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ABSTRACT In this paper, the implementation of the global roots and poles finding algorithm for a
complex-valued function of a complex variable on a quantum computer, which allows for solving general
nonlinear algebraic equations, is presented. The considered function is sampled with the use of Delaunay’s
triangulation on the complex plane and a phase quadrant, in which the value of the function is located, is
computed on a classical computer for all of the sampling nodes. Then, if the real and imaginary parts of
the function simultaneously change signs for both ends of the same edge in the mesh, then a zero of the
function is located in the region around this edge. In order to detect such edges, the mesh is transformed
into a one-dimensional array and the required edges, where the sign simultaneously changes for real and
imaginary parts of the function, are found with the use of quantum Grover’s algorithm. If the mesh consists
of P edges, the computational overhead of this operation, in terms of oracle queries, is equal to O(

√
P)

on a quantum computer, instead of O(P) on a classical one. Finally, the existence of function zeros and
poles is proved with the use of Cauchy’s argument principle on a classical computer, and the output results
are computed, based on the mesh refinement, with the assumed numerical precision of computations. Our
method is implemented in Python with the use of the Qiskit software development kit and its applicability
is proved by quantum emulations.

INDEX TERMS Quantum computing, quantum algorithm, quantum simulation, complex roots finding
algorithm.

I. INTRODUCTION

QUANTUM computing (QC) relies on using quantum
mechanics for data and information processing. Al-

though QC is in its early stages, it is believed that this
technology can enable much faster computations than are
now possible on classical computers. The 1980s are generally
recognized as the beginning of investigations aimed at the
implementation of computations with the use of quantum
systems. It was then that Richard Feynman pointed out the
possible advantages of computing with the use of quantum
systems in 1982 [1], whilst David Deutsch presented the
idea of a universal quantum computer in 1985 [2]. Around
a decade later, first algorithms implementable on quantum
computers were developed, i.e., Shor’s algorithm for finding
prime factors of numbers [3], and Grover’s algorithm for
searching databases [4]. In 1996, Seth Lloyd developed the
quantum algorithm for simulations of quantum-mechanical
systems [5], although, at that time, quantum computers did
not exist yet. Then, Isaac Chuang, Neil Gershenfeld, and

Mark Kubinec built the first quantum computer of the two-
qubit size in 1998, allowing one to load data and output a
solution [6]. This computer turned out to be coherent for only
a few nanoseconds, and its function was trivial as far as the
possibility of solving important computational problems was
concerned. Despite that, it confirmed the existing theoretical
predictions related to QC and stimulated fast progress of the
quantum-computer technology. Currently, top IT companies
(e.g., IBM [7]) focus on the development of QC, and new
quantum computers are released each year. For the review of
the QC development and its historical background, the reader
is referred to [8]–[10].

In general, one ought to distinguish hardware (i.e., quan-
tum computers) development from quantum-algorithm im-
plementation. In this research, we focus on the implemen-
tation of the global roots and poles finding (GRPF) algo-
rithm [11] based on phase analysis performed on a quantum
computer. That is, we propose the implementation of the
algorithm for finding zeros and poles of a complex function
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of a complex variable. In this way, we can solve general
nonlinear algebraic equations on a quantum computer, i.e.,
we can find the roots of an algebraic equation on the complex
plane. In our method, Grover’s algorithm [4] is employed to
detect regions on the complex plane where zeros and poles
are located. Afterwards, classical computations are executed
which return zeros and poles with the error less than the
assumed precision of the computations. In this area, QC has
already been applied to solve systems of linear equations [12],
[13] as well as to solve ordinary [14] and partial [15], [16]
differential equations. However, the problem of finding zeros
and poles of a general complex-valued function of a complex
variable remains open not only in QC, but this is one of
the oldest and still investigated mathematical problems of all
time. We believe that the proposed application of QC for this
purpose can direct further investigations towards developing
new algorithms and methods in this area. In our investiga-
tions, we employ the Python programming language (version
3.10) and the Qiskit software development kit for QC (version
0.45.2). We also use Qiskit Aer library to simulate the circuits
(version 0.13.2). Then, we employ the Triangle library [17]
for Delaunay’s triangulation [18]. Below, we report the re-
sults of numerical emulations on a personal computer which
reproduce the results obtainable on a quantum computer. In
order to facilitate further research, our emulation codes are
publicly available on the Internet (i.e., after the acceptance of
this manuscript for publication).

II. GRPF IMPLEMENTATION ON QUANTUM COMPUTER
The aim of the proposed quantum algorithm is to find zeros
and poles of the function f : C 7→ C, i.e., f (z) ∈ C where
z ∈ C. The zeros zk (k = 1, ...,K ) of the complex function
f (z) are understood as the roots of the equation f (zk) = 0.
Analogously, the poles pl (l = 1, ...,L) of the complex
function f (z) are understood as the roots of the equation
f −1(pl) = 0.

In the subsequent sections, the GRPF algorithm imple-
mented on a classical computer is presented and, then,
Grover’s algorithm is described briefly. Finally, we present
the implementation of Grover’s algorithm within GRPF in
order to find zeros and poles of the complex function on a
quantum computer.

A. CLASSICAL GRPF ALGORITHM
GRPF is a numerical technique for finding zeros and poles
of a wide class of complex functions. The algorithm is,
in a sense, a generalization of the bisection method [19]
widely applicable to real-valued functions. We consider the
rectangular domain Ω ⊂ C and search for zeros and poles
of the complex function f (z), where z ∈ Ω. The accuracy
of zero and pole locations is controlled by the initial mesh
resolution ∆r and the final precision of computations ϵ. The
algorithm implemented on a classical computer is executed in
the following steps:

1) The rectangular domain Ω is triangulated with the use
of a regular mesh. Hence, the set of nodes N =

{n1, n2, ..., nM} is created. We employ Delaunay’s tri-
angulation in the proposed algorithm in order to build
a set of triangles. In other words, the set of edges E =
{e1, e2, ..., eP} where ei = {nb, nc}, being Delaunay’s
mesh, is created. It is required that the length of the
longest edge in E is less than or equal to the initial mesh
resolution ∆r .

2) Let us define the phase quadrant of the complex value
of the function f (z) at the point z ∈ Ω

q[f (z)] =


0 0 ≤ arg[f (z)] < π/2

1 π/2 ≤ arg[f (z)] < π

2 π ≤ arg[f (z)] < 3π/2

3 3π/2 ≤ arg[f (z)] < 2π

(1)

where arg[·] denotes the principal argument of the com-
plex number in the interval [0, 2π). One can note that
the quadrant values fit into a two-bit number represen-
tation from the decimal range 0–3. GRPF computes the
phase quadrant at each node nb, hence an array of phase
quadrants is created, i.e., Q = {q[f (nb)] : nb ∈ N}.
In GRPF, the complex value of the function f (z) is not
required but only the quadrant in which its phase is
located. This makes the algorithm less sensitive to the
numerical precision of floating-point function compu-
tations, and applicable to QC.

3) For each of the edges ei connecting the nodes nb and
nc, the phase change is computed based on the quad-
rants obtained in the previous step, i.e., ∆q(ei) =
q[f (nb)] − q[f (nc)]. Hence one obtains that ∆q(ei) =
−2,−1, 0, 1, 2. Any zero or pole of the function f (z)
is located around the edge ei such as ∆q(ei) = ±2.
This condition means that the real and imaginary parts
of the considered function simultaneously change signs
for both ends of the same edge. Hence either a zero or a
pole should be located in the region around ei, which is
called the candidate edge, whereas the corresponding
region is called the candidate region.

4) All the candidate edges are collected in a single set
Ec = {ei ∈ E : ∆q(ei) = ±2}. For a sufficiently dense
mesh, a zero/pole has to be located inside a triangle
which includes the edge being the candidate edge.

5) A set of triangles Tc, including at least a single candi-
date edge from the set Ec, is created. Afterwards, all the
edges of the triangles belonging to Tc are collected in
a single set denoted by Et . Each boundary Cr (where
r = 1, ...,R) of the r-th candidate region consists of the
edges which occur only once in the set Et . This stems
from the fact that internal edges are attached to two

candidate triangles. Hence the boundary C =
R⋃

r=1
Cr

of the candidate regions is constructed from the edges
ei ∈ Et such as |∆q(ei)| < 2.

6) The set C is decomposed into subsets Cr .
7) The potential zeros and poles are within the candidate

regions Cr . In order to increase the accuracy of local-

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3510172

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Buczkowski et al.: Global Roots and Poles Finding Algorithm on Quantum Computer

ization of these points, the mesh is refined in candidate
regions. Additional points are added in the centers of
the edges within the candidate regions. Then, Delau-
nay’s triangulation is executed again, and a newmesh is
obtained in each candidate region. The algorithm sub-
sequently starts off in each candidate region from the
second point as long as the length of the smallest edge
in the candidate region is greater than the numerical
precision ϵ.

8) The final verification and classification, whether the
candidate region Cr includes either a zero or a pole, is
executed with the use of Cauchy’s argument principle
[20]. It requires the calculation of the integral

wr =
1

2πi

�
Cr

f ′(z)
f (z)

dz. (2)

The value of wr ∈ N is positive for wr th-order zero
and negative for wr th-order pole. In other cases, the
candidate region Cr does not include any zero/pole.
In the discrete triangulated domain, the integral (2) is
computed as

wr =
1

4

S∑
s=1

∆q(es) (3)

where es ∈ Cr and S denotes the number of edges in
the boundary Cr .

FIG. 1 demonstrates the operation principle of GRPF,
where the quadrants of phase are presented for the function
f (z) = (z − 0.5)/(z + 0.5)2. This function includes the
first-order zero in z1 = 0.5 and the second-order pole in
z2 = −0.5. The first-order zero is visible as the change of
phase between all the four quadrants in the counterclockwise
direction around z1 which reaches 2π. Then, the second-
order pole is visible as the change of phase between all the
four quadrants in the clockwise direction around z2 which
reaches 4π. These simple changes of quadrants (i.e., colors)
are analyzed by GRPF, allowing one to find zeros and poles
of a function on the complex plane. It is important to employ
a sufficiently dense mesh, which means that the number of
edges P can be large. In FIG. 2, the mesh with visible edges
and its refinement is presented. As one can note, GRPF
correctly reduces the mesh size around the candidate edges.

B. GROVER’S ALGORITHM
We employ Grover’s algorithm [4] in the proposed GRPF
implementation, which is a quantum search algorithm. Let us
define the function F : {0, 1, ...,P − 1} 7→ {0, 1} which
points out the element in the database we are searching for.
That is, F(x) = 1 if x is the index of the item which we are
searching for, and F(x) = 0 otherwise. Grover’s algorithm
requires defining the function ZF , called an oracle, which is a
unitary operator taking the quantum-register input |x⟩ of the
size p = ⌈log2 P⌉ and flipping it iff x is the index of the item
which we are searching for. That is, the action of the oracle is
defined as

|x⟩ ZF7−→ (−1)F(x) |x⟩ . (4)
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FIGURE 1. Quadrants of phase (■ (0), ■ (1), ■ (2), ■ (3)) for function
f (z) = (z − 0.5)/(z + 0.5)2. Initial mesh size is set to 0.01.
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FIGURE 2. Quadrants of phase (■ (0), ■ (1), ■ (2), ■ (3)) for function
f (z) = (z − 0.5)/(z + 0.5)2. Initial mesh size is set to 0.2.

The algorithm starts off by setting the input register to an
equal superposition of all the input states with the use of the
Hadamard operator H⊗p. That is, the following state is set at
the input

|ψ⟩ = H⊗p |0p⟩ = 1√
P

P−1∑
x=0

|x⟩ . (5)

Then, Grover’s operator

G = (2 |ψ⟩ ⟨ψ| − 1̂)ZF (6)

based on the oracle ZF is called O(
√
P) times. The mea-

surement of a quantum-register state returns the index of the
element which we are searching for. It is possible to extend
the basic operation of Grover’s algorithm when we search for
multiple elements in a database [8].

C. GRPF ON QUANTUM COMPUTER
Quantum implementation of GRPF consists of data prepa-
ration on a classical computer, quantum computations for
candidate-edge detection and, again, classical computations
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for the subsequent mesh refinement. It is assumed that the
computational overhead of data preparation on a classical
computer is not significant compared to the overhead of
searching for candidate edges. Otherwise, the use of quantum
computations in GRPF will not provide important advantages
in comparison to classical computations. The domain ana-
lyzed by GRPF can be arbitrarily large, hence the number of
edges after triangulation can be substantial. However, with the
use of QC, one can reduce the computational overhead of the
candidate-edge detection in GRPF from O(P) to O(

√
P).

If the time of calling the function and computing the
function value in a single point is significant, it is crucial to
minimize the number of function calls. Then, one can reduce
the number of function calls compared to the original GRPF
algorithm with the use of a self-adaptive mesh generator [21].
However, we do not investigate this GRPF extension in order
to concentrate on quantum implementation of this algorithm.

We focus further on the first iteration (i.e., executed on a
quantum computer) of the quantumGRPF algorithm,which is
presented in FIG. 3. QC is based on random properties of the
reality, hence this iteration includes tasks which are executed
multiple times in a loop (i.e., the number of these executions
is chosen randomly). In the subsequent sections, we describe
the elements of this quantum iteration of GRPF.

1) Input data

Based on the input data prepared on a classical computer,
quantum circuits are generated. These data consist of quad-
rants of function values for nodes of a triangular mesh. It
is checked, inside the quantum circuits, if the difference
between the quadrants is equal to two for the nodes in a
single edge. Hence the application of Grover’s algorithm to
GRPF requires its implementation which processes the nodes
and edges of the mesh. That is, the edges in the triangulated
domain are the search space, whereas the function F returns
1 when the argument x is the candidate edge. The quantum
circuits based on Grover’s algorithm find the candidate edges
in the first iteration of the GRPF algorithm. In our Python
implementation, there are three such quantum circuits and
each one computes a set of candidate edges in one out of
three directions δ ∈ {α, β, γ} on the regular triangular
mesh (see FIG. 4). As one can note, such a mesh geometry
allows for covering the rectangular domain with edges (i.e.,
E = Eα ∪ Eβ ∪ Eγ), which can easily be decomposed into
the sets Eα, Eβ , Eγ associated with the search directions. In
general, the three quantum circuits, each processing one of the
directions α, β, γ, are similar and only differ in the direction
of the edges they process. Then, when the candidate edges
are detected, the mesh is refined on a classical computer and
the complex values of zeros and poles are computed with the
assumed numerical precision ϵ. Of course, one can employ
other methods of decomposing the mesh into directions, even
without covering the rectangular boundary.

2) Query model of computations
The quantum circuit for each direction consists of four quan-
tum registers: a, b, c and d. The registers a, b, and c are used
together as the search space for Grover’s algorithm. The size
of the register a is set to fit the largest index of nodes in the
generated triangular mesh, so its size is m = ⌈log2(M)⌉,
where M is the size of the set of all the nodes. The regis-
ters b and c have a constant size of two qubits to fit four
possible values of a quadrant index (0, 1, 2, 3). The register
d of a single-qubit size is used for the phase kickback in the
oracle (which is explained below), and it is initialized to the
minus state |−⟩ = (|0⟩ − |1⟩)/

√
2. In our implementation of

Grover’s algorithm, the query model of computations [22] is
used. This means that the function F is accessed by the query
gate defined as the unitary operation

UF (|y⟩ |x⟩) = |y⊕ F(x)⟩ |x⟩ . (7)

The gate operates on two quantum states, i.e., the function-
argument state |x⟩ and the function-value state |y⟩. The
exclusive-alternation (XOR) operation is realized for the state
|y⟩ and the value of the function F(x), hence the function-
argument state remains the same. One can note that XOR
of two numbers a and b, represented by quantum states, is
equivalent to the operation of negation

X =

[
0 1
1 0

]
(8)

executed a times on the state |b⟩. That is, one can write
|a⊕ b⟩ = Xa |b⟩ = Xb |a⟩. This can easily be proved by
checking equalities for the states of the computational basis
|0⊕ 0⟩ = X0 |0⟩ = |0⟩
|0⊕ 1⟩ = X1 |0⟩ = |1⟩
|1⊕ 0⟩ = X0 |1⟩ = |1⟩
|1⊕ 1⟩ = X1 |1⟩ = |0⟩
and then taking into account the fact that any state is a linear
combination of the computational-basis states |0⟩ and |1⟩.
Knowing this, we can rewrite the unitary operation of the
query gate as UF (|y⟩ |x⟩) = |y⊕ F(x)⟩ |x⟩ = (XF(x) |y⟩) |x⟩.
The operator ZF in Grover’s operator G is a query gate

that flips the sign of |x⟩ iff F(x) = 1. To achieve this,
the state |y⟩ is set to the minus state |−⟩. Then, the opera-
tion of our query gate is (XF(x) |−⟩) |x⟩. However, one can
note that X |−⟩ = − |−⟩, so the operation of the query
gate becomes ((−1)F(x) |−⟩) |x⟩. This can be rewritten as
|−⟩ ((−1)F(x) |x⟩), so now, in a sense, the argument state has
changed, but the value state has not. This phenomenon is
called the phase kickback in our implementation of the oracle
ZF .

3) Oracle
Although the oracle is usually represented by a single quan-
tum gate, here we develop a quantum circuit in its place. Its
operation can be understood by analyzing a classical version
of such a circuit, where the bits store classical states. Its
quantum version concurrently computes all the candidate
edges by the superposition of states. The quantum circuit of
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For each attempt

For each direction

Start

Generate nodes

Triangulate
nodes

Create edges
from nodes

Create circuit
with H gate layer

Create gate Ub

Create gate Uc

Create gate Ud

Merge gates into
a single one

Choose random t

Apply Grover's
iterations

Add
measurement to

circuit

Simulate circuit

Merge candidate
edges from all

directions

Create inverse
gates

Discard false
candidate edges

End

Check if
candidate edges

are true

Compute
quadrants

FIGURE 3. Flowchart of the first (quantum) iteration of proposed GRPF algorithm.

the oracle is presented in FIG. 5. It takes the node index from
one side of the edge which is stored in the register a. The
first gate Ub sets the state of the register b to the quadrant
of the node represented by |a⟩. The second gate Uc sets the
state of the register c to the quadrant of the node on the other
side of the edge connected to the node represented by |a⟩. The
third gate Ud performs the XOR operation on the register d
resulting in the function F . Therefore, if d is 0 and the edge
is the candidate edge, meaning F returned 1, then d will be
0 ⊕ 1 = 1. This output means that the analyzed edge is a
candidate edge.

The gates Ub and Uc are the unitary operators defined as
follows:

Ub |b⟩ |a⟩ = |q[f (nb)]⟩ |a⟩ (9)

Uc |c⟩ |a⟩ = |q[f (nc)]⟩ |a⟩ . (10)

In (9)–(10), nb and nc denote the nodes, i.e., complex values
representing their coordinates on the complex plane. Let us
define the edge x = {nb, nc}. Knowing that |d⟩ is initialized
with |−⟩, we can describe Ud as follows:

Ud |d⟩|c⟩|b⟩ = |−⟩((−1)F(x)|c⟩|b⟩) (11)

where

F(x) =

{
0 if |q[f (nb)]− q[f (nc)]| ≠ 2

1 if |q[f (nb)]− q[f (nc)]| = 2
. (12)

The gate Ub consists of multi-controlled X (MCX) gates,
which are gates with multiple control qubits that determine
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FIGURE 4. Edge directions processed by quantum circuits on a small
mesh.
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FIGURE 5. Quantum circuit representing oracle for m = 6.

whether a given gate should be enabled. In our case, the reg-
ister awith node indices represents the control for theseMCX
gates. That is, we add the X gate before the control to qubits,
which we want to set in the register b, if the corresponding
bit of the node index is 0. Therefore, the control lines enable
the gates which set the quadrants into the register b. As one
can note, the X gates are always applied in pairs in order to
restore the input states of qubits on control lines. The targets
of the MCX gates are one or both qubits, depending on the
quadrant values which should be written into the register b.
Let us consider the following example of the gate Ub, which
is presented in FIG. 6. Suppose that [1, 1, 3, 2] is the array of

quadrants for four subsequent nodes in the mesh. Hence we
can assume that the size of the register a is set at two qubits.
The index of the first quadrant (i.e., 1) in the array is 0. Our
aim is to activate the least significant bit b0 when the node
index in the register a is equal to 00 (binary). Therefore, the X
gates are initially placed at the control lines from the register
a, which gives the enable signal activating the line b0. Hence
the value 01 (binary) is set at the register b. Analogously,
other binary values of quadrants are set by the following gates,
according to the binary indices of the array elements.

FIGURE 6. Exemplary gate Ub for array of quadrants [1, 1, 3, 2].

The gate Uc is constructed similarly to Ub, except that for
each node, instead of its own quadrant value, the quadrant
value of its neighbor is assigned in a given direction (see
again FIG. 4). Using this scheme, the quadrants of neighbors
for each node in an array are assigned, and passed on to the
function constructing Ub.

The gate Ud is represented by a matrix of the size 25 × 25,
because size(b) + size(c) + size(d) = 5. The behavior
of any unitary-matrix transformation can be described by
analyzing the columns of the matrix, each having an index
that is represented in Dirac’s notation. Therefore, for each
column having the index dc1c0b1b0 (binary) representing the
quantum state |d⟩ |c⟩ |b⟩, we insert the output which indi-
cates if the input state denotes the candidate edge. That is,
Ud is a unitary transformation represented, to some extent,
by a lookup table. For example, having the quantum state
|0⟩|00⟩|11⟩ (the candidate edge) as the input, we expect the
quantum state |1⟩|00⟩|11⟩ at the output. Therefore, we insert
a column vector representing the expected state as the matrix
column with the index represented by the input state. The
output bit d is computed by XOR of the input d and the
expected output d , because it is done in the query model of
computations. This means that the two nodes (having b and c
quadrant values) are a candidate edge. The matrix Ud can be
written as
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Ud =





∣∣∣∣ ∣∣∣∣ ∣∣∣∣
|y⟩00000 |y⟩00001 · · · |y⟩11111∣∣∣∣ ∣∣∣∣ ∣∣∣∣

where |y⟩dc1c0b1b0 is a basis state which is the expected value
for the input basis state |dc1c0b1b0⟩, i.e., Ud |dc1c0b1b0⟩ =
|y⟩dc1c0b1b0 . Because we are dealing with quantum states, the
gate Ud is not the last one in the circuit of the oracle. There
are two quantum gates afterwards being the inverse of the gate
Uc and the inverse of the gate Ub. This is implemented in
order to retrieve the previous states of the registers a, b and
c. Therefore, the whole quantum circuit can be treated as the
oracle ZF .

It is the fact that some of QC algorithms are still far from
being implementable for meaningful applications on today’s
quantum hardware [23], [24]. Therefore, Grover’s algorithm
is usually not considered in terms of implementability, but the
polynomial reduction in a query complexity (i.e., how many
times the oracle is queried in a similar way to a classical
database). Although Grover’s algorithm may not provide a
practical quantum advantage in searches in the near future,
it is a fundamentally important quantum algorithm, as well
as a representative model for a more general technique with
many applications in QC. In our case, the transfer of classical
data to the quantum oracle is a bottleneck for the efficiency
of the algorithm (with respect to classical solutions), because
the number of the gates X and MCX in Ub and Uc depends,
as O(P), on the size of the database (i.e. the size of the
mesh consisting of P edges). However, the gate Ud has a
size independent of the mesh size, which is an advantageous
feature. To sum up, our GRPF implementation should provide
advantages in comparison to classical approaches if an effi-
cient method of data transfer between classical and quantum
computing systems is developed.

4) Quantum computations
Three quantum circuits implementing the oracle, each for a
single directionα, β, γ in the mesh, run sequentially in a loop.
In general, a single run of the quantum algorithm is usually
insufficient to obtain results in QC. Therefore, we simulate
each quantum circuit 1024 times to obtain a histogram of
the outcomes, which is a default number of simulations of
a quantum circuit in Qiskit. Then, we choose the outcomes
which occur more often than the others. Each outcome is the
index of a node, which together with the mesh direction of the
quantum circuit, represents a candidate edge. After running
the quantum circuit for a single direction δ ∈ {α, β, γ}, one

obtains the set of candidate edges

Ec =
{
x ∈ E :

ox
omax

> DT
}

(13)

where x = {nb, nc} is the edge uniquely identified by the pair
(nb, δ), ox is the number of times that this edge occurred as
the outcome of the simulation along the direction δ, and omax
is the maximal number of times that any edge occurred as the
outcome of the same simulation along the direction δ. In (13),
DT denotes the detection threshold of candidate edges which
we set experimentally at the level of 50%.
Based on (5)–(6), the whole quantum circuit of the GRPF

algorithm for a single direction, operating on |a⟩, can finally
be described as follows:

[H⊗m(2 |0m⟩ ⟨0m| − 1̂m)H⊗mZF |a]tH⊗m (14)

where ZF |a denotes the oracle operating on the register a, and
t is the number of iterations of Grover’s algorithm. If we knew
how many solutions (candidate edges) exist along a single
direction, then t could be calculated so that it would yield
the highest probability of finding them all. Unfortunately
we do not know the number of solutions beforehand, so we
need to calculate t in a different way. This can be done by

randomly choosing a number from the set
{
1, . . . ,

⌊
π
√
M̄

4

⌋}
where M̄ = 2m denotes the number of possible outcomes
and m is the size of the register a. This method gives us
a chance of finding a single solution (assuming one exists)
in a single simulation greater than 40% [25]. By repeating
this procedure and checking the outcome in the same way as
described before, the probability of finding a solution can be
made very close to 1. This procedure is proposed in Qiskit as
a default option, but other methods of estimating the number
of solutions can be applied, e.g., based on quantum counting
[26].
If the results of a simulation along a single direction are

ambiguous, then all the solutions along that direction are
discarded. This happens when there are no true candidate
edges in a given direction. The ambiguity A is measured
by the ratio of the number of candidate edges proposed by
the algorithm Mc to the size of the search space of Grover’s
algorithm:

A =
Mc

M̄
. (15)

We discard the edges Ec if the ambiguity is greater than or
equal to the level of 33%, which we found with the trial and
error method.

III. NUMERICAL RESULTS
We employ 7 qubits for the register a in order to run emu-
lations of the quantum GRPF algorithm in reasonable time.
The exact number of the required qubits depends on the
initial distance between nodes ∆r . However, if the size of
the register a is greater than 7, then there might be a need
to increase the number of simulations to over 1024 in order
to decrease statistical fluctuations of the results.
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The next two subsections present the results of the quantum
GRPF algorithm applied to two complex functions fA and fB.
For each of them, we set the final precision of computations
at ϵ = 10−9. The initial mesh resolution ∆r , which defines
the distance between the nodes in the first regular meshing, is
set individually for each considered function.

A. FUNCTION FA

This function is defined as follows:

fA(z) = (z− (4 + 3i))2(z+ 3)(z+ i)3(z− 2)2(z− (2 + i)).

Its analytical zeros and their orders are provided in TABLE 1.

Zero Multiplicity
4 + 3i 2
−3 1
−i 3
2 2

2 + i 1

TABLE 1. Zeros with multiplicities for fA (theoretically).

The function is analyzed for

z ∈ Ω = {a+ bi : a ∈ [−8, 8] ∧ b ∈ [−8, 8]}.

The initial mesh is generated with ∆r = 3. In the first
iteration, the quantum circuits find 30 candidate edges that
are colored purple in FIG. 7. In this simulation, the edges from
the direction β are discarded because of too high ambiguity
of the results. The numbers of occurrences of a given edge

−8 −6 −4 −2 0 2 4 6 8
Re(z)

−8

−6

−4

−2

0

2

4

6

8

Im
(z
)

FIGURE 7. Candidate edges (■) in the first iteration for fA.

as a candidate for each direction are presented in FIG. 8. As
a result of the algorithm run, one obtains all the zeros of the
function fA computed with some numerical error, as given in
TABLE 2. One can note that obtained values are within the
range defined by the numerical precision of computations ϵ.
Furthermore, quantum GRPF detects all the zeros within the
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FIGURE 8. Function A: Number of occurrences as candidate edge for
direction α, β, γ. Horizontal axis contains binary indices of edges that
occur more often than detection threshold.

assumed searching space. One can note that the multiplicities
of function zeros are correctly computed classically. This
confirms the correctness of our implementation of quantum
GRPF in a code. The final mesh, i.e., after running the algo-
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Zero Multiplicity
3.999999999943556 + 3.0000000000282214i 2

−3.000000000214626 + 1.8971383003646632e− 10i 1
3.880510727564485e− 11− 0.9999999999805979i 3
1.9999999999435558− 2.82219517116203e− 11i 2
2.0000000003725287 + 0.9999999998137353i 1

TABLE 2. Zeros with multiplicities for fA (numerically).

rithm, is presented in FIG. 9 for reference.
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FIGURE 9. Mesh on the last iteration of quantum GRPF algorithm on fA.
Quadrants of phase: ■ (0), ■ (1), ■ (2), ■ (3).

B. FUNCTION FB

This function is defined as follows:

fB(z) = (z− 1)(z− i)2
(z+ 1)3

z+ i
.

Its analytical zeros and poles, with their orders, are provided
in TABLE 3.

Zero Multiplicity
1 1
i 2

−1 3
Pole Multiplicity
−i 1

TABLE 3. Zeros and poles with multiplicities for fB (theoretically).

The function is analyzed for

z ∈ Ω = {a+ bi : a ∈ [−2, 2] ∧ b ∈ [−2, 2]}.

The initial mesh is generated with ∆r = 0.5. In the first
iteration, the quantum circuits find 17 candidate edges that
are colored purple in FIG. 10. The numbers of occurrences of
a given edge as a candidate for each direction are presented
in FIG. 11. As a result of the algorithm run, one obtains
all the zeros and poles of the function fB computed with
some numerical error, as given in TABLE 4. One can note

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Re(z)
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FIGURE 10. Candidate edges (■) in the first iteration for fB.

that obtained values are within the range defined by the nu-
merical precision of computations ϵ. Again, quantum GRPF
detects all the zeros and poles within the assumed searching
space. Then, the multiplicities of function zeros and poles
are correctly computed. This confirms the correctness of our
implementations of quantum GRPF in a code.

Zero Multiplicity
0.999999999627471 + 7.761021455128987e− 11i 1

1.6556845770941875e− 10 + 0.9999999998965197i 2
−1.000000000057312− 1.0746029707101676e− 10i 3

Pole Multiplicity
3.101927297073854e− 25− 1.0000000000582077i 1

TABLE 4. Zeros and poles with multiplicities for fB (numerically).

The final mesh is presented in FIG. 12.

IV. CONCLUSION
The implementation of the GRPF algorithm, which allows for
solving general nonlinear algebraic equations on a quantum
computer, is developed. The considered function is sampled
with the use of Delaunay’s triangulation on the complex
plane, and the phase quadrants, where the function values are
located, are computed on a classical computer. Then, quantum
circuits are employed in the first iteration of the algorithm
to detect the edges (so called candidate edges) in the mesh
for which function values belong to the opposite quadrants
of the complex plane. Zeros and poles of a complex function
are located around such edges, which are afterwards precisely
computed with the use of mesh refinement on a classical
computer. In order to effectively detect candidate edges on
a quantum computer, the mesh is transformed into a one-
dimensional array and the candidate edges are found with the
use of Grover’s algorithm. If the mesh consists of P edges,
the computational overhead of this operation, in terms of
oracle queries, is equal to O(

√
P) on a quantum computer,
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FIGURE 11. Function B: Number of occurrences as candidate edge for
direction α, β, γ. Horizontal axis contains binary indices of edges that
occur more often than detection threshold.

instead of O(P) on a classical one. The proposed algorithm
is implemented in Python using the Qiskit library and it is
open sourced. Using the emulation of QC, we are able to
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FIGURE 12. Mesh on the last iteration of quantum GRPF algorithm on fB.
Quadrants of phase: ■ (0), ■ (1), ■ (2), ■ (3).

demonstrate the correct operation of the developed algorithm
based on two exemplary complex functions.

SOURCE CODE
The source code for the QC implementation of the global
complex roots and poles finding algorithm based on phase
analysis will be released on: https://github.com/stafan26, and
will be licensed under the MIT License (i.e., after the accep-
tance of this manuscript for publication).
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