av from Bv .

3. Use As, where s is the only neighbor of root r , to find an optimal solution.

The total time complexity of the algorithm depends on the time complexity of the construction of structures Av and Bv . In
fact, by this schemawe calculate the size of the optimal solution. The construction of the optimal solutionmay be possible by
using additional data structures for saving the appropriate informationwhile building structures Av and Bv , which, however,
does not change the time complexity of the algorithm.

In the following, for the sake of notation simplicity, we shall use gea instead of global edge alliance, and ea instead of edge
alliance. We use the symbol ∞ to denote illegal cases, and assume that ∞ ≥ a, ∞ ± a = ∞ and min{∞, a} = a, where a is
a number or ∞.

Theorem5.1. There exists O(n∆2 log∆) time algorithm finding theminimum global edge alliance for trees with at most n vertices
and the maximum degree bounded by ∆.

Proof. Let v ∈ V (T ) \ {r}, p = degT (v) − 1 and q = degT (rv) − 1. We define a tree T l
v obtained from T ∗

v by attaching l ≥ 0
pendant vertices Ll = {u1, . . . , ul} to vertex rv . Note that T 0

v = T ∗
v .

Let us define Av = (a00v , a01v , a10v , A11
v ), where ajhv is an integer or ∞, for (j, h) ∈ {(0, 0), (0, 1), (1, 0)}, and A11

v is a matrix of
the size (q + 1) × 1, all described as follows:

a00v = min{|S \ {rv}|: S is a gea in Tv ∧ v /∈ S ∧ rv /∈ S},
a01v = min{|S \ {rv}|: S \ {rv} is a gea in Tv \ {v} and an ea in Tv ∧

v /∈ S ∧ rv ∈ S},
a10v = min{|S \ {rv}|: S is a gea in T ∗

v ∧ v ∈ S ∧ rv /∈ S}.

For each k ∈ {0, . . . , q}, if k < q/2, then let

A11
v [k] = min{|S \ {rv}|: S is a gea in T q−2k

v ∧ {v, rv} ⊂ S ∧ Lq−2k ∩ S = ∅},

and if k ≥ q/2, then let

A11
v [k] = min{|S \ (L2k−q ∪ {rv})|: S is a gea in T 2k−q

v ∧ {v, rv} ⊂ S ∧ L2k−q ⊂ S}.

Let us observe that for ajhv , we have j = 1 iff v ∈ S, and h = 1 iff rv ∈ S. If any min(·) cannot be legally defined, we preset
the value as ∞.

In the next steps we construct Av in accordance with the given definitions.
Let v be a leaf. Then, by definition we initially put a00v = ∞, a01v = 0, a10v = ∞ and A11

v [k] = 1 for 2k + 2 ≥ q, and
A11

v [k] = ∞ for 2k + 2 < q.
Let v be a vertex that is not a leaf. Let us define Bv = (B0

v, B
1
v), where B0

v is a matrix of the size p × 3 and B1
v is a matrix of

the size (p + 1) × p × 4. Let us remind that Nb
v = {v1, . . . , vp}.

For each i ∈ {1, . . . , p} we set B0
v[i, 0] = i, and if a10vi > a00vi , then let B0

v[i, 1] = 1, otherwise, let B0
v[i, 1] = 0. Finally,

B0
v[i, 2] = |a10vi − a00vi |. Let us observe that if a10vi = ∞ or a00vi = ∞, then B0

v[i, 2] = ∞. The matrix B0
v can be constructed in

O(p) time.
For each k ∈ {0, . . . , p} and i ∈ {1, . . . , p} we set B1

v[k, i, 0] = i, and if A11
vi

[k] > a01vi , then let B1
v[k, i, 1] = 1, otherwise, let

B1
v[k, i, 1] = 0.We put B1

v[k, i, 2] = min{A11
vi

[k], a01vi } and finally, B1
v[k, i, 3] = |A11

vi
[k] − a01vi |. Thematrix B1

v can be constructed
in O(p2) time.
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With all the values Bv , av , bv and cv already calculated, now we can determine Av . Let a0v =
∑p

i=1 (1 − B0
v[i, 1]) and

b0v =
∑p

i=1 min{a10vi , a
00
vi

}. If for some i ∈ {1, . . . , p} we have a10vi = a00vi = ∞, then b0v = ∞. Let c0v = min{B0
v[i, 2] : i ∈

{1, . . . , p} ∧ B0
v[i, 1] = 1}. The values a0v , b

0
v and c0v can be calculated in O(p) time.

Claim 5.1. The value a00v can be determined in O(p) time.

Proof. We have to ensure that v is dominated by at least one vi, where i ∈ {1, . . . , p}. If a0v > 0, then a00v = b0v , otherwise,
a00v = b0v + c0v . □

Claim 5.2. The value a01v can be determined in O(p) time.

Proof. Since v is dominated by rv , just take the best solution: a01v = b0v . □

Claim 5.3. The value a10v can be determined in O(p2 log p) time.

Proof. We have to ensure that for each vi ∈ S the edge alliance property holds for an edge {v, vi}. For every k ∈ {1, . . . , p},
let us define

sk = min{|S \ {rv}| : S is a gea in T ∗

v ∧ v ∈ S ∧ rv /∈ S ∧ |Nb
v ∩ S| = k},

or sk = ∞, if there is no such S. Obviously, a10v = min{s1, . . . , sp}.
For k ∈ {1, . . . , p} we calculate sk or prove that there is l > k, such that sl ≤ sk. Let a =

∑p
i=1 (1 − B1

v[k − 1, i, 1]), and
b =

∑p
i=1 B

1
v[k − 1, i, 2]. We have to ensure that exactly k edges {v, vi} satisfy the edge alliance condition for i ∈ {1, . . . , p}.

The rest of vertices vi are outside the edge alliance.
If a > k, then it is easy to observe that for some l ≥ a we have sl ≤ sk. Thus, without loss of generality we can assume

that a ≤ k.
If a = k, then we can put sk = b + 1.
If a < k, then we do the following: let B̂v be a matrix of the size p× 4 obtained from B1

v[k− 1] by sorting rows B1
v[k− 1, i]

(for i ∈ {1, . . . , p}) in a non-decreasing order with respect to the value B1
v[k− 1, i, 3]. Thus, we get B̂[1, 3] ≤ B̂[2, 3] ≤ · · · ≤

B̂[p, 3]. The construction of B̂v can be done in O(p log p) time. Let k0 be the smallest integer such that k − a =
∑k0

i=1 B̂v[i, 1],
and let c =

∑k0
i=1 B̂v[i, 3] · B̂v[i, 1]. Hence, we put sk = b + c + 1. Thus, we constructed a10v in O(p2 log p) time. □

Claim 5.4. The matrix A11
v can be constructed in O(qp2 log p) time.

Proof.
Now, for any l ∈ {0, . . . , q} we construct A11

v [l] in time O(p2 log p).
The main difference between the construction of a10v and A11

v is that we have to ensure that edge {v, rv} satisfies the edge
alliance property (i.e., SEC(v, rv) = true). The proof goes analogously as for a10v . For every k ∈ {0, . . . , p} and l ∈ {0, . . . , q},

• if l < q/2, then let sk,l = min{|S \ {rv ∪ Lq−2l}| : S is a gea in T q−2l
v ∧ v ∈ S ∧ rv ∈ S ∧ |Nb

v ∩ S| = k ∧ Lq−2l ∩ S = ∅},
• if l ≥ q/2, then let sk,l = min{|S \ {rv ∪ L2l−q}| : S is a gea in T 2l−q

v ∧ v ∈ S ∧ rv ∈ S ∧ |Nb
v ∩ S| = k ∧ L2l−q ⊂ S},

• and in both cases, if there is no such S, then we put sk,l = ∞.

Analogously as in the construction of a10v , we have to ensure that exactly k edges {v, vi} satisfy the edge alliance property for
i ∈ {1, . . . , p}. Let us observe that SEC(v, rv) = true iff 2k+2l+2 ≥ q+ p. Thus, if 2k+2l+2 ≥ q+ p, then we calculate the
value sk,l analogously as for a10v , otherwise, we put sk,l = ∞. Finally, A11

v [l] = min{s1,l, . . . , sp,l}. The construction of matrix
A11

v can be done in O(qp2 log p) time. □

Claim 5.5. The equality γea(T ) = min{a10s , A11
s [0] + 1} holds, where {s} = NT (r)

Proof. The root r needs to be dominated, so for any global edge alliance S it is true that {r, s} ∩ S ̸= ∅. Thus a00s = ∞. The
vertex s is the only neighbor of the root r , so a global edge alliance S such that r ∈ S and s ̸∈ S cannot exist. Thus a01s = ∞.

Since q(s) = 0, therefore the matrix A11
s has only one element, i.e. A11

s [0]. Thus γea(T ) = min{a10s , A11
s [0] + 1}. □

To sum up, the algorithm that gives the size of the minimum global edge alliance goes as follows:

(1) For every leaf l in tree build Av using the following values:

(i) a00l = ∞, a01l = 0, a10l = ∞,
(ii) A11

l [k] = 1 for each k such that 2k + 2 ≥ q,
(iii) A11

l [k] = ∞ for each k such that 2k + 2 < q.

(2) Traversing tree T towards root for each vertex v ̸= r and v is not a leaf:
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(i) construct an auxiliary data structure Bv using Av1 , . . . , Avp(v) ,
(ii) applying Claims 5.1–5.4 construct Av from Bv:

(3) By Claim 5.5 the value of an optimal solution is min{a10s , A11
s [0] + 1}, where s is the only neighbor of root r .

By Claims 5.1–5.4 we can deduce that the construction of data structure Av can be done in O(qp2 log p). Therefore, the
time complexity of the algorithm is O(n∆2 log∆).

As mentioned before, the construction of an optimal solution may be possible in the same time complexity by using
additional data structures for saving the appropriate information while building structures Av and Bv . □

6. Future work and open questions

Recently, in the paper [19], the authors proved the upper bound on the edge alliance number for trees, i.e., γea(T ) ≤ 2n/3,
and characterized the class of trees reaching this upper bound.

In the papers [7] and [8] the authors proved the upper bound for trees on the minimum total domination number, and
the minimum global alliance problem, respectively. Precisely, let s(T ) be the number of support vertices in a tree T . If T is a
tree of order n(T ) ≥ 3, then γt (T ) ≤

n(T )+s(T )
2 [7] and γa(T ) ≤

n(T )+s(T )
2 [8]. In the paper [19] the authors proved that if T is a

tree of order n(T ) ≥ 2, then γea(T ) ≤
n(T )+s(T )

2 .
The challenging problem is to give the complexity of the problem of finding theminimum global edge alliance in the class

of cubic (bipartite) graphs.
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