
924 A. LAMECKI, A. DZIEKONSKI, L. BALEWSKI, ET AL., GPU-ACCELERATED 3D MESH DEFORMATION FOR OPTIMIZATION . . .

GPU-Accelerated 3D Mesh Deformation for Optimization
Based on the Finite Element Method

Adam LAMECKI 1, Adam DZIEKONSKI 1, Lukasz BALEWSKI 1,2, Grzegorz FOTYGA 1,
Michal MROZOWSKI 1

1 Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
Narutowicza 11/12, 80-233 Gdańsk, Poland

2 EM Invent, Trzy Lipy 3, 80-172 Gdańsk, Poland

adlam@eti.pg.edu.pl, m.mrozowski@ieee.org

Submitted October 30, 2017 / Accepted October 31, 2017

Abstract. This paper discusses a strategy for speed-
ing up the mesh deformation process in the design-by-
optimization of high-frequency components involving elec-
tromagnetic field simulations using the 3D finite element
method (FEM). The mesh deformation is assumed to be de-
scribed by a linear elasticity model of a rigid body; therefore,
each time the shape of the device is changed, an auxiliary
elasticity finite-element problem must be solved. In order
to accomplish this in a very short time numerical integra-
tion and the solution of the resulting system of equations
are performed using a graphics processing unit (GPU). The
performance of the proposed algorithm is illustrated are ver-
ified using a complex example involving 3D FEM analysis of
a dielectric-resonator filter.

Keywords
Finite element method, mesh deformation, mesh mor-
phing, GPU computing

1. Introduction
The finite-element method (FEM) is commonly used as

a simulation tool in computational electromagnetics (CEM),
due to its ability to solve 3D problems involving complex
shapes and frequency-dependent inhomogeneous materials.
Despite these advantages, the FEM suffers from high compu-
tational cost that results in part from the long time needed to
mesh the structure, set up the system of equations, and sub-
sequently solve it. Since the accuracy of simulation strongly
depends on mesh quality, an iterative scheme of adaptive
mesh refinement is commonly used to refine the mesh locally
in areas that are crucial for the quality of the numerical so-
lution. This procedure is time consuming; when refining the
mesh locally, a series of numerical problems of increasing
size needs to be solved at a single (or a few) frequency points.
Each of these solutions involves factorization of a sparse lin-
ear problem. The whole procedure can thus take minutes or
hours to complete.

In this respect, the problem is aggravated when the
geometry of the modeled structure changes, as is the case
with optimization, parametric studies, and design-sensitivity
analysis. In some special cases, when the modifications are
local, model order reduction techniques applied to the modi-
fied subdomains can be applied [1] to speed up the analysis.
In general, however, a change in the design variables entails
repeating the entire process of finding an optimal mesh. This
can be avoided by using mesh deformation techniques, in
which a mesh (generated during preprocessing) is modified
as a result of the change in design variables by moving the in-
ternal nodes of the mesh. There are several techniques of this
type [2], [3]: one involves a linear elasticity model of solid
mechanics in 3D [3]. In this approach, the mesh is regarded
as a rigid body and, for each perturbation of the geometry,
the deformation of this body is found by solving an auxiliary
finite-element mechanical problem based on Hooke’s law.
The advantage of this approach over alternative techniques is
that it produces high-quality untangled meshes. Moreover, it
is well suited for complex 3D models.

Deforming large high-order (curved) meshes by means
of finite element simulations can be time-consuming. One
way to reduce the time needed to deform the mesh is to make
use of modern graphics processing units (GPUs) that allow
concurrent execution of many computing tasks. Paralleliza-
tion of the most time-consuming stages by using multicore
GPU architectures has been considered for many computa-
tional techniques [4–6], including the finite-element method
in [7–11]. However, it should be noted that, while modern
GPUs offer higher performance in terms of theoretical peak
FLOPs and bandwidth than current CPUs, each algorithm
must be reformulated to make effective use of the capabili-
ties of the GPUs. This paper investigates GPU acceleration
of the mesh deformation technique discussed in [3]. In par-
ticular, we consider the generation of a global finite element
matrix for linear elasticity problems, as well as the numerical
solution of the system of equations that arises from this. We
additionally investigate two strategies for performing defor-

DOI: 10.13164/re.2017.0924 FEATURE ARTICLE



RADIOENGINEERING, VOL. 26, NO. 4, DECEMBER 2017 925

mation on high-order (curved) meshes, which are often used
in the finite-element analysis of electromagnetic fields.

2. Mesh Deformation

In general, the boundary-value problem (BVP) consid-
ered in CEM is defined by a governing differential equation
that needs to be solved, a structure geometry (and its dis-
cretization in the form of a volumetric mesh), and boundary
conditions on the structure surfaces (including excitation).
When any part of the structure geometry changes, as of-
ten occurs in a parametric sweep or optimization loop, some
boundaries (surfaces) move, and this information can be used
to update the internal mesh and then to re-evaluate the solu-
tion on the updated mesh. The geometry may shrink, expand,
be compressed, or be stretched locally, and the mesh should
follow the change in the geometry. Since the geometry can be
treated as a solid, the updating of the mesh-internal nodes can
be organized as a solution of a linear elasticity problem with
the appropriate boundary conditions. This linear elasticity
problem is governed by Hooke’s law

σm = 2µmεm(u) + λ(∇ · u)I (1)

where I is a 3 × 3 identity matrix, u is the displacement of
the material particle, and µm and λ are the so-called Lamé
parameters

µm =
Em

2(1 + v)
, (2)

λ =
Ev

(1 + v)(1 − 2v)
. (3)

Here, Em is the Young’smodulus and v the Poisson ratio
of the material; εm and σm are the strain and stress symmet-
ric tensors with six independent components. For details,
see [3], [12], [13]. Applying the finite-element method to the
linear elasticity equation, the following equation is obtained:∫

V

BT · c · BdV · d = 0, (4)

where c is a symmetric matrix of material constants. For
isotropic materials, c has the form

c =



λ + 2µm λ λ 0 0 0
λ λ + 2µm λ 0 0 0
λ λ λ + 2µm 0 0 0
0 0 0 µm 0 0
0 0 0 0 µm 0
0 0 0 0 0 µm



,

(5)
and B is the strain matrix given by

B =



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x
∂
∂y

∂
∂x 0



N, (6)

with N being the nodal basis functions introduced to repre-
sent the displacement in volume V . A stiffness matrix K can
be introduced:

K =
∫
V

BT · c · BdV . (7)

The unknown vector of free mesh node displacement
d f can be computed by solving the linear problem:

K f f · d f = −K f c · dc (8)

where K f f and K f c are the submatrices of K associated with
the free and fixed node displacements, while d f holds the
displacements of the nodes that correspond to the Dirichlet
boundary condition (for details of the formulation and exam-
ples of the application of the technique to real-life engineering
problems, see [3]).

3. Deformation of High-order Meshes
in EM Simulations

In electromagnetic simulations using the finite element
method, second-order (curved) mesh elements are usually
defined only for elements lying on curved surfaces. The
rest of the elements are treated as if they were rectilinear,
even if mesh is of a higher order. This is done by setting
the coordinates of the midpoints of the edges so that they
lie on the straight lines connecting the corner nodes of the
element. This allows a reduction in the cost of evaluation
of a finite element matrix by applying Gaussian quadratures
of a low order during the numerical integration phase of the
sparse matrix generation process. On the other hand, when
mesh deformation is applied to a second-order (or higher-
order) mesh, all the nodes (including those corresponding to
the midpoints of edges) are displaced throughout the entire
volume—the whole mesh then becomes high-order, and low-
order quadratures can no longer be applied. There are two
ways to overcome this issue:

• Approach 1 (A1): Perform the mesh deformation as if
the mesh were of first order. Since the movement of
all mesh boundaries is already known, the high-order
mesh information on the curved surfaces can be easily
restored;

• Approach 2 (A2): Perform the mesh deformation using
the high-order mesh and then later, in post-processing,
straighten the mesh edges that do not belong to the
curved surfaces by re-evaluating the midpoint positions
of the edges.

These approaches are illustrated in Fig. 1, which shows
an example of the second-order mesh deformation of a 2D
mesh corresponding to the cross-section of a coaxial line. At
a first glance, approach A1 seems to be more suitable, since
the mechanical problem to be solved is smaller; however,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


926 A. LAMECKI, A. DZIEKONSKI, L. BALEWSKI, ET AL., GPU-ACCELERATED 3D MESH DEFORMATION FOR OPTIMIZATION . . .

Initial mesh

Final mesh

A1: Restore curvilinear
edges

A1: Deformation of
first order mesh

A2: Deformation of
second order mesh

A2: Restore straight
edges

Fig. 1. Two approaches to the deformation of a high-order mesh.

the final efficiency may depend on the ratio of rectilinear to
true curvilinear elements in the mesh. To gain more insight
into this issue, both techniques will be further investigated;
the results of comparing them will be presented and briefly
discussed in Sec. 5.

4. GPU Acceleration
Regarding GPU acceleration of the mesh deformation

technique from Sec. 2, it is essential to consider the following
stages of the procedure:

• generation of a finite element matrix K (submatrices
K f f and K f c) for the linear elasticity problem;

• solving the linear problem (8) with an iterative solver
on a GPU.

Both stages can lead to time-consuming calculations, espe-
cially when fine meshes with a large number of elements are
involved.

4.1 Generation of Finite Element Matrix
In order to generate a global finite element matrix K ,

the local stiffness matrices Ke must be evaluated for each ele-
ment of the mesh. We here investigate the mesh deformation
using four-node (linear, first-order) and ten-node (quadratic,
second-order) tetrahedral elements. In the case of the first-
order mesh elements (approach A1) the local matrix Ke is
evaluated using closed form expressions for matrix B as

Ke = VeBTcB. (9)

The resulting local matrix Ke is 12 × 12 in size. Then, given
the known mapping between the local and global degrees of
freedom, the sparse matrices K f f and K f c can be assem-
bled.

In the case of second-order elements (approach A2), the
localmatrices Ke are computed numerically using a 14-point,
fourth-order Gauss quadrature rule over the tetrahedron

Ke =
1
6

14∑
i=1

wiBT
i cBidJi (10)

where dJi is a determinant of the Jacobian matrix, wi is the
quadrature weight, and Bi is a strain matrix evaluated at the
i-th point of the quadrature. In this case, Bi is a 6 × 30
matrix, and the resulting matrix Ke is 30 × 30.

Regardless of the order of the basis functions used, a ba-
sic variant of the finite element matrix generation procedure
on a GPU involves the following stages:

1. preprocessing (including data allocation and transfer
from a CPU to a GPU),

2. calculation of the local element matrix Ke for each
mesh element,

3. construction of the K f f and K f c matrices in the coor-
dinate format (COO),

4. conversion of K f f and K f c from COO to CRS matrix
representation format

5. postprocessing (which includes the transfer of the
sparse matrices from a GPU to a CPU).

Massive parallelization of the computations occurs in stages
(2)–(4), however, stages (1) and (5) cannot be omitted from
a model in which a GPU is used as a coprocessor for a CPU.
What differentiates approaches (A1) and (A2) is the imple-
mentation of stage (2):

• Case A1: Two levels of parallelization of the computa-
tions can be proposed. First, the dense matrix–matrix
computations are performed in parallel, with one GPU
thread employed to perform the computations on one
row. Second, the Ke matrices are calculated indepen-
dently (simultaneously) for each group of elements.

• Case A2: Here, a Gaussian quadrature is used to eval-
uate Ke and the computations are parallelized on three
levels: the dense matrix–matrix computations are per-
formed in parallel, the computations for each quadra-
ture point are performed in parallel, and the Ke matrices
are calculated independently (simultaneously) for each
group of elements.

For relatively small finite element meshes (where all the data
fit on a single GPU), the matrix-assembly process can be ex-
ecuted in stages (3) and (4). For larger matrices, an iterative
variant of finite element matrix generation algorithm [14]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


RADIOENGINEERING, VOL. 26, NO. 4, DECEMBER 2017 927

must be applied. With the iterative technique, all mesh ele-
ments are divided into M smaller subsets of elements; then,
in the m-th iteration, stages (2)–(4) are performed to con-
struct the sparse submatrices Km

f f
and Km

f c
, which are then

successively transferred into CPU RAM and summed. This
iterative process leads to the construction of the global co-
efficient sparse matrices K f f = K1

f f +. . . + KM
f f and K f c =

K1
f c+. . . + KM

f c .

4.2 Iterative Solution of Linear Problems on
GPUs

The global finite element matrix K f f arising from lin-
ear elasticity problems is large, sparse, and positive-definite.
A natural choice for the solution method of such a linear
problem (8) is thus the conjugate gradient (CG) algorithm.
In this paper, we apply the CG algorithm with a simple Jaco-
bi preconditioner. This technique is especially well suited to
GPU acceleration, since the main stage of the CG algorithm
is a sparse matrix–vector product that can be executed on
a GPU with high efficiency. To obtain good performance,
GPUs need unconventional sparse matrix storage formats.
The Sliced ELLR-T format intended for calculating SpMV
products on a GPU is used here [15]. Computation of the
BLAS1 vector operations that occur in CG algorithm were
executed on a GPU. The programming model requires the
allocation of CG vectors to GPU memory, the transfer of
a sparse matrix (K f c), and a right-hand vector (r = K f c · dc)
to a GPU, with the execution of the CG iterative process on
a GPU until a solution is found with the assumed tolerance.
Once convergence has been reached, the solution vector is
transferred from a GPU to a CPU.

Our main interest is mesh deformation; the solution
accuracy conditions can thus be relaxed for mechanical
problems—in fact, a coarse approximation of mesh node
displacements will suffice. In this context, an iterative solver
is even preferred over a direct solver, as low precision results
can be achieved relatively fast and with low memory costs.

5. Example: Sixth-order Dielectric
Resonator Filter

The GPU acceleration algorithms were validated on
a real-life example involving deformation of a tetrahedral
mesh stemming from the finite-element electromagnetic op-
timization of a sixth-order dielectric resonator filter [16]. The
filter was optimized using a 3D FEM CAD framework [17],
and we investigated the possibilities of reducing the over-
all runtime. A 3D view of the structure geometry is shown
in Fig. 2. The structure consists of high permittivity dielectric
resonators, operatingwith of the TE01δ mode, cascaded along
an evanescent mode waveguide; the resonators are coupled
by evanescent modes to achieve the cross-couplings between
nonadjacent resonators, leading to two transmission zeros in

tuning screws

DR

coax line DR support

coupling iris

Fig. 2. 3D view of the dielectric resonator filter.

the transmission characteristic. The filter is extremely nar-
rowband, and its numerical solution is thus sensitive to the
mesh. In fact, for this example, numerical design tuning can
be performed efficiently only by applying mesh deformation
techniques. In this structure, as many as 18 design variables
representing structure dimensions were defined: waveguide
lengths, resonator spacings, tuning screw depth, iris width,
and source/load to resonator coupling were controlled during
the optimization process.

An optimal mesh was produced at the initial stage by
an iterative process involving local error indicators. From
now on, the mesh deformation was applied to transform the
mesh whenever the geometry was modified. All the design
variables were allowed to change at the same time. The mesh
consisted of 776,306 tetrahedral elements, and the resulting
matrix sizes are shown in Tab. 1. Second-order (curvilin-
ear) tetrahedral elements were used to accurately represent
the curved surfaces. Both mesh deformation approaches (A1
and A2) mentioned in Sec. 3 were tested. The linear elastic-
ity problem to be solved for approach A1 involves 290,000
unknowns, compared to 2.7 million for approach A2.

An in-house, multithreaded, CPU-only implementation
was used as reference code; this was based on Intel MKL
libraries optimized for Intel architectures. For a GPU imple-
mentation we used CUDA. All numerical tests were executed
on an Intel Xeon (E5-2680 v3, 2.5 GHz) with 256 GBmemo-
ry and aPascal P100 accelerator. Table 2 shows the time taken
by the two main stages of CPU-based and GPU-accelerated
mesh deformation when an iterative solver was used in both
implementations. It can be seen that, for approach A1, the
runtime of the matrix generation and solution stages are al-
most equal on a CPU. For approachA2 on a CPU, the solution
stage dominates the total mesh deformation process. The
advantage of the proposed GPU-accelerated approach over

Matrix A1 A2
K f f rows 291,246 2,741,652
K f f cols 291,246 2,741,652
K f f nnz 12,035,844 211,565,844
K f c rows 291,246 2,741,652
K f c cols 105,579 429,489
K f c nnz 1,394,613 19,710,576

Tab. 1. Test problem properties.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


928 A. LAMECKI, A. DZIEKONSKI, L. BALEWSKI, ET AL., GPU-ACCELERATED 3D MESH DEFORMATION FOR OPTIMIZATION . . .

Approach A1 A1 A2 A2
Device CPU GPU GPU vs. CPU GPU GPU vs.

Stage/ Time [s] [s] CPU [s] [s] CPU
MatGen 3.57 4.27 0.8 30.19 10.80 2.8
Integration 1.06 0.26 4.1 6.6 1.44 4.6
Assembly 2.51 0.42 5.9 23.59 3.48 6.8

Pre&Post Proc. — 3.59 — — 5.88 —
Solution 3.10 0.26 11.9 95.08 8.57 11.1

Direct/PCG 3.10 0.09 32.9 95.08 6.22 11.1
Pre&Post Proc. — 0.17 — — 2.36 —

Total 6.67 4.53 1.5 125.27 19.37 6.5

Tab. 2. Comparison of GPU-based mesh deformation versus
CPU-reference implementation. In solution stage, the
direct solver and iterative solver (PCG with residual tol-
erance = 10−7) is used on a CPU and on a GPU, respec-
tively.

Approach A1 A1 A2 A2
ε mean max mean max

10−7 1.7 · 10−8 2.4 · 10−7 5.3 · 10−8 1.0 · 10−6

10−6 1.9 · 10−7 2.8 · 10−6 4.8 · 10−7 8.9 · 10−6

10−5 1.8 · 10−6 4.3 · 10−5 4.4 · 10−6 9.5 · 10−5

10−4 1.9 · 10−5 3.2 · 10−4 4.7 · 10−5 1.1 · 10−3

Tab. 3. Mean and maximum errors of displacement d f when
Eq. (8) is solved with direct and iterative solvers for
different residual tolerances (ε ).

the CPU-based reference implementation can immediately
be seen by considering the time taken for numerical integra-
tion, matrix assembly, and solution of a sparse system, which
were over 4, 6, and 11 times shorter. It can be seen that
using a GPU results in significant overhead due to prepro-
cessing and postprocessing related to data allocation on the
GPU and transfers between the GPU and CPU. As a result,
the approach A1 computations on a GPU are about 1.5 times
faster than a CPU-only implementation using a direct solver
(which is about the same what one gets with a CPU-only
implementation and an iterative solver). For approach A2,
however, where the generated sparse system is significantly
larger than in the A1 approach, use of the GPU results in
6-fold speedup.

The influence of the residual tolerance of the iterative
solver (PCG) on the performance and accuracy of the mesh
deformation techniques was also investigated. Table 3 com-
pares themean andmaximal errors of the displacement vector
d f (Eq. (8)) obtained with direct and iterative solvers. The
direct solution of a sparse system of linear equations was
carried out on a CPU using Intel Pardiso. For the iterative
solver, various residual tolerances ε were considered. It can
be seen that relaxing the tolerance affects the quality of the
mesh deformation; however, even for ε = 10−4, the accuracy
is satisfactory (d f contains the displacements of the nodes
as ∆x,∆y,∆z in meters). As expected, Tab. 4 shows that
an iterative solver is faster than a direct solver, regardless of
whether it is executed on a CPU or a GPU; the slackening of
the residual tolerance bears fruit in the noticeable reduction
in the time taken by the solution stage. Taking into account
all the stages and the preprocessing required by the GPU, we
obtain the results given in Tab. 5. It can be concluded that the
overall performance of the entire mesh deformation process
is significantly better when a linear system is solved with the
PCG algorithm. However, due to the overhead, it pays off to
use a GPU only for the second approach (A2). In this case,

Approach A1 A2 A1 A2
ε PCG(CPU) PCG(CPU) PCG(GPU) PCG(GPU)

vs. Direct vs. Direct vs. Direct vs. Direct
10−7 3.5 3.0 11.9 11.1
10−6 4.1 3.5 12.5 12.6
10−5 5.0 3.6 12.6 13.5
10−4 6.2 3.8 11.5 16.9

Tab. 4. Speedup of CPU-based and GPU-based iterative solver
vs. direct solver on CPU with changing residual toler-
ance (ε ).

MatGen Solve A1 [s] Speedup A2 [s] Speedup
CPU CPU,Direct 6.7 1.0 125.3 1.0
CPU CPU,10−7 4.4 1.5 62.2 2.0
CPU CPU,10−6 4.3 1.5 57.1 2.2
CPU CPU,10−5 4.2 1.6 56.6 2.2
CPU CPU,10−4 4.1 1.6 55.4 2.3
GPU GPU,10−7 4.5 1.5 19.4 6.5
GPU GPU,10−6 4.5 1.5 18.3 6.8
GPU GPU,10−5 4.4 1.5 17.8 7.0
GPU GPU,10−4 4.4 1.5 16.4 7.6

Tab. 5. Comparison of implementations of two mesh deforma-
tion approaches according to the device that performs
the computations and residual tolerance of the iterative
solver PCG with Jacobi preconditioner.

the mesh deformation is seven times faster that when the de-
formation is carried out on a CPU with a direct solver. For
approach A1, both CPU and GPU perform equally well and
provide a 1.5-fold acceleration over a CPU implementation
involving the factorization-based direct solution of a linear
system.

6. Conclusions
We have shown that 3D mesh deformation in the fi-

nite element method can be significantly accelerated when
a graphics processing unit is employed to perform computa-
tions. We have also described the strategies for performing
deformation of higher-order meshes targeted to electromag-
netic field simulations with FEM.

Acknowledgments
This work was supported by the Polish National Sci-

ence Centre under contract UMO-2013/09/B/ST7/04202. A
Pascal P100 graphics accelerator was purchased from the
funds provided by the Faculty of Electronics, Telecommuni-
cations, and Informatics at Gdańsk University of Technology.
Technical support fromEM Invent [18] is gratefully acknowl-
edged.

References

[1] FOTYGA, G., NYKA, K. Efficient analysis of structures with rotat-
able elements using model order reduction. Radioengineering, 2016,
vol. 25, no. 1, p. 73–80. DOI: 10.13164/re.2016.0073

[2] STATEN, M. L., OWEN, S. J., SHONTZ, S. M., et al. A comparison
of mesh morphing methods for 3D shape optimization. In Proceed-
ings of the 20th InternationalMeshing Roundtable. 2012, p. 293–311.
DOI: 10.1007/978-3-642-24734-7_16

[3] LAMECKI,A.Amesh deformation technique based on solidmechan-
ics for parametric analysis of high-frequency devices with 3-D FEM.
IEEE Transactions on Microwave Theory and Techniques, 2016,
vol. 64, no. 11, p. 3400–3408. DOI: 10.1109/TMTT.2016.2605672

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


RADIOENGINEERING, VOL. 26, NO. 4, DECEMBER 2017 929

[4] ZYGIRIDIS, T. T. High-order error-optimized FDTD algorithm
with GPU implementation. IEEE Transactions on Magnetics, 2013,
vol. 49, no. 5, p. 1809–1812. DOI: 10.1109/TMAG.2013.2241410

[5] LIVESEY, M., STACK, J. F., COSTEN, F., et al. Development of
a CUDA implementation of the 3D FDTD method. IEEE Anten-
nas and Propagation Magazine, 2012, vol. 54, no. 5, p. 186–195.
DOI: 10.1109/MAP.2012.6348145

[6] MU, X., ZHOU, H.-X., CHEN, K., et al. Higher order method of mo-
ments with a parallel out-of-core LU solver on GPU/CPU platform.
IEEE Antennas and Propagation Magazine, 2014, vol. 62, no. 11,
p. 5634–5646. DOI: 10.1109/TAP.2014.2350536

[7] ZHANG, J., SHEN, D. GPU-based implementation of finite ele-
ment method for elasticity using CUDA. In Proceedings of the
IEEE 10th International Conference on High Performance Com-
puting and Communications and IEEE International Conference
on Embedded and Ubiquitous Computing. 2013, p. 1003–1008.
DOI: 10.1109/HPCC.and.EUC.2013.142

[8] MENG, H. T., NIE, B. L., WONG, S., et al. GPU accelerated
finite-element computation for electromagnetic analysis. IEEE An-
tennas and Propagation Magazine, 2014, vol. 56, no. 2, p. 39–62.
DOI: 10.1109/MAP.2014.6837065

[9] DINH, Q., MARECHAL, Y. Toward real-time finite-element simula-
tion on GPU. IEEE Transactions on Magnetics, 2016, vol. 52, no. 3,
p. 1–4. DOI: 10.1109/TMAG.2015.2477602

[10] GUAN, J., YAN, S., JIN, J. M. An accurate and efficient fi-
nite element-boundary integral method with GPU acceleration
for 3-D electromagnetic analysis. IEEE Transactions on Anten-
nas and Propagation, 2014, vol. 62, no. 12, p. 6325–6336.
DOI: 10.1109/TAP.2014.2361896

[11] AKINCI, G., YILMAZ, A. E., KUZUOGLU, M. Excessive memory
usage of the ELLPACK sparse matrix storage scheme throughout the
finite element computations. Radioengineering, 2014, vol. 23, no. 4,
p. 997–1004. ISSN: 1210-2512

[12] LIU, G. R., QUEK, S. S. The Finite Element Method:
A Practical Course. 1st ed. Butterworth–Heinemann, 2003.
ISBN: 9780750658669

[13] COOK, R. D. Finite Element Modelling for Stress Analysis. John
Wiley & Sons, 1995. ISBN: 978-0471107743

[14] DZIEKONSKI, A., SYPEK, P., LAMECKI, A., et al. Generation
of large finite-element matrices on multiple graphics processors. In-
ternational Journal for Numerical Methods in Engineering, 2013,
vol. 94, no. 2, p. 204–220. DOI: 10.1002/nme.4452

[15] DZIEKONSKI, A., LAMECKI, A., MROZOWSKI, M. Tuning
a hybrid GPU-CPU V-cycle multilevel preconditioner for solving
large real and complex systems of FEM equations. IEEE Anten-
nas and Wireless Propagation Letters, 2011, vol. 10, p. 619–622.
DOI: 10.1109/LAWP.2011.2159769

[16] BASTIOLI, S., SNYDER, R. V. Inline pseudoelliptic TE01δ -mode
dielectric resonator filters using multiple evanescent modes to se-
lectively bypass orthogonal resonators. IEEE Transactions on Mi-
crowave Theory and Techniques, 2012, vol. 60, no. 12, p. 3988–4001.
DOI: 10.1109/TMTT.2012.2222659

[17] LAMECKI, A., BALEWSKI, L., MROZOWSKI, M. An efficient
framework for fast computer aided design of microwave circuits
based on the higher-order 3D finite-element method. Radioengineer-
ing, 2014, vol. 23, p. 970–978. ISSN: 1210-2512

[18] EM INVENT, POLAND. Solutions for RF, Microwave Engineering
and Computational Electromagnetics. [Online] Cited 2017-10-30.
Available at: www.eminvent.com

About the Authors . . .

Adam LAMECKI received M.Sc. and Ph.D. (with honors)
degrees in microwave engineering from Gdańsk University
of Technology (GUT), Gdańsk, Poland, in 2002 and 2007,
respectively. He was the recipient of a Domestic Grant for
Young Scientists awarded by the Foundation for Polish Sci-
ence in 2006. In 2008, he received the Prime Minister’s
Award for his doctoral thesis and, in 2011, a scholarship from
the Ministry of Science and Higher Education. His research
interests include surrogate models and their application in
the CAD of microwave devices, computational electromag-
netics (mainly focused on the finite element method), and
filter design and optimization techniques.

Adam DZIEKONSKI received M.S.E.E. and Ph.D. degrees
(with hons.) in microwave engineering from Gdańsk Uni-
versity of Technology, Gdańsk, Poland, in 2009 and 2015,
respectively. His current research interests include computa-
tional electromagnetics (mainly focused on the parallelizing
computations on graphics processing units and central pro-
cessing units). Dr. Dziekonski has twice been a recipient of
the Domestic Grant for Young Scientists from the Foundation
for Polish Science in 2012 and 2013. He was also a recipi-
ent of the Prime Minister’s Award for his doctoral thesis in
2016.

Lukasz BALEWSKI received M.Sc. and Ph.D. (with hon-
ors) degrees in microwave engineering from Gdańsk Uni-
versity of Technology (GUT), Gdańsk, Poland, in 2003 and
2008, respectively. His research interests include CADofmi-
crowave devices, filter design, and optimization techniques.
He is the coauthor of several software tools for microwave
filter design.

Grzegorz FOTYGA received M.S.E.E. and Ph.D. degrees
in electronic engineering from Gdańsk University of Tech-
nology in 2009 and 2016, respectively. He is currently an
assistant professor with the Department of Microwave and
Antenna Engineering, GdańskUniversity of Technology. His
current research interests include computational electromag-
netics, numerical methods, the finite element method, and
model order reduction.

Michal MROZOWSKI received M.Sc. and Ph.D. degrees,
both with honors, from Gdańsk University of Technology in
1983 and 1990, respectively. In 1986, he joined the Faculty
of Electronics, Gdańsk University of Technology, where he is
now a Full Professor, Head of the Department of Microwave
and Antenna Engineering, Director of the Center of Excel-
lence for Wireless Communication Engineering (WiComm).
He is a Fellow of IEEE.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

