
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23718  | https://doi.org/10.1038/s41598-021-03095-0

www.nature.com/scientificreports

Globalized parametric optimization 
of microwave components 
by means of response features 
and inverse metamodels
Anna Pietrenko‑Dabrowska1* & Slawomir Koziel1,2

Simulation‑based optimization of geometry parameters is an inherent and important stage of 
microwave design process. To ensure reliability, the optimization process is normally carried out using 
full‑wave electromagnetic (EM) simulation tools, which entails significant computational overhead. 
This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized 
structures, dimension scaling over broad ranges of operating frequencies, multi‑modal problems, 
etc.). In pursuit of mitigating the high‑cost issue, this paper proposes a novel algorithmic approach 
to rapid EM‑driven global optimization of microwave components. Our methodology incorporates a 
response feature technology and inverse regression metamodels to enable fast identification of the 
promising parameter space regions, as well as to yield a good quality initial design, which only needs 
to be tuned using local routines. The presented technique is illustrated using three microstrip circuits 
optimized under challenging scenarios, and demonstrated to exhibit global search capability while 
maintaining low computational cost of the optimization process of only about one hundred of EM 
simulations of the structure at hand on the average. The performance is shown to be superior in terms 
of efficacy over both local algorithms and nature‑inspired global methods.

Topological complexity of passive microwave components has been continuously increasing over the  years1,2. 
This is a consequence of growing performance  demands3, functionality  requirements4–7, but also miniaturiza-
tion  trends8. In the latter case, techniques such as transmission line (TL)  folding9 or slow-wave  phenomenon10, 
are often employed, leading to geometrically involved structures described by many  parameters11,12. Circuit-
theory-based methods often turn out to be inadequate in describing the intricacies of such devices. Due to 
electromagnetic (EM) cross-coupling and similar effects, their reliable evaluation can only be realized through 
full-wave EM analysis.

As a result of involved interrelations between the circuit topology and its electrical characteristics, simultane-
ous optimization of geometry parameters by means of numerical algorithms becomes imperative to achieve the 
best possible performance of the structure. In fact, numerical optimization allows proper handling of several 
objectives and constraints over multi-dimensional parameter spaces. Yet, it is an expensive process as even 
local optimization involves a considerable number of system evaluations. In many cases, including multimodal 
 tasks13–15, multi-criterial  design16, or the lack of good starting  points17,18, globalized search is necessary, which 
makes the optimization problem even more challenging.

Undoubtedly, the most popular global optimization methods today are population-based nature-inspired 
 algorithms19–21. Their roots can be tracked back to late  1960s22, and eventually dominated global search practice 
since  2000s23–27. Over the last years, the number of nature-inspired algorithms has been growing tremendously 
(firefly  algorithm28, harmony  search29, and  others30–36). Population-based methods capitalize on exchanging 
information between the members of the candidate solution  set37–39, but also generating new data using exploita-
tive  operators40. Avoiding local minima is facilitated by including randomness in various  forms41,42. Typically, 
nature-inspired algorithms are straightforward to implement, yet, their computational efficiency is poor: a single 
optimization run may require from a few hundreds to many thousands of objective function evaluations, which 
becomes a serious problem when the system of interest is to be evaluated using full-wave EM simulation.
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In high-frequency design, practical applicability of the aforementioned global search algorithms is limited 
to cases in which the objective function is computationally cheap (e.g., analytical array factor models for array 
pattern  synthesis43), EM simulation is relatively cheap (e.g., a few seconds), or a parallelization is possible. An 
alternative is utilization of surrogate modelling  methods44,45. Among many possibilities,  kriging46, Gaussian 
process  regression47, neural  networks48–50, and polynomial chaos  expansion51, seem to be the most popular. In a 
practical setup, the surrogate acts as a fast predictor, and it is often refined using the EM simulation data accu-
mulated during the optimization  process52. Surrogates can also be used in combination with machine learning 
 methods53, or for parameter space pre-screening54.

The employment of data-driven surrogates in the context of global optimization is limited by the curse of 
dimensionality, and by nonlinearity of the microwave component responses. In practice, only devices described 
by a few parameters of relatively narrow ranges can be  handled55,56. A considerable extension of the applicability 
range of the surrogates can be achieved using the recently proposed performance-driven modelling  methods57–59, 
where the model is only constructed along a specified manifold (in the following, we use the term “manifold” to 
describe a curved surface in a multi-dimensional space), corresponding to designs that are optimum with respect 
to the assumed performance  figures57. Constraining the domain allows for setting up reliable models over wide 
ranges of geometry, material, and operating parameters of the system at hand at a low computational cost. This is 
possible by utilizing a two-step process, where the parameter space is first mapped into a low-dimensional mani-
fold using an auxiliary inverse model. The final surrogate is then established in the vicinity of the said manifold, 
which is of dramatically smaller volume than the original space. The performance-driven concept has been also 
generalized to variable-fidelity  case60. Another method, recently introduced to accelerate EM-based optimiza-
tion and modelling procedures, is the response feature  technique61, where the design (modelling) objectives 
are expressed in terms of characteristic points of the system  outputs62. Due to a weakly-nonlinear dependence 
between the characteristic point coordinates and geometry parameters, considerable savings can be  achieved61–63.

This work discusses a novel methodology for global parameter optimization of microwave components. 
The proposed approach relies on identification of the most promising regions of the search space using inverse 
regression model set up using pre-selected random observables. The inverse model identification capitalizes 
on response feature technology, which is critical to handle intrinsically non-linear circuit characteristics in a 
computationally feasible manner. The initial design yielded by the regression model predictions is locally tuned 
using the trust-region gradient-based algorithm. Numerical verification of the procedure is executed using sev-
eral microstrip circuits, including two rat-race couplers and a dual-band power divider. The findings confirm 
the global search capability of the presented framework while retaining low computational cost, comparable 
to strictly local optimization. At the same time, our algorithm is shown to outperform multiple-start gradient 
search as well as population-based metaheuristics (here, particle swarm optimization). The major novelties of 
the proposed globalized optimization approach include: (1) the development of a rapid procedure for identifica-
tion of the promising regions of the parameter space, incorporating the response feature technology and inverse 
surrogates, (2) combining feature-based predictions with analytical trend functions utilized in the second stage 
of the search process to yield reasonable starting point for further (local) parameter tuning, (3) enabling glo-
balized search at the cost comparable with local (e.g., gradient-based) optimization, and significantly lower than 
nature-inspired algorithms, (4) comprehensive demonstration of the efficacy of the method using real-world case 
studied, as well as benchmarking against a variety of reference methods. To the best knowledge of the authors, 
no similar method has been available in the literature thus far, especially in terms of combining reliability with 
computational efficiency. Furthermore, as the method does not rely on forward surrogate models, it is more 
immune to dimensionality issues than state-of-the-art (data-driven) surrogate-assisted approaches.

Globalized microwave optimization using feature‑based inverse metamodels
The purpose of this section is to introduce the optimization technique discussed in the work. Our approach 
employs inverse regression surrogates established using pre-selected random parameter vectors, and the charac-
teristic points of EM simulated responses of the microwave component under design. Weakly-nonlinear relation-
ship between these feature points and geometry parameters enables global search capability at low computational 
cost. The inverse model is used to render a good starting point, which is subsequently tuned by means of a local 
(here, gradient-based) procedure.

Formulation of EM‑driven design task. The simulation-driven design problem is formulated here as a 
nonlinear minimization task of the form

where U is a scalar objective function, and Ft = [Ft.1 … Ft.K]T is a target vector of operating parameters. The objec-
tive function quantifies the quality of the design based on EM-simulated responses of the microwave component 
at hand, which are most often scattering parameters Skl(x,f), where k and l denote the corresponding ports of the 
circuit, x is a vector of designable parameters, and f is the frequency.

For the sake of example, let us consider a microwave coupler, which is to operate at the frequency f0 so 
that its matching and isolation characteristics, |S11| and |S41|, are minimized at f0, and the power split ratio 
dS(x,f0) =|S21(x,f0)| – |S31(x,f0)| reaches a target value KP (e.g., 0 dB for equal power split). In this case, the operat-
ing parameter vector would be Ft = [f0 KP]T, whereas the objective function may be defined as

(1)x
∗ = argmin

x
U(x, Ft)

(2)U(x, Ft) = U(x, [f0 KP]
T ) = max

{

|S11(x, f0)|, |S41(x, f0)|
}

+ β
[

dS(x, f0)− KP

]2
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where the second term is a penalty function enforcing the required power split ratio, with β being the penalty 
factor controlling the contribution of the penalty term to the overall objective function.

Another example is to design a dual-band coupler for a substrate characterized by a specific relative permit-
tivity εr, so that the circuit minimizes both |S11| and |S41| responses at the two operating frequencies f0.1 and f0.2, 
while providing equal power split at these frequencies. Here, the operating parameter vector is Ft = [f0.1 f0.2 εr]T, 
and the objective function may be defined as

Other design scenarios can be treated in a similar manner. This includes cases where the operating bandwidth 
of the device is handled explicitly (e.g., bandwidth enhancement, etc.).

Design quality evaluation using response features. Adjustment of geometry parameters is a neces-
sary step of microwave design process. It aims at improving the performance parameters, and, as explained in 
“Formulation of EM-driven design task”, it can be formulated as an optimization task, normally solved at the 
level of EM analysis to ensure reliability. In this work, we address globalized optimization. It is often required, 
either due to the lack of good starting point, or the presence of multiple local optima, some of which may 
fail to satisfy the prescribed performance requirements. A representative situation is a design of miniaturized 
structures where conventional transmission lines are replaced by CMRC or similar unit  cells10. Therein, the 
relationships between geometry parameters and electrical characteristics of the cell are generally  complex12, 
which renders an identification of a reasonable initial design a difficult problem. Similar issues may arise when 
re-designing a given circuit for operating frequencies or substrate that are away from those at the current design.

Global exploration of the parameter space is a daunting task due to nonlinearity of system characteristics 
(both as a function of geometry parameters and frequency), but also dimensionality issues. While direct EM-
driven global search using, e.g., nature-inspired algorithms, is almost always computationally prohibitive (unless 
the computational model is relatively cheap to evaluate), the aforementioned reasons also hinder utilization of 
surrogate-assisted procedures, as rendering reliable metamodels is rarely feasible beyond a few parameters and 
within narrow ranges thereof.

Figure 1 illustrates several situations where a local (e.g., gradient-based) search may fail due to the lack of a 
good initial design or the necessity of re-designing the structure for operating conditions that are distant from 
those at the current design. The coupler of Fig. 1a is a compact microstrip rat-race coupler, described by six 
independent geometry parameters x = [l1 l2 l3 d w w1]T, further details pertaining the circuit can be found in 
Table 2. The example is based on one of the miniaturized coupler structures considered as verification cases in 
“Numerical verification”.

(3)

U(x, Ft) = U(x, [f0.1 f0.2 εr]
T )

= max{|S11(x, f0.1)|, |S41(x, f0.1)|, |S11(x, f0.2)|, |S41(x, f0.2)|}

+ β
[

dS(x, f0.1)
2 + dS(x, f0.2)

2
]

a                                   b

1 2

3 4

l1 l2 l3
dw1 ww

d1

Figure 1.  Miniaturized microstrip coupler and its scattering parameters versus frequency: (a) coupler 
geometry, (b) S-parameters at selected random designs within the assumed parameter space. The vertical lines 
mark the target operating frequency (here, 1.6 GHz). Local search carried out using the objective function such 
as (2) would fail when starting from most of the shown designs, due to severe misalignment between the target 
and the actual operating conditions.
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The issues discussed above may be mitigated by processing information extracted from the EM-simulated 
circuit responses in the form of the characteristic points (or response features), which is a foundation of feature-
based optimization (FBO)  technology61. FBO explores the fact that despite intrinsic nonlinearity of the system 
responses (cf. Fig. 1b), the relationships between the characteristic point coordinates and geometry/material 
parameters is much less nonlinear, which allows for obtaining a considerable amount of information about the 
system using a limited amount of EM simulation data, as shown in Fig. 2. Figure 2a shows the selection of the 
response features corresponding to minimum of matching and isolation characteristics as well as the power split 
ratio of miniaturized microwave coupler of Fig. 1a.

The power split KP =|S21(f0)| – |S31(f0)| is evaluated at the approximate operating frequency f0 of the circuit. 
The frequency f0 is assessed as the average of the |S11| and |S41| minima. Note that some of the feature points 
may not exist depending on the particular parameter vector (e.g., the operating frequency located outside the 
simulation frequency range). The relationship between the operating frequency and power split ratio and the 

a                                    

b

Figure 2.  Miniaturized coupler of Fig. 1a: (a) response features: minima of |S11| and |S41| and power split ratio 
KP (o); KP is evaluated at the frequency (approximate operating frequency f0 of the circuit) being the average 
of the said minima (thick vertical line); (b) relationship between f0 and KP and the three selected geometry 
parameters; the circles mark coupler designs and the gray points denote the regression model.
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three selected geometry parameters is presented in Fig. 2b, where the specific coupler designs are shown along 
with the regression model of the form a0 + a1exp(a2f0 + a3KP), which represents the trends between the operating 
parameters and the circuit dimensions.

The definition of the feature points depends on the particular shape of the circuit responses and on the for-
mulation of the design task. These could be simply the frequency and level locations of the  resonances61, local 
minima/maxima of the pass-band part of the return  loss62, or points defining a circuit bandwidth, power split, 
etc.64. In this paper, utilization of characteristic points is one of the foundations of the presented optimization 
technique, specifically, at its first stage (“Globalized optimization with inverse regression models”). However, 
the feature points are used here primarily to estimate the actual operating conditions of the circuit, rather than 
directly (as in  FBO61), which was graphically illustrated in Fig. 2a.

Globalized optimization with inverse regression models. As announced in “Design quality evalua-
tion using response features”, this paper capitalizes on a weakly-nonlinear dependence of the geometry variables 
of the circuit on its operating parameters (frequency, bandwidth, power split) in order to explore the parameter 
space in a computationally-efficient manner. Examples of such relationships can be found in Fig. 2b for a rep-
resentative miniaturized microstrip coupler. By weakly nonlinear we mean the type of relation that is usually 
monotonic (e.g., of the exponential type, close to proportional or inversely proportional).

This sort of relationship holds for many practical circuits, especially when the figures of interest are operating 
frequencies/bandwidth, or material parameters (substrate permittivity/height), but also other parameters (e.g., 
power split ratios for couplers). In particular, operating parameters are in typically monotonic relations with 
certain major parameters, despite the fact that the entire frequency characteristics may be strongly nonlinear 
function of frequency.

The information necessary to estimate the mentioned dependencies is acquired using randomly generated 
parameter vectors (observables). Some of these may be of good quality from the perspective of the assumed per-
formance requirements, whereas others may be poor and need to be rejected. The observable quality is evaluated 
using the feature points extracted from the simulated scattering parameters, and comparing the utility metrics 
obtained this way with the design targets. The subset of the best observables is then employed to identify an 
inverse regression model. The latter serves two purposes: (1) to find the promising parameter space region, and 
(2) to generate infill points for refining the inverse surrogate. The globalized search process is executed iteratively, 
with a single infill point rendered per iteration, and the worsts observables replaced by those being closer to the 
target. The details of the procedure are explained in the remaining part of this section.

First, we introduce the notation used throughout:

• F(x) = [F1(x) … FK(x)]T—a vector of the operating parameters at the design x (e.g., centre frequency, band-
width, power split ratio), extracted from the EM simulated circuit responses. As mentioned before, the 
particular operating parameters are estimated based on the feature points (cf. Fig. 2a); e.g., the operating 
frequency of the coupler can be estimated as the average of the frequencies corresponding to the minimum 
of the matching and isolation characteristics. If some of the parameters cannot be extracted (e.g., some of the 
relevant feature points cannot be distinguished or are allocated outside the frequency range of simulation), 
we assign F(x) = [0 …  0]T;

• L(x) = [l1(x) … lK(x)]T—a vector of auxiliary coefficients reflecting the design quality and corresponding 
to the entries of the vector F(x). For example, if the objective is to reduce the level of |S11| and |S41| at the 
operating frequency, the corresponding lk can be the average of |S11| and |S41| at their respective minima: the 
lower value indicates that the design x is of higher quality. Similarly, if the operating parameter is a power 
split ratio, the corresponding lk might be a deviation from the estimated power split and its target value. If 
some of the entries of L(x) cannot be extracted, we assign L(x) = [0 …  0]T;

• D(F,Ft)—a function quantifying the misalignment between the target vector Ft (cf. “Formulation of EM-
driven design task”) and the operating parameter vector F; in this work, we use L2-norm-based distance 
D(F,Ft) =||F – Ft||;

• Daccept—user-defined control parameter utilized to terminate the global search stage of the optimization 
process, i.e., we assume that the current design is sufficiently close to the target if D(F,Ft) ≤ Daccept.

Before providing a rigorous formulation of the global search process, the following outline is discussed to 
clarify the operation and the meaning of the specific steps:

1. Observable generation obtain a set of parameter vectors x(j), j = 1, …, N, generated randomly over the assumed 
space X (most often, an interval defined by the lower and upper parameter bounds), typically, using a uni-
form probability distribution. The vectors are generated as long as necessary to obtain N designs for which 
||F(x(j))||> 0, j = 1, …, N.

2. 2. Inverse model construction Using the set of triples {F(x(j)), L(x(j)), x(j)}j = 1,…,N, identify an inverse regression 
model rI(F) with the values in X; the model quantifies the dependence between the operating and geometry 
parameters of the circuit. The analytical formulation of rI will be discussed later in the section;

3. Design prediction Employ the inverse model rI to identify a candidate parameter vector xtmp = rI(Ft), where 
Ft is the vector of target operating parameters (cf. “Formulation of EM-driven design task”). If ||F(xtmp)||> 0 
and D(F(xtmp),Ft) < max{j = 1, …, N : D(F(x(j)),Ft)}, replace the vector realizing the above maximum by xtmp, 
and reset rI.
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The second and the third step are iterated in the attempt to find a design that is sufficiently close to the target. 
More specifically, the procedure is terminated if D(F(xtmp),Ft) < Dmax (a user-defined acceptance threshold). The 
next stage is local optimization as described in “Local optimization procedure”. It can be noted that the procedure 
generates random parameter vectors until a sufficient number of designs are found for which clearly defined 
feature points can be extracted. This is followed by constructing the inverse model (see Fig. 2b for a graphical 
illustration), which is then used as a predictor to yield a location of the design for which the operating parameters 
are possibly close to the target Ft. If the candidate design is of sufficient quality (according to function D(F,Ft)), 
it replaces the worst of the existing base vectors.

Because the design replacement in the dataset {x(j)} is governed by the proximity function D(F,Ft), over time, 
the inverse model will be focused on the region containing designs that exhibit low values thereof. For the same 
reason, the local accuracy of the surrogate will gradually improve. A graphical illustration of the procedure 
can be found in Fig. 3. The acquisition of the observables is carried out as follows: only the designs with their 
corresponding operating parameters (centre frequency, power split ratio) within the region of interest and the 
simulation frequency range will contribute to a construction of the inverse model rI (see Fig. 3a).

The inverse regression model rI(F) is the fundamental component of the proposed optimization procedure. 
As outlined above, it is constructed using the triples {F(x(j)), L(x(j)), x(j)}j = 1,…,N. The analytical form of rI can be 
simple because the dependence between the geometry parameters and the operating conditions of the circuit 
is typically only weakly nonlinear. Nevertheless, the model has to have a sufficient flexibility to account for the 
fact that the aforementioned dependence may be close to inverse proportionality for certain parameters. Having 
this in mind, the following form has been assumed:

The surrogate is identified by solving

(4)rI (F) = rI
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Figure 3.  Fundamental components of the proposed optimization procedure: (a) selection of the “good” 
observables, (b) observables (•) in the two-dimensional parameter space f0, KP for a selected geometry 
parameter x; the observable projections onto the f0-KP plane, the initial inverse model (grey surface); the target 
operating parameters (blue circle); (c) first iteration: the infill point predicted by rI (grey circle) replaces the 
worst observable and rI is updated; (d) last iteration: the observables concentrated near the target operating 
parameters and the inverse model yields the design sufficiently close to the target.
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where x(j) = [x1
(j) … xn

(j)]T. The weighting factors wk are computed based on the auxiliary vectors L(x(j))

Here, it is assumed that the components lk are normalized, and can only assume the values from the interval [0, 
1], with zero corresponding to the highest-quality design (with respect to the kth operating parameter), and one 
corresponding to the lowest-quality design. In the example considered before, with the objective being to reduce 
the level of |S11| and |S41| at the operating frequency, the corresponding lk could be selected as the average of |S11| 
and |S41| at their respective minima. Clearly, good design corresponds to lk close to zero (low reflection and high 
isolation), whereas poor design would be associated with lk closer to one.

Overall, the inverse regression model rI is essentially a trend function that approximates the observable set 
{x(j)} in the weighted L-square sense (cf. (2)). The reason for introducing the weights wk is to discriminate between 
the low- and high-quality observables so that the latter affect rI to a greater extent.

It should also be noted that, in general, construction of the inverse models may be hindered by non-unique-
ness issues (e.g., Refs.71,72). Notwithstanding, for typical microwave passive components, the operating conditions 
(e.g., operating frequency, bandwidth, etc.) are mainly dependent on specific geometry parameters controlling 
electrical lengths of its parts, therefore, the relationship between designable parameters and operating conditions 
is usually monotonic. Although it might not be so for compact structures (especially those utilizing slow-wave 
phenomenon), the mentioned major parameters enforce monotonicity. Furthermore, the inverse model is estab-
lished as a regression surrogate, so it does not follow exactly its training data but only the trend. Consequently, 
it accommodates possible non-uniqueness due to the parameters of minor importance (from the point of view 
of the trends). Finally, it should be noted that identification of the inverse model is a weighted regression task 
(cf. (5)), with less weight put on “poor” observables, thereby, extracting the trends from the best points only.

Figure 3b provides a graphical illustration of the inverse model for the microstrip coupler of Fig. 1a. Whereas 
the conceptual illustration of the global search process is presented in Fig. 3c,d. In the first iteration of this search 
(cf. Fig. 3c), the infill point predicted by rI replaces the worst observable and the model rI is updated. Figure 3d 
presents the last iteration, in which the observables are concentrated near the target operating parameters, hence 
the updated inverse model is capable of yielding the design which is sufficiently close to the target. Hence, the 
procedure may be terminated and followed by a local optimization (“Local optimization procedure”). Observe 
that Fig. 3b–d refer to a single geometry parameter x; the same scheme is applied to all parameters simultaneously.

The operating flow of the global search process as proposed in this work has been summarized in Fig. 4 in the 
form of a pseudocode. Therein, Steps 1 through 4 correspond to identification of N observables with their operat-
ing parameters being within the prescribed ranges, in particular, the frequency-related parameters being within 
the range of circuit simulation. These parameter sets are employed in Step 5 to construct the inverse model rI. 
The remaining steps describe utilization of rI for generating a candidate design xtmp, its evaluation, and insertion 
into the observable pool (provided it is of sufficient quality). These are followed by rebuilding the inverse model.

The termination condition is D(F(x(0)),Ft) ≤ Daccept, i.e., identification of a design, which is sufficiently close to 
the target Ft, which then becomes a starting point x(0) for local optimization (cf. “Local optimization procedure”). 
If such a design cannot be found, the procedure is terminated upon exceeding its computational budget, which 
results in returning the best design found so far.

Local optimization procedure. Global search procedure, as described in “Globalized optimization with 
inverse regression models”, yields a design x(0) satisfying the condition D(F(x(0)),Ft) ≤ Daccept, with the threshold 
Daccept assigned to make sure that the operating parameters at x(0) are sufficiently close to Ft to make the target 
attainable by means of local optimization. In this work, it is realized using the trust-region (TR) gradient-based 
algorithm with numerical  derivatives65. The TR algorithm produces a series of approximations to the optimum 
design x*, denoted as x(i), i = 0, 1, … The subsequent iteration points are obtained as

where the objective function UL takes the same form as the function U (cf. (1)); however, it is computed using of 
the first-order Taylor expansion model G(i)(x,f) of the system responses established at the current point x(i). The 
linear model is defined, for the S-parameter Skl, as

The gradients in (8) are estimated using finite differentiation. The trust region in (7) is an interval [x(i) – d(i), 
x(i) + d(i)]. The size vector d(i) is adjusted using the standard TR  rules65. The candidate vector x(i+1) is accepted if 
it reduces the objective function value at the EM simulation level, i.e., if U(x(i+1),Ft) < U(x(i),Ft). Otherwise, it is 
rejected and the iteration is repeated with reduced d(i).

The algorithm termination is determined by the convergence in argument ||x(i+1) – x(i)||< ε, or diminishing 
the TR size, i.e., ||d(i)||< ε (whichever occurs first). Here, we use ε =  10–3. In order to reduce the computational 
cost of the optimization process, finite differentiation (normally entailing n additional EM analysis of the circuit 
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per iteration) is replaced by the rank-one Broyden  formula66 when close to convergence, specifically, if ||x(i+1) 
– x(i)||< 10ε.

Global optimization framework. The operating flow of the globalized optimization framework dis-
cussed in this work is summarized below (see also Fig. 5). Its two main components are the global and local 
optimization procedures formulated in “Globalized optimization with inverse regression models” and “Local 
optimization procedure”, respectively. The framework uses the control parameters gathered in Table 1. Note that 
only the first two parameters (primary parameters of Table 1), i.e., N and Daccept, are specific to the proposed 
technique, whereas the remaining ones are conventional (in terms of numerical optimization routines). Param-
eter N (i.e., the number of observables utilized for inverse model setup) should be of the same order as design 
space dimensionality but also take into account the number of design objectives in order to properly account for 
the geometry of the set comprising high-quality designs. An appropriate value of Daccept is problem-specific and 
should be set to make the target operating parameters attainable by means of a local algorithm (at the local opti-
mization stage). In practice, operating parameters most often relate to the operating frequency (or frequencies) 
of a component under design. In such a case, it suffices to set Daccept equal to approximately half of the intended 
operating bandwidth, which, in turn, typically ranges from a dozen to few dozen percent of the operating fre-
quency. Whereas the parameters Nmax.k, k = 1, 2, 3, should be set up with some margin in order to ensure the 
algorithm termination due to convergence rather than exceeding the budget. Thus, Nmax.1 and Nmax.2 should be of 
one order of magnitude larger than the design space dimensionality, and Nmax.3 a few times higher.

In short, the operating flow of the entire optimization process can be described using the following three 
stages:

1. Input argument setup:

• Target operating frequencies ft,
• Objective function U,
• Parameter space X;

2. Global search: Obtain initial design x(0) by performing the algorithm of “Globalized optimization with inverse 
regression models”;

3. Local optimization: Find the final design x* using the TR algorithm of “Local optimization procedure”.

Figure 4.  Pseudocode of the globalized optimization of microwave components using inverse regression model. 
The presented flow represents the first (global) optimization stage, which is followed by a local optimization (cf. 
“Local optimization procedure”).
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The flow diagram of the process can be found in Fig. 5, where the first stage is broken down into several com-
ponents, whereas the local refinement is represented by a single block. It should be emphasized that in this work, 
the global search procedure does not involve any direct global optimization algorithm. Instead, identification 
of the approximate allocation of the globally optimum solution is obtained from the inverse model. Its evalua-
tion at the target objectives directly brings us to the appropriate portions of the parameter space. The key factor 
behind the efficacy of this approach is that the objective space is normally of considerably lower dimension than 

Figure 5.  Flow diagram of the proposed framework for globalized optimization of microwave components.

Table 1.  Control parameters of the proposed framework for global microwave design optimization along with 
their suggested values.

Parameter rating Parameter symbol Explanation Default value

Primary
N Number of observables for inverse model construction 10

Daccept
Threshold for accepting designs produced by the global search stage (cf. “Globalized optimization with inverse regres-
sion models”) 0.2

Secondary

Nmax.1 Computational budget: maximum number of EM evaluations for initial sampling 100

Nmax.2 Computational budget: maximum number of EM evaluations for global search stage 100

Nmax.3 Computational budget: maximum number of EM evaluations for local optimization stage 500

ε Termination threshold (for convergence in argument and trust-region size, cf. “Local optimization procedure”) 0.001D
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the parameter space, which allows us to construct a relatively accurate inverse model using a limited number of 
observables. These operating principles are the major differences between the methodology proposed in this work 
and the majority of approaches to global optimization of expensive simulation models reported in the literature.

Numerical verification. Here, the globalized optimization framework introduced in “Globalized micro-
wave optimization using feature-based inverse metamodels” is validated and its performance is demonstrated 
using several examples of microstrip components. These include two miniaturized couplers and a dual-band 
power divider. The verification results are supplemented by comparisons with multiple-start local optimization 
(to validate the need for global search) and a state-of-the-art population-based metaheuristic algorithm (to cor-
roborate the efficacy of the presented approach).

The geometries of the test structures are introduced in “Case studies” along with the formulations of the 
respective design problems. “Setup and results” showcases the numerical results obtained using the proposed 
and the benchmark methods. “Discussion” provides a summary and discussions thereof.

Case studies. Numerical verification of the presented optimization procedure has been carried out using 
three microstrip circuits shown in Fig. 6. We have:

• Circuit I: a compact microstrip rat-race coupler (RRC1)67, implemented on RO4003 substrate (εr = 3.38, 
h = 0.762 mm). The adjustable geometry parameters are x = [l1 l2 l3 d w w1]T; the remaining parameters are 
d1 = d +|w – w1|, d = 1.0, w0 = 1.7, and l0 = 15 fixed (dimensions in mm). For this circuit, the goal is to minimize 
the matching and isolation characteristics, |S11| and |S41|, at the intended operating frequency f0, while ensur-
ing a required power split ratio KP. The objective function is defined as in (2) (“Formulation of EM-driven 
design task”).

• Circuit II: a compact rat-race coupler (RRC2) using a defected microstrip structure (meander spurline) 
within a folded transmission line, implemented on 0.15-mm-thick  substrate68. The adjustable parameters are 
x = [L1 br g hfr s lfr]T. The dimensions are in mm except for the relative quantities denoted using the subscript 
r; these parameters are unitless. The following relationships hold: L2 = L1 – g – w0, a = (lf – 17 s)/16, b = (hf – 
s)br, lf = L2 lfr, lv = L1 – 2 g – 2w0, and hf = s + (w0 – s)hfr; dW = dL = 10 mm. The input line width w0 is computed 
for a given substrate permittivity εr so as to ensure 50 Ω input impedance. The design goal is—for a given 
the substrate permittivity εr—to minimize the matching and isolation characteristics, |S11| and |S41|, at the 
intended operating frequency f0, while ensuring equal power split. The objective function is defined as in (2) 
but with KP = 0 dB.

• Circuit III: a dual-band equal-split power divider (PD)69, implemented on AD250 substrate (εr = 2.5, 
h = 0.81 mm). The adjustable geometry parameters are x = [l1 l2 l3 l4 l5 s w2]T (dimensions in mm); w1 = 2.2 mm 
and g = 1 mm are fixed. The design goal is to simultaneously minimize the input matching |S11|, output match-
ing |S22|, |S33|, as well as isolation |S23| simultaneously at two operating frequencies f1 and f2. The objective 
function is similar to (3) but the equal power split condition is not directly handled in the optimization 
process as it is implied by the structure symmetry.

The computational models for all three circuits are implemented in CST Microwave Studio, and simulated 
using the time-domain solver. Table 2 provides information about the specific design tasks considered (i.e., the 
target values of the operating parameters), as well as the lower and upper bounds for parameters. It should be 
noted that parameter ranges are very wide with the average ratio of the upper-to-lower bound being 11.7, 4.6, 
and 10.3 for Circuit I, II, and III, respectively. The reason for selecting such broad ranges of geometry parameters 
was to ensure that the considered design tasks are sufficiently challenging, as well as to emulate the scenario 
under which the designer does not have a clear indication of what a good initial design should be, thereby to 
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Figure 6.  Microstrip components used for verification experiments: (a) rat-race coupler with folder 
transmission lines (RRC1)67, (b) rat-race coupler coupler with defected microstrip structure (RRC2)68, (c) dual-
band power divider (PD), lumped resistor denoted as  R69.
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shift most of the design decisions concerning the starting point allocation to the optimization algorithm itself, 
rather than to engage the expert knowledge.

Setup and results. Table 3 shows the experimental setup for the optimization framework proposed in this 
work and the benchmark methods. These include particle swarm optimization, employed as a representative 
population-based metaheuristic, as well as the trust-region gradient-based algorithm (as described in “Local 
optimization procedure”) with random initial designs. The TR procedure is considered to demonstrate that local 
search is insufficient for the considered design task and often fails when the initial design is away from the target.

The numerical results are provided in Tables 4, 5 and 6 for Circuit I, II, and III respectively. The scattering 
parameter responses at the designs obtained using the proposed framework for selected algorithm runs can be 
found in Figs. 7, 8 and 9.

The breakdown of the computational cost of the proposed algorithm is the following (averaging over ten 
algorithm runs):

• Circuit I: average cost of global search stage was 40 EM simulations; average number of TR iterations was 10, 
with the average cost of each iteration of about 8.8 EM simulations (each iteration involved six extra analyses 
for Jacobian estimation);

• Circuit II: average cost of global search stage was 22 EM simulations; average number of TR iterations was 
8, with the average cost of each iteration of about eight EM simulations;

• Circuit III: average cost of global search stage was 31 EM simulations; average number of TR iterations was 
seven with the average cost of each iteration of about ten EM simulations.

Table 2.  Target operating parameters and parameter spaces for circuits I through III. a The circuit is to be 
optimized for a specific substrate of given relative permittivity εr.

Circuit

Target operating parameters

Parameter space X (lower bounds l and upper bounds u)Symbols Specific values for numerical experiments

I Ft = [f0 KP]T
Case 1: f0 = 1.8 GHz, KP = –3 dB l = [0.5 5.0 5.0 0.2 0.2 0.2]T

u = [15.0 30.0 50.0 2.0 2.0 2.0]TCase 2: f0 = 1.2 GHz, KP = 0 dB

IIa Ft = [f0]T
Case 1: f0 = 1.5 GHz, εr = 2.5 l = [20.0 0.1 1.0 0.2 0.2 0.2]T

u = [40.0 0.95 5.0 0.95 0.5 0.8]TCase 2: f0 = 1.2 GHz, εr = 4.4

III Ft = [f1 f2]T
Case 1: f1 = 3.0 GHz, f2 = 4.8 GHz l = [10.0 1.0 10.0 0.5 1.0 0.1 1.5]T

u = [40.0 20.0 40.0 15.0 6.0 1.5 8.0]TCase 2: f1 = 2.0 GHz, f2 = 3.3 GHz

Table 3.  Experimental setup: Proposed optimization framework and the benchmark.

Method Control parameters Termination condition Comments

Inverse-model-based algorithm (this work) N = 10, Nmax.1 = 100, Nmax.2 = 100, Nmax.3 = 500, 
Daccept = 0.2 ε =  10−3 cf. “Globalized microwave optimization using 

feature-based inverse metamodels”

PSO70 Population size 10
χ = 0.73, c1 = c2 = 2.05 Maximum number of iterations (100)

Computational budget limited to 1000 EM 
simulations due to high computational cost of 
numerical experiments

TR gradient search Standard setup (e.g.,65) ε =  10−3
Gradients estimated using finite differentia-
tion; Termination based on convergence in 
arguments OR reducing the TR size

Table 4.  Circuit I: optimization results. a The cost expressed in terms of the number of EM simulations of the 
antenna structure under design. b Number of algorithms runs at which the operating parameters were allocated 
to satisfy the condition D(F(x*),ft) ≤ Daccept.

Verification case Optimization method
Inverse-surrogate-based algorithm 
(this work)

PSO

TR gradient-based algorithm50 iterations 100 iterations

Case 1: f0 = 1.8 GHz, KP = − 3 dB

Average objective function value [dB] − 36.7 − 24.8 − 34.0 − 18.7

Computational  costa 125.8 500 1000 102.8

Success  rateb 10/10 9/10 10/10 6/10

Case 2: f0 = 1.2 GHz, KP = 0 dB

Average objective function value [dB] − 39.9 − 23.7 − 36.2 48.3

Computational  costa 130.5 500 1000 68.7

Success  rateb 10/10 9/10 10/10 5/10
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For the TR gradient-based algorithm (last column of Tables 4, 5 and 6), the cost breakdown is the following:

• Circuit I: average number of TR iterations was eleven, with the average cost of each iteration of about eight 
EM simulations;

• Circuit II: average number of TR iterations was nine, with the average cost of each iteration of about nine 
EM simulations;

• Circuit III: average number of TR iterations was 11, with the average cost of each iteration of about nine EM 
simulations.

Discussion
The results gathered in “Setup and results” allow us to draw several conclusions concerning the presented optimi-
zation strategy, not only in terms of its efficacy and the computational complexity but also how its performance 
compares to the benchmark methods. These are the main points:

• The presented approach does exhibit a global search capability, which is corroborated by the fact that sat-
isfactory designs have been found in all runs of the algorithm (ten per case). Also, as illustrated in Figs. 7, 
8 and 9, the parameter vectors x(0) found by the global search stage are of good quality (in particular, with 
the operating frequency being close to the target), which makes local optimization sufficient. On the con-
trary, the benchmark local search from random initial designs often fails (at about fifty percent of the cases), 
and its performance is highly dependent on the initial design quality. Consequently, the average value of 
the optimized objective function is considerably worse than for the proposed method. Population-based 
metaheuristics (here, PSO) performs much better, but its computational complexity is high. It can also be 
observed that there is a noticeable difference in the design quality produced after 50 and 100 PSO iterations. 
This indicates that computational budget set at 500 EM simulations is insufficient for this method.

• The quality of the designs obtained using the presented technique surpasses that obtained using both local 
search and PSO. Although local optimization may produce a design that is of similar quality, it only happens 
when the initial points was sufficiently close to the target. Clearly, for the algorithm presented in this work, 
the problem of initial design has been eliminated, which makes it considerably more robust.

• In terms of computational efficiency, the presented approach compares favorably with the population-based 
algorithm as the average running cost is only about 128, 88, and 99 EM analyses of the system for Circuit I, 
II, and III, respectively. At the same time, our methodology is only slightly more expensive than local opti-
mization (by 23 percent on the average across all three circuits considered).

• This is because the cost of the first (global) search stage is low, only 40, 22, and 31 EM simulations on the 
average for Circuit I, II, and III, respectively. This level of efficiency is a result of combining the response 
feature technology with inverse modeling, in particular, establishing the model over low-dimensional oper-

Table 5.  Circuit II: optimization results. a The cost expressed in terms of the number of EM simulations of the 
antenna structure under design. b Number of algorithms runs at which the operating parameters were allocated 
to satisfy the condition D(F(x*),ft) ≤ Daccept.

Verification case Optimization method
Inverse-surrogate-based algorithm 
(this work)

PSO

TR gradient-based algorithm50 iterations 100 iterations

Case 1: f0 = 1.5 GHz, εr = 2.5

Average objective function value [dB] − 18.6 − 17.6 − 19.2 − 1.8

Computational  costa 85.5 500 1000 77.0

Success  rateb 10/10 10/10 10/10 5/10

Case 2: f0 = 1.2 GHz, εr = 4.4

Average objective function value [dB] − 21.5 − 19.4 − 22.5 7.6

Computational  costa 90.2 500 1000 83.8

Success  rateb 10/10 9/10 10/10 5/10

Table 6.  Circuit III: optimization results. a The cost expressed in terms of the number of EM simulations of the 
antenna structure under design. b Number of algorithms runs at which the operating parameters were allocated 
to satisfy the condition D(F(x*),ft) ≤ Daccept.

Verification case Optimization method
Inverse-surrogate-based algorithm 
(this work)

PSO

TR gradient-based algorithm50 iterations 100 iterations

Case 1: f0 = 1.5 GHz, εr = 2.5

Average objective function value [dB] − 33.9 − 19.6 − 18.8 − 12.3

Computational  costa 99.1 500 1000 95.1

Success  rateb 10/10 8/10 9/10 2/10

Case 2: f0 = 1.2 GHz, εr = 4.4

Average objective function value [dB] − 23.6 − 18.8 − 19.7 − 20.6

Computational  costa 99.2 500 1000 93.8

Success  rateb 10/10 8/10 9/10 7/10
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Figure 7.  Circuit I: S-parameter characteristics at the optimized designs found by the proposed global 
optimization framework for two selected algorithm runs, Case 1: (a,b) Designs 1 and 2, respectively, Case 2: 
(c,d) Designs 1 and 2, respectively. Gray lines correspond to the initial design x(0) obtained using the global 
search stage, black lines represent the responses at the final design. Vertical lines mark the target operating 
frequencies.
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Figure 8.  Circuit II: S-parameter characteristics at the optimized designs found by the proposed global 
optimization framework for two selected algorithm runs, Case 1: (a,b) Designs 1 and 2, respectively, Case 2: 
(c,d) Designs 1 and 2, respectively. Gray lines correspond to the initial design x(0) obtained using the global 
search stage, black lines represent the responses at the final design. Vertical lines mark the target operating 
frequencies.
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Figure 9.  Circuit III: S-parameter characteristics at the optimized designs found by the proposed global 
optimization framework for two selected algorithm runs Case 1: (a,b) Designs 1 and 2, respectively, Case 2: (c,d) 
Designs 1 and 2, respectively. Gray lines correspond to the initial design x(0) obtained using the global search 
stage, black lines represent the responses at the final design. Vertical lines mark the target operating frequencies.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


16

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23718  | https://doi.org/10.1038/s41598-021-03095-0

www.nature.com/scientificreports/

ating condition space. The latter requires a limited number of samples to identify relationships between the 
operating frequency, power split, etc., in a reliable manner.

As demonstrated, the presented technique offers both global search capability and computational efficiency. 
Both make it a low-cost alternative to mainstream global optimization methods, especially nature-inspired 
algorithms. This is particularly the case if the parameter space for the problem is set up in a reasonable way (e.g., 
not excessively large), and the likelihood that electrical characteristics of a randomly-generated design are not 
overly distorted is not excessively low.

A practical limitation (or, inconvenience) is that the feature-based approximations of the operating conditions 
need to be extracted from the EM simulated circuit responses, which is normally realized on case-to-case basis, 
although the respective implementations are transferrable within the same type of circuit responses (coupler, 
power divider, etc.). Automation of this process will be addressed elsewhere.

Conclusion
In this paper, a simple and reliable procedure for computationally-efficient globalized design optimization of 
passive microwave circuit has been presented. The fundamental component of the algorithm is an inverse regres-
sion model constructed using information extracted from a pre-selected subset of randomly generated param-
eter vectors and the corresponding EM-simulated circuit characteristics. Inverse model rendition involves the 
response feature technology, which exploits weakly nonlinear relationships between the geometry and operating 
parameters of the system at hand. Numerical verification of the proposed procedure has been carried out using 
three microstrip components, including two miniaturized rat-race couplers, and a dual-band power divider. 
In each case, ten independent algorithm runs were executed to validate the efficacy of the method as well as 
repeatability of solutions. Satisfactory designs have been found in all executions, which was not the case for 
the benchmark algorithms, especially multiple-start local search, where inferior designs were produced for a 
considerable number of optimization runs. At the same time, the computational cost of our framework is sig-
nificantly lower than that of state-of-the-art global optimizers (here, PSO). As a matter of fact, it is comparable 
to the cost of local gradient-based optimization. The methodology discussed in this work might be an attrac-
tive alternative to conventional global search methods, particularly nature-inspired algorithms, but also hybrid 
methods incorporating forward surrogate modelling methods. The major advantages include low computational 
complexity, global search capability, as well as the improved immunity to dimensionality and parameter range 
issues. Although demonstrated for microwave passives, the proposed algorithm might be generalized to other 
type of circuits, including amplifiers or mixers; however, this requires additional investigation. While extend-
ing the applicability of the presented approach, one should keep in mind that in the case of other microwave 
components, the major limitation factor might be that the assumption concerning weakly-nonlinear relation 
between the figures of interest and designable parameters may no longer hold. In the latter case, utilization of the 
inverse surrogates (at the global search stage) would not be as efficient as demonstrated for the passive circuits. 
This will be considered in the future work. On the other hand, the non-uniqueness issues may be detrimental 
to the algorithm performance as well.

Received: 10 September 2021; Accepted: 29 November 2021
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