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Abstract: The design of contemporary antenna systems encounters multifold challenges, one of which
is a limited size. Compact antennas are indispensable for new fields of application such as the Internet
of Things or 5G/6G mobile communication. Still, miniaturization generally undermines electrical
and field performance. When attempted using numerical optimization, it turns into a constrained
problem with costly constraints requiring electromagnetic (EM) simulations. At the same time, due to
the parameter redundancy of compact antennas, size reduction poses a multimodal task. In particular,
the achievable miniaturization rate heavily depends on the starting point, while identifying a suitable
starting point is a challenge on its own. These issues indicate that miniaturization should be addressed
using global optimization methods. Unfortunately, the most popular nature-inspired algorithms
cannot be applied for solving size reduction tasks because of their inferior computational efficacy
and difficulties in handling constraints. This work proposes a novel methodology for the globalized
size reduction of antenna structures. Our methodology is a multi-stage knowledge-based procedure,
initialized with the detection of the approximate location of the feasible region boundary, followed
by the construction of a dimensionality-reduced metamodel and global optimization thereof; the last
stage is the miniaturization-oriented local refinement of geometry parameters. For cost reduction,
the first stages of the procedure are realized with the use of a low-fidelity EM antenna model. Our
approach is verified using four broadband microstrip antennas and benchmarked against multi-start
local search as well as nature-inspired methods. Superior size reduction rates are demonstrated for
all considered cases while maintaining reasonably low computational costs.

Keywords: miniaturized antennas; simulation-based design; footprint reduction; global optimization;
surrogate modeling; dimensionality reduction

1. Introduction

Modern antenna systems are designed to fulfill numerous and often stringent perfor-
mance requirements concerning impedance matching (e.g., multi-band [1] or broadband [2]
operation), polarization (polarization diversity [3], circular polarization [4]), radiation
characteristics (high gain [5], low sidelobe levels [6], beam scanning [7]), reconfigurabil-
ity [8], efficiency [9], etc. These are driven by the demands of new fields of application
including the Internet of Things (IoT) [10,11], microwave imaging [12], mobile and space
communications [13,14], automotive radars [15], and implantable devices [16], to mention
just a few. For most of the aforementioned applications, maintaining a small size of the
radiator is an important consideration. At the same time, reducing an antenna’s physical
dimensions often results in a degradation of its performance figures (efficiency [17], pattern
stability [18], bandwidth [19]). Therefore, the design of compact antennas is a search for
trade-offs between conflicting objectives.
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Antenna miniaturization is basically a two-stage process. The initial stage is a selection
of the basic architecture, supposedly ensuring compact dimensions [20,21]. This is normally
achieved by trial and error, i.e., introducing and testing various geometry alterations of the
radiator [22], feeding network [23], or the ground plane [24]. The most popular of these
include stubs [25], radiator slots [26], meandered radiating components [27], ground plane
slits [28], cross slots [29], tapered or stepped-impedance feeding lines [30], shorting pins [31],
custom-shaped radiating elements [32], and defected ground structures (DSG) [33]. These
and other methods often enable considerable miniaturization rates but also result in an
increased number of geometry parameters that need to be carefully adjusted to control
both the antenna size and electrical performance. While the initial dimensions of the
modified structures may be obtained with parameter sweeping, numerical optimization
using rigorous means is requisite to boost the performance of the structure and also to
verify the pertinence of specific topology modifications introduced into the antenna. It has
been demonstrated that certain geometrical changes turn counterproductive upon proper
parameter tuning [34].

Nowadays, the awareness and use of numerical optimization techniques have be-
come widespread in antenna design [35–37], both to enhance specific performance figures
(gain [38], bandwidth [39], sidelobe level reduction [40], mutual coupling reduction [41])
and to solve more involved tasks (uncertainty quantification [42], multi-criterial optimiza-
tion [43]). Still, antenna optimization is a challenging undertaking. First, it typically
involves full-wave electromagnetic (EM) simulations, thereby entailing sizeable compu-
tational expenditures, especially when a global search is of interest [44] or statistical de-
sign [45]. Furthermore, the geometrical complexity of contemporary antenna systems
indicates a large number of parameters that have to be tuned, whereas the optimization
tasks may be quite intricate (several design goals and constraints). The literature is replete
with techniques developed to facilitate optimization processes. Available methods include
acceleration of gradient-based algorithms that exploit adjoint sensitivities [46] or sparse
sensitivity updating schemes [47–49], utilization of fast solvers [50], and mesh deformation
techniques [51], along with the incorporation of surrogate modeling techniques [52,53].

With no exaggeration, surrogate-based optimization (SBO) can be considered a paradigm
shift in EM-driven design, becoming a standard for an increasing number of tasks (e.g., yield
optimization [54], multi-objective design [55]). SBO methods may involve approximation-
based (data-driven) [56] or physics-based surrogates [57]. The first group is more generic
and directly applicable to a variety of problems, thereby, it is also more popular. Some of the
widely used modeling techniques include neural networks [58–60], kriging [61], radial basis
functions [62], polynomial chaos expansion [63], support vector regression [64], etc. Data-
driven surrogates are used for global [65] and multi-objective design [66] and statistical
analysis [67], and they are often combined with machine learning methods [68]. Their
fundamental drawback is related to the curse of dimensionality [69], which hinders their
applicability in higher-dimensional parameter spaces. Physics-based surrogates are built using
a core low-fidelity model (e.g., equivalent circuit [70], coarse-mesh EM simulations [71]). They
are less susceptible to dimensionality issues yet lack universal approximation capability [72];
therefore, they are more suitable for local search purposes [57]. Representative methods
comprise space mapping [73], cognition-driven design [74], and adaptive response scaling [75].
Other techniques for accelerating simulation-based design procedures include response feature
technology [76,77] and also variable-resolution techniques and models (co-kriging [78], multi-
fidelity algorithms [44,79]).

Antenna size reduction, when considered in the context of optimization, is a numeri-
cally intricate task. On the one hand, all challenges of EM-driven design mentioned before
still apply. On the other hand, it is a problem with expensive constraints. For practical
reasons, i.e., to avoid excessive computational costs, it is typically solved using local (e.g.,
gradient-based) algorithms [80], with the constraints tackled in an implicit fashion using
a penalty function approach [81]. Notwithstanding, compact antennas exhibit parameter
redundancy, being a result of all kinds of additional components (stubs, slots, DSGs, etc.)
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that have to be properly dimensioned. As a result, miniaturization tasks are multimodal
problems: an optimization procedure normally finds a local optimum, which is highly
dependent on the starting point [82]. Although this implies the necessity for global search,
available methods are incapable of handling miniaturization tasks. In particular, the com-
putational complexity of nature-inspired algorithms is excessively high for direct EM-based
optimization, whereas constructing reliable surrogate models over the entire parameter
space of a compact antenna is hindered by both dimensionality issues and typically wide
ranges of structure parameters.

In this work, we present a novel algorithm for knowledge-based globalized size re-
duction of antenna structures, which addresses most of the challenges elaborated on in
the previous paragraph. Our framework consists of several steps. These include an ap-
proximation of the boundary of the feasible region using random observables selected
in an automated decision-making process, which takes into account their distance from
the feasible region boundary, and auxiliary optimization runs, the establishment of a
dimensionality-reduced domain, as well as construction of fast data-driven surrogate
therein. Further steps include global optimization of the metamodel followed by ultimate
miniaturization-oriented refinement of antenna parameters. The dimensionality of the
surrogate model domain is explicitly reduced using spectral analysis of the selected observ-
ables, which undergo initial pre-optimization. For the sake of computational efficiency, the
first few stages of the optimization procedure are performed with the use of the low-fidelity
EM model. The proposed approach is extensively validated with the use of four broadband
microstrip antennas and benchmarked against local search algorithms in several variations
initiated from random starting points, along with particle swarm optimization (as a com-
monly used, nature-inspired global search method). The results show that our approach
yields superior miniaturization rates with good repeatability of solutions while ensuring
satisfactory constraint violation control. At the same time, its computational efficacy is
practically acceptable.

The main technical contributions of this work comprise: (i) the development of a
novel algorithm for globalized size reduction of antenna structures that combines several
algorithmic approaches (variable-resolution EM simulations, metamodeling, and reducing
the dimensionality), (ii) a demonstration of superior performance of the algorithm, which
surpasses what was achievable using existent local and global techniques, especially with
regard to attainable rates of miniaturization, (iii) a demonstration of the reliability of the size
reduction process, in particular, minor result variability across independent algorithm runs.
To the best authors’ knowledge, no similar antenna miniaturization-oriented optimization
framework has been presented in the literature so far, neither in terms of the algorithmic
solutions used nor the level of performance and reliability.

2. Globalized Miniaturization Using Variable-Fidelity EM Models and PCA

This section presents the proposed optimization methodology for globalized simulation-
based antenna size reduction. Section 2.1 states the formulation of the simulation-based
miniaturization task. Section 2.2 outlines and visualizes the methodological concept of
the algorithm. Section 2.3 discusses the process for a knowledge-based approximation
of the feasible region boundary, which is of fundamental importance for the proposed
technique. Section 2.4 explicates the setup of the dimensionality-reduced surrogate model.
Section 2.5 describes the surrogate model optimization and final tuning of the antenna,
whereas Section 2.6 epitomizes the entire algorithmic flow of the procedure.

2.1. Simulation-Based Antenna Miniaturization

The geometries of compact antennas are decided upon during the initial stage of the
design process, where the effects and relevance of specific topological modifications (stubs,
slots, resonators, etc.) are validated using initial parametric studies. Notwithstanding, to
achieve the best possible miniaturization ratio, a final tuning of the antenna parameters
should be realized using rigorous numerical methods. This requires a formulation of
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a scalar objective function and constraints that will be processed with the optimization
algorithm.

Here, the size reduction problem is formally written as the following nonlinear mini-
mization task

x∗ = argmin
x

A(x) (1)

where x = [x1 . . . xn]T refers to the vector comprising designable antenna parameters
(typically, geometry dimensions), whereas A(x) stands for the antenna size, which, in the
case of planar structures, is normally the footprint area.

The solution to (1) is subject to constraints, which are more often than not of an
inequality kind: gk(x) ≤ 0, k = 1, . . . , ng. Examples include the acceptable levels of in-
band impedance matching, axial ratio, gain, sidelobe levels, etc. Sometimes, one may also
consider equality constraints (e.g., requirement such as a specific value of the antenna
beamwidth, etc.): hk(x) = 0, k = 1, . . . , nh.

The constraints imposed on the antenna performance are costly as they necessitate
executing EM analysis, and their direct tackling is often inconvenient. Implicit handling
using a penalty function approach [80] allows for turning the task into an unconstrained one
by adding appropriately scaled contributions, proportional to violations of the constraints,
to the primal objective. The reformulated task can be written as

x∗ = argmin
x

U(x) = argmin
x

(
A(x) +

ng+nh

∑
k=1

βkck(x)

)
(2)

where U is the merit function, which combines the main goal (size reduction) and a linear
combination of penalty functions ck(x), with βk being the penalty coefficients; nc = ng + nh
stands for the total number of constraints. As mentioned before, most of the constraints
are of the inequality type in practice. The penalty functions quantify the constraint viola-
tions, often in a relative manner. Table 1 gathers a few examples of performance-related
constraints along with the corresponding penalty terms.

Table 1. Selected performance-related constraints in antenna optimization and related penalty
functions.

Constraint Analytical Description # Penalty Function

In-band reflection
coefficient |S11(x,f )|

not exceeding −10 dB
|S11(x,f )| ≤ −10 dB for f ∈ F

c(x) =
[

max{S(x)+10,0}
10

]2
,

where S(x) = max{f ∈ F :
|S11(x,f )|}

In-band axial ratio AR(x,f )
not exceeding 3 dB AR(x,f ) ≤ 3 dB for f ∈ F

c(x) =
[

max{AR(x)−3,0}
3

]2
,

where AR(x) = max{f ∈ F :
AR(x,f )}

In-band variability of
realized gain G(x,f )
not exceeding 2 dB

∆G(x,f ) ≤ 2 dB for f ∈ F,
where ∆G(x,f ) = max{f ∈ F :
G(x,f )} −min{f ∈ F : G(x,f )}

c(x) =
[

max{G(x)−2,0}
2

]2
,

where G(x) = max{f ∈ F :
∆G(x,f )}

# f stands for frequency; F is the frequency range of interest (antenna operating band); |S11(x,f )|—antenna
reflection coefficient; AR(x,f )—antenna axial ratio; G(x,f )—antenna realized gain.

2.2. Globalized Size Reduction: The Concept

Compact antennas often exhibit parameter redundancy, being a result of introducing
multitudinous topological modifications [21] and additional components into the basic
radiators (e.g., monopoles [24]). As a result, there might be a number of combinations of
designable parameters x that correspond to a relatively small antenna size and acceptable
electrical performance. From the standpoint of numerical optimization, this is equivalent
to the multimodality of size reduction task (2), i.e., the existence of multiple local optima.
As explained in Section 1, the direct application of global search methods, in particular,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2023, 13, 8144 5 of 19

population-based algorithms, is impractical due to the poor computational efficiency of
such techniques. Similarly, the utilization of generic surrogate-assisted global optimizers
(efficient global optimization, EGO [83,84]) is of limited use as a consequence of design
space dimensionality and, to an even greater extent, because of broad parameter ranges. In
this work, we propose an alternative approach that allows for at least partial mitigation of
the mentioned difficulties, which includes globalized search and making the optimization
outcome more immune to the supplied initial design.

The foundation of the proposed methodology is an exploration of the feasible re-
gion Xf boundary. The feasible region is a subset of the parameter space that comprises
all vectors x satisfying the design constraints, i.e., such that gk(x) ≤ 0, k = 1, . . . , ng,
and hk(x) = 0, k = 1, . . . , nh. Its boundary, Xb, is the set of vectors such that gk(x) = 0 and
hk(x) = 0 for at least one of the constraints. As the reduction of antenna size deteriorates
electrical and field performance figures, the minimum-size design has to be allocated on
the boundary, i.e., at least one of the constraints is active. Consequently, it is beneficial to
identify the spatial allocation of the boundary, Xb, and focus the search in the vicinity of
this set. Figure 1 shows a visualization of the main concepts of the proposed optimization
approach. The search process consists of several steps, which are presented in Figure 2. A
detailed discussion of each stage will be provided in subsequent sections.
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Figure 1. Visualization showing the main concepts of the introduced miniaturization framework.
(a) Feasible and infeasible regions of the design space, along with the boundary between them. The
random vectors are used for an approximation of the boundary of the feasible region. (b) Miniaturized
designs (starting from automatically chosen observables) based on which surrogate model domain
is identified in the vicinity of the boundary region using spectral analysis [85]. (c) Allocation of
training data samples and construction of a kriging surrogate. Subsequently, the surrogate is globally
optimized, and the solution is refined at the level of a high-fidelity model using a gradient-based
procedure.

To enhance computational efficiency, the first three stages are carried out at the level
of a low-fidelity (lower resolution) EM antenna model Rc. This is justified by the fact
that at these stages, the evaluation accuracy is of minor importance. The reliability of the
optimization process is secured by executing the final stages with the use of the high-fidelity
EM model Rf. The remainder of this section contains a rigorous formulation for all stages
as well as a summary of the complete workflow (Section 2.7).D
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X—conventional design space; xr

(j)—random observables; Rc(xr
(j))—EM-simulated antenna response

at the low-fidelity level; N1, N2, N3—the numbers of all observables, the observables selected for
pre-optimization, and the pre-optimized designs with the lowest constraint violation, respectively;
Xp—surrogate model domain spanned by p selected eigenvectors.

2.3. Globalized Size Reduction: Approximating the Boundary of the Feasible Region

The design space of the antenna under study consists of an interval X = [lu]. We denote
l and u as the lower and upper parameter bounds, respectively, i.e., the following holds lk
≤ xk ≤ uk, k = 1, . . . , n. In the first stage of the optimization procedure, we generate N1
random vectors xr

(j) meeting the following requirements: (i) xr
(j) ∈ [lu]; (ii) A2 ≤ A(xr

(j)) ≤
A1; and (iii) the problem-dependent constraints are met at xr

(j). Here, A1 and A2 represent
the non-mandatory maximum and minimum antenna sizes, respectively, that might be
known from the preceding work carried out on the same structure. It is also possible to
introduce additional constraints that restrict the part of the design where sampling is to
take place. The formulation of these constraints may involve the researcher’s know-how or
other data garnered on the antenna at hand.

In the next step, we calculate low-fidelity antenna outputs, Re(xr
(i)), j = 1, . . . , N1,

and designate a subset comprising N2 entries {xi
(j)}j=1, . . . ,N2 ⊂ {xr

(j)}j=1, . . . ,Nl of vectors,
which will serve as initial designs for miniaturization. This selection is carried out using
an automated decision-making procedure, which takes into account respective constraint
violation levels (with designs featuring violations of smaller magnitude being assessed
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as more beneficial). In the numerical experiments of Section 3, we set N2 = 20, which is
a good compromise between computational cost and the amount of information about
the geometry of the boundary set Xb that may be attained with the selected designs. All
points xi

(j) are optimized for size reduction. In other words, for j = 1, . . . , N2, starting from
x(0) = xi

(j), we find
xc

(j) = arg min{x : U(x)} (3)

where U denotes the penalty-based merit function (2) and xc
(j) are found with the use of

the low-fidelity model Rc. Furthermore, task (3) is solved with relaxed convergence criteria
to lower the computational expenditures associated with the optimization process: at this
stage, the resolution of identifying the optimum design is not of major concern. Problem
(3) is solved using a trust-region (TR), gradient-based algorithm [86]. The details of the TR
algorithm will be given in Section 2.6.

In the last step of this stage, an N3-element of {xc
(j)}j=1, . . . ,N2 has to be selected, such

that it encompasses the vectors of satisfactory quality with regard to constraint violation.
This eliminates vectors at which optimization process (3) failed for any reason. For example,
a typical selection criterion for impedance matching constraints would be to eliminate
designs for which constraint violation at xc

(j) exceeds 2 dB. In the next section, we will refer
to the selected subset simply as {xc

(j)}j=1, . . . ,N3.

2.4. Globalized Size Reduction: Constructing a Surrogate Model

The designs {xc
(j)}j=1, . . . ,N3 provide an approximate allocation of a part of the feasible

region boundary. These vectors will be used to establish a metamodel domain to be assessed
for the purpose of globalized optimization of antenna size. In order to facilitate and lower
the surrogate model setup cost, the domain will be of reduced dimensionality using the
procedure proposed in [43], which is explained in Figure 3.
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Figure 3. Procedure for surrogate domain identification with dimensionality reduction using spectral
analysis of the observable set [85] (for details see [43]). Notation: Sg—covariance matrix, N3—the
number of the pre-optimized designs with the lowest constraint violation; {xg

(j)}—the observable
set; xm—the center of the observable set; xc—the center point; vk—the eigenvectors of Sg; λk—the
eigenvalues of Sg; bjk—expansion coefficients.
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In our approach, we assume that N3 > n (dimensionality of the design space; see also
Figure 3). The model domain Xp refers to the set encompassing every design xc

(j), j = 1,
. . . , N3 alongside the selected p directions. In most cases, the correlation between designs
xc

(j) is rather strong, which means that restricting the domain to the first few dominant
eigenvectors is sufficient. Dimensionality reduction allows for rendering reliable models
with the use of relatively small training datasets. In our experiments in Section 3, we use
p = 3 for all verification cases.

The surrogate model itself is set up as a kriging interpolation model [87]. The training
set xB

(j) ∈ Xp, j = 1, . . . , N4 is allocated with the use of Latin hypercube sampling (LHS) [88].
In Section 3, we use N4 = 200 high-fidelity training data samples, which allows us to
maintain the relative RMS error in the metamodel of around a few percent.

However, the alignment of the domain with the coordinate system axes is not pre-
served; therefore, the design of the experiment technique has to be slightly more involved.
More specifically, the dataset is first allocated using LHS in the unity interval 0 ≤ zj ≤ 1,
j = 1, . . . , k. Subsequently, the normalized data points z = [z1 . . . zn]T are mapped into the

domain Xp as y = h(z) = xc +
p
∑

k=1
(2zk − 1)λbk

ak.

2.5. Globalized Size Reduction: Surrogate Optimization

Global optimization of the surrogate model within its domain Xp is arranged as a
two-stage process. In the first step, a search grid Mp is prepared, which consists of all
vectors in the form

Mp =

{
x = xc + ∑

p
k=1 (2λk − 1)λbk

ak
λk ∈ {0, 1/K, 2/K, . . . , 1}, k = 1, . . . , p

}
(4)

where K stands for the grid density. In our numerical experiments, we set K = 20. The
starting point xg

(0) is assessed as

x(0)g = argmin
{

x ∈ Mp ∩ X : U(x)
}

(5)

In other words, the design xg
(0) minimizes the objective function U (evaluated using

the surrogate model) over the intersection of the design space X and search grid.
The second stage is local surrogate-based miniaturization within Xp ∩ X, as in (2). The

task is solved using the trust-region gradient search (Section 2.6). The design found this
way is denoted as xg

(0).

2.6. Globalized Size Reduction: Final Tuning

The last step of the proposed globalized optimization procedure is a local tuning of
antenna parameters for a minimum size, performed with the high-fidelity model Rf. The
underlying optimization algorithm is the trust-region (TR) gradient search [86], as briefly
outlined in this section. As mentioned before, the same algorithm is used to perform
low-fidelity optimization runs (3) in Section 2.3, as well as to refine the surrogate model in
Section 2.5.

The trust-region procedure renders a series of approximate solutions x(i), i = 0, 1, . . .
to the optimal design x* of (2). The starting point is the design xg

(0), found as delineated in
Section 2.5. We have

x(i+1) = arg min
||x−x(i) ||≤d(i)

U(i)
L (x) (6)

where UL
(i) is a merit function evaluated as in (3) but using the first-order Taylor expansion

model for antenna responses, L(i), evaluated at the current design x(i). The model is
defined as

L(i)(x) = R f (x
(i)) + J f (x

(i)) · (x− x(i)) (7)
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In (7), the Jacobian matrix of the high-fidelity response Rf at x(i) is referred to as J(x(i)),
calculated using finite differentiation. The search radius d(i) is adaptively modified using
the standard TR setup [86]. If U(x(i+1)) < U(x(i)), the solution x(i+1) produced by (6) is
accepted; otherwise, the size parameter d(i) is set to a smaller value, and the iteration is
repeated. The algorithm is terminated if ||x(i+1) − x(i)|| < ε (convergence in argument) or
d(i) < ε. In the final refinement of the high-fidelity model, the termination threshold of 10−3

is used, whereas for low-fidelity miniaturization (cf. (3)), it is increased to 10−2.

2.7. Globalized Size Reduction: Complete Algorithm

In this section, we summarize the operation of the entire globalized size reduction
procedure. The major control parameters are gathered in Table 2. These parameters were
already commented upon in Sections 2.2–2.5. The values shown in the table are used for all
verification cases presented in Section 3.

Table 2. Globalized size reduction procedure: control parameters.

Parameter Description and Recommendations

Nr

Cardinality of the observable set
Recommended value: from 50 to 100; the higher the design space

dimensionality n, the larger Nr should be used

p

Dimensionality of the surrogate domain
Recommended value: p = 3 (in order to ensure good model scalability

as a function of the number of training samples; should take into
account the eigenvalues λk)

NB

Cardinality of the training data set (for surrogate model construction)
Recommended values to ensure a relative RMS error of a few percent:

from 200 to 500

3. Validation

This section provides a validation of the proposed globalized miniaturization algo-
rithm presented in Section 2 using four examples of broadband microstrip antennas. For
each structure, an optimization for minimum size is carried out with a constraint imposed
on their reflection levels. The performance of the proposed procedure is compared to a
multi-start local search involving implicit constraint handling and both fixed and adaptive
penalty coefficients, along with a popular nature-inspired particle swarm optimizer (PSO)
(global optimizer). Section 3.1 outlines the verification antenna structures and describes
the setup of numerical experiments as well as briefly characterizes the benchmark algo-
rithms. A presentation and discussion of the results are provided in Sections 3.2 and 3.3,
respectively.

3.1. Antenna Structures and Numerical Experiment Setup

The proposed algorithm is validated with the use of four broadband microstrip an-
tenna structures, as presented in Figure 4. Table 3 provides additional information con-
cerning the antennas (see also [89–92]). All the simulations have been performed using
Intel Xeon 2.1 GHz dual-core CPU with 128 GB RAM. The low-fidelity models constitute
coarse-discretization versions of the high-fidelity representations. The last two rows of
Table 3 provide information about the simulation times for the respective models. As
the average time evaluation ratio between the high- and low-fidelity models is over four,
considerable time savings while executing the first few stages of the proposed algorithm
are obtained. The proposed algorithm is compared to several benchmark methods, which
are characterized in Table 4.
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Figure 4. Benchmark antenna structures: (a) Antenna I, (b) Antenna II, (c) Antenna III, and (d)
Antenna IV. Ground planes are marked using the light gray shade.

Table 3. Antenna structures used to validate the proposed algorithm.

Antenna I [89] II [90] III [91] IV [92]

Substrate
RF-35 RF-35 FR-4 RO4350

(εr = 3.5, h = 0.762 mm) (εr = 3.5, h = 0.762 mm) (εr = 4.4, h = 1.52 mm) (εr = 3.48, h = 0.762 mm)
Designable Parameters

(mm) x = [l0 g a l1 l2 w1 o]T x = [L0 dR R rrel dL dw Lg
L1 R1 dr crel]T

x = [L0 dR R rrel dL dw Lg
L1 R1 dr crel]T

x = [L0 L1 L2 L dL Lg w1 w2

w dw Ls ws c]T

Other Parameters (mm) w0 = 2o + a, wf = 1.7 w0 = 1.7 W0 = 3.0 w0 = 1.7

Parameter space X
l = [10 8 4 5 1 0.1 0.2]T l = [4 0 3 0.1 0 0 4 0 2 0.2

0.2]T
l = [2 2 2 0.2 2 0 0.1 0.1 0

0.01 0.01]T
l = [5 0.1 0.1 5 0 5 0.1 0.1 5

0 0.01 0.1 0.01]T

u = [35 20 15 12 15 10 3]T u = [15 6 8 0.9 5 8 15 6 5 1
0.9]T

u = [15 15 20 3 15 15 3 8 5
0.8 0.8]T

u = [20 2 3 20 5 20 1 1 25 10
0.2 0.9 0.3]T

Intended operating band Ultra-wideband frequency band from 3.1 GHz to 10.6 GHz
Design objective * Reduce antenna size A(x) (understood as the substrate footprint area containing the device)

EM model Evaluated using time-domain solver in CST Microwave Studio (models incorporate SMA connectors)

High-fidelity EM model ~900,000 mesh cells ~2,300,000 mesh cells ~1,080,000 mesh cells ~470,000 mesh cells
Simulation time 150 s Simulation time 424 s Simulation time 265 s Simulation time 105 s

Low-fidelity EM model ~130,000 mesh cells ~210,000 mesh cells ~160,000 mesh cells ~130,000 mesh cells
Simulation time 45 s Simulation time 51 s Simulation time 55 s Simulation time 37 s

* The size reduction problem is subject to a constraint: |S11(x,f )| ≤ −10 dB for f ∈ [3.1 10.6] GHz, which is
handled using the penalty function shown in the second row of Table 1, with the penalty coefficient β = 104.

Table 4. Benchmark procedures.

Algorithm Operating Principles

I

Local gradient-based miniaturization with the trust region algorithm used as a search engine
(cf. Section 2.6). The size reduction task is expressed as (2) and (3). The penalty coefficient β

is kept fixed throughout the algorithm run.
Algorithm performance highly depends on the choice of β: small values ensure better

miniaturization rates but lead to larger constraint violations; a large β leads to a more precise
constraint control but inferior size reduction because of the objective function (2) steepness

near the feasible region boundary.
The algorithm is executed for different values of β = 103, 104, and 105.

II

Local trust-region search with adaptively adjusted penalty coefficients [89]. This method
adjusts the value of β during the algorithm run based on the constraint violation detected in
the current iteration. This leads to a better overall performance with regard to size reduction

and constraint control [89].

III

The particle swarm optimizer (PSO) [93] is a widely used population-based algorithm. The
following PSO setup is used: the swarm size is set to 10, the maximal number of iterations is

100, and the typical control parameters are (χ = 0.73, c1 = c2 = 2.05), cf. [89]. The penalty
coefficient of problem (2) is set to 104.

Note that the PSO is set up here with a relatively small computational budget (1000 objective
function evaluations) in order to avoid excessive computational costs, which are still in the

range of a few days of the CPU time per algorithm run.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2023, 13, 8144 11 of 19

All the considered EM-driven miniaturization tasks are multimodal due to a variety of
geometrical modifications used in the considered structures (e.g., L-shaped stub in Anten-
nas I and II, radiator slots in Antennas II, III, and IV, and a ground-plane slit in Antenna III).
Thus, the results obtained using the local search might be highly dependent on the initial
design. Moreover, when using globalized methods, the results will also differ between the
algorithm runs because of design space dimensionality and its large volume resulting from
broad ranges for most of geometry parameters. Thus, we verify the algorithm performance
in a statistical manner: based on ten independent runs of all methods. We compare the
average antenna size and its standard deviation, the average constraint violation and its
standard deviation, along with the average optimization computational cost.

3.2. Results

Tables 5–8 present the results achieved using the presented procedure and the bench-
mark routines. Figures 5–8 illustrate the reflection characteristics of the antennas optimized
using our technique for three selected algorithm runs for each structure. The numerical
data includes the average footprint area and its standard deviation, the average constraint
violation and its standard deviation, and the average optimization cost. The standard
deviations can be viewed as a measure of result repeatability. The results are discussed at
length in Section 3.3. The experimental validation of the antenna structures themselves can
be found in the source papers (e.g., [89–92]). It is not included here as it is irrelevant to the
main topic of the work.

Table 5. Optimization results for Antenna I.

Optimization Algorithm

Performance Figure

Antenna
Footprint A

(mm2) 1
Std(A) 2 Constraint

Violation D (dB) 3 Std(D) (dB) 4 CPU Cost 5

Algorithm I
β = 103 318.1 42.6 1.2 0.4 43.8 × Rf (1.8 h)
β = 104 317.7 42.3 0.4 0.7 42.2 × Rf (1.8 h)
β = 105 318.8 43.3 0.1 0.2 41.4 × Rf (1.7 h)

Algorithm II 314.1 42.3 0.3 0.2 50.0 × Rf (2.1 h)
Algorithm III 360.9 67.5 0.5 0.9 1000 × Rf (42 h)

Globalized search with dimensionality
reduction (this work) 265.4 9.6 0.1 0.1 692.7 × Rf (29 h)

1 Optimized antenna footprint A averaged over ten algorithm runs. 2 Std(A)—standard deviation of the optimized
antenna footprint averaged over ten algorithm runs. 3 Constraint violation, defined as D = {3.1 GHz≤ f ≤ 10.6 GHz
: max|S11(f )|} + 10, averaged over ten algorithm runs; |S11(f )|—antenna reflection. 4 Std(D)—standard deviation
of the constraint violation D, averaged over ten algorithm runs. 5 Cost expressed in terms of the equivalent number
of high-fidelity EM antenna analyses. Numbers in brackets correspond to the running time in hours.

Table 6. Optimization results for Antenna II.

Optimization Algorithm

Performance Figure

Antenna
Footprint A

(mm2) 1
Std(A) 2 Constraint

Violation D (dB) 3 Std(D) (dB) 4 CPU Cost 5

Algorithm I
β = 103 250.4 24.0 1.2 0.5 124.2 × Rf (14.6 h)
β = 104 318.6 60.0 0.1 0.1 180.3 × Rf (21.2 h)
β = 105 331.6 63.4 0.1 0.1 133.2 × Rf (15.7 h)

Algorithm II 281.6 37.1 0.2 0.2 181.7 × Rf (21.4 h)
Algorithm III 399.4 143.6 0.6 0.4 1000 × Rf (118 h)

Globalized search with dimensionality
reduction (this work) 205.6 18.2 0.07 0.07 472.6 × Rf (56 h)

1 Optimized antenna footprint A averaged over ten algorithm runs. 2 Std(A)—standard deviation of the optimized
antenna footprint averaged over ten algorithm runs. 3 Constraint violation, defined as D = {3.1 GHz≤ f ≤ 10.6 GHz
: max|S11(f )|} + 10, averaged over ten algorithm runs; |S11(f )|—antenna reflection. 4 Std(D)—standard deviation
of the constraint violation D, averaged over ten algorithm runs. 5 Cost expressed in terms of the equivalent number
of high-fidelity EM antenna analyses. Numbers in brackets correspond to the running time in hours.
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Table 7. Optimization results for Antenna III.

Optimization Algorithm

Performance Figure

Antenna
Footprint A

(mm2) 1
Std(A) 2

Constraint
Violation D

(dB) 3
Std(D) (dB) 4 CPU Cost 5

Algorithm I
β = 103 212.8 14.3 1.0 0.4 164.9 × Rf (12.1 h)
β = 104 255.0 25.1 0.2 0.1 138.1 × Rf (10.2 h)
β = 105 280.1 47.4 0.1 0.1 154.0 × Rf (11.3 h)

Algorithm II 215.6 3.6 0.3 0.1 189.9 × Rf (14.0 h)
Algorithm III 425.7 145.8 0.2 0.2 1000 × Rf (74 h)

Globalized search with
dimensionality reduction (this work) 226.2 12.4 0.1 0.1 689.7 × Rf (51 h)

1 Optimized antenna footprint A averaged over ten algorithm runs. 2 Std(A)—standard deviation of the optimized
antenna footprint averaged over ten algorithm runs. 3 Constraint violation, defined as D = {3.1 GHz≤ f ≤ 10.6 GHz
: max|S11(f )|} + 10, averaged over ten algorithm runs; |S11(f )|—antenna reflection. 4 Std(D)—standard deviation
of the constraint violation D, averaged over ten algorithm runs. 5 Cost expressed in terms of the equivalent number
of high-fidelity EM antenna analyses. Numbers in brackets correspond to the running time in hours.

Table 8. Optimization results for Antenna IV.

Optimization Algorithm

Performance Figure

Antenna
Footprint A

(mm2) 1
Std(A) 2

Constraint
Violation D

(dB) 3
Std(D) (dB) 4 CPU Cost 5

Algorithm I
β = 103 727.9 236.0 1.7 1.5 180.3 × Rf (5.3 h)
β = 104 829.5 206.4 1.0 1.9 211.2 × Rf (6.2 h)
β = 105 842.8 130.2 0.4 0.9 248.0 × Rf (7.2 h)

Algorithm II 753.9 243.0 0.9 0.8 230.3 × Rf (6.7 h)
Algorithm III 457.8 59.1 0.7 0.4 1000 × Rf (29 h)

Globalized search with
dimensionality reduction (this work) 414.8 10.4 0.3 0.1 922.5 × Rf (26.9 h)

1 Optimized antenna footprint A averaged over ten algorithm runs. 2 Std(A)—standard deviation of the optimized
antenna footprint averaged over ten algorithm runs. 3 Constraint violation, defined as D = {3.1 GHz≤ f ≤ 10.6 GHz
: max|S11(f )|} + 10, averaged over ten algorithm runs; |S11(f )|—antenna reflection. 4 Std(D)—standard deviation
of the constraint violation D, averaged over ten algorithm runs. 5 Cost expressed in terms of the equivalent number
of high-fidelity EM antenna analyses. Numbers in brackets correspond to the running time in hours.
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Figure 6. Reflection responses of Antenna II for representative designs yielded using the introduced
miniaturization framework: (a) design 1 (footprint area 189 mm2), (b) design 2 (footprint area
182 mm2), and (c) design 3 (footprint area 228 mm2). Target operating band marked using the
horizontal line.
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3.3. Result Analysis

The results presented in Tables 5–8 permit us to summarize the performance of the
introduced globalized size reduction algorithm and how it compares to the benchmark
methods.

The obtained results confirm that the considered miniaturization tasks are indeed
multimodal, which is implied by the high standard deviation values of the antenna size
A for Algorithms I and II, which are both local methods. In particular, depending on the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2023, 13, 8144 14 of 19

initial design, the obtained footprint area may vary significantly and by as much as thirty
percent with respect to the average size.

A comparison of the proposed procedure with the benchmark algorithms allows us to
draw the following conclusions. As expected, and already demonstrated in the literature
(e.g., [89]), the outcome of Algorithm I depends on the penalty coefficient setup. When
using low values of β, excessive constraint violations occur, whereas using coefficients that
are too high leads to inferior miniaturization rates. Algorithm II resolves these issues to a
certain extent by ensuring both the constraint control and competitive (w.r.t. Algorithm I)
antenna sizes. The computational cost of Algorithm II is only slightly higher than that of
Algorithm I.

As far as the nature-inspired optimization (Algorithm III) is concerned, it performs
poorly for all considered antenna structures, both with regard to the achieved antenna
footprint areas and constraint violations. The reasons are twofold: (i) the intrinsic challenges
of the size reduction task and (ii) the low computational budget assigned for the algorithm.
As explained before, we use this setup to avoid excessive computational costs. The most
important takeaway here is that 1000 EM analyses are—to a large extent—insufficient to
yield satisfactory optimization outcomes using population-based techniques.

Overall, the size reduction procedure proposed in this work is demonstrated to out-
perform all benchmark algorithms in terms of size reduction. On the one hand, it yields
designs featuring considerably smaller average footprint area (e.g., the improvement over
Algorithm II is almost thirty percent) except for Antenna III, where the obtained aver-
age size is comparable to Algorithm II. Yet, the standard deviation of the antenna size is
significantly lower for most of the considered structures (by almost 80% for Antenna I,
over 50% for Antenna II, and over 95% for Antenna IV; all with respect to Algorithm II)
and comparable for Antenna III. The latter corroborates the global search capability of the
presented approach.

In terms of computational cost, the proposed method is clearly more expensive than
local routines, although the difference is not significant for Antennas II and III. Still, the
overall expenses equal to a few hundred EM simulations is very much practical given
the huge advantages in terms of the optimization process reliability ensured with our
technique. Also, the comparison to PSO, executed with a computational budget of 1000 EM
simulations (i.e., almost twice as high as the typical cost of the proposed method), provides
important indications concerning the performance of nature-inspired procedures for the
considered class of size reduction tasks. Based on a typical evolution of the objective
function value for population-based methods (rapid initial decrease followed by a plateau),
it is expected that reaching the design quality offered by the proposed method would
require many thousand EM analyses, if possible at all.

Furthermore, one can observe that Antenna IV is by far the most challenging case,
primarily due to the number of its geometry parameters (thirteen). All benchmark algo-
rithms, including Algorithm II (adaptive penalty factors), perform poorly for this structure,
not only in terms of achievable miniaturization rates and solution repeatability but also in
constraint control. At the same time, Algorithm III (PSO) performs considerably better than
both Algorithms I and II, which confirms the challenging nature of this case study. Notwith-
standing, the proposed procedure produces results that are superior to all benchmark
methods. It yields designs with average antenna sizes being about half of that obtained
using Algorithms I and II, a standard deviation almost six times smaller than Algorithm III,
and excellent enforcement of the design constraint.

The collective performance of the introduced globalized size reduction approach is
encouraging, both in terms of the average size reduction ratio, the solution repeatability,
and computational efficacy. The latter means that although the CPU expenses of our
procedure are higher than those of local algorithms (Algorithms I and II), the difference is
not overwhelming given the efficacy benefits. The reliability of the developed globalized
knowledge-based miniaturization framework results from an accurate identification of
the feasible region boundary, where the designs meeting the size-reduction-related design
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specifications reside. This identification is carried out by extracting knowledge on actual
constraint violations from random observables as well as the use of an automated decision-
making procedure, which selects observables of sufficient quality. At the same time, the
costs are practically acceptable and significantly lower than what is required using nature-
inspired methods. This is possible due to the use of variable-fidelity EM simulations as well
as dimensionality reduction when defining the domain of the surrogate. Note that both
mechanisms compromise accuracy; notwithstanding, this does not affect overall reliability
because all simplifications are pertinent to the intermediate stages of the optimization
process. The final steps, i.e., the construction of the surrogate model and the final tuning,
are both executed at the high-fidelity level.

4. Conclusions

This work introduced a novel framework for EM-based size reduction of antenna
structures. Our methodology enables global search with an initial knowledge-based pre-
screening of the design space and approximating the geometry of the feasible region
boundary using supplementary optimization processes, both executed at the low-fidelity
(thus computationally cheaper) level of evaluating antenna responses. Furthermore, it al-
lows for exploring the boundary region using dimensionality-reduced surrogate modeling
methods. The reliability of the procedure is secured by executing the last stages (surrogate
model identification and final parameter tuning) at the high-fidelity EM simulation level.
The presented technique is comprehensively validated using four microstrip antenna struc-
tures and benchmarked against several algorithms, including both local (gradient-based)
routines and a representative nature-inspired algorithm (PSO). The results corroborate
the globalized search capability of the proposed procedure and its superior overall perfor-
mance. On the one hand, it consistently ensures improved miniaturization rates over the
benchmark. The obtained designs are up to fifty percent smaller with a twenty-five percent
average. Further, it provides good repeatability of solutions, as indicated by low standard
deviations of the antenna sizes, which are from six to as much as twenty-four times smaller
than for the benchmark procedures, with an average of twelve. On the other hand, owing
to the implemented mechanisms, especially variable-resolution models and dimensionality
reduction, the proposed approach retains relatively low computational cost. The savings
with respect to the PSO algorithm are about thirty percent, with the latter yielding designs
of considerably larger footprints, even twice as larger. Our future work will be aimed at
further development of this methodology, especially in terms of ensuring a more extensive
exploration of the feasible region boundary, as well as applying it to the various classes of
antenna and microwave components.
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