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Abstract. In the paper we present performance-energy trade-off in-
vestigation of training Deep Convolutional Neural Networks for image
recognition. Several representative and widely adopted network models,
such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and
Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as
well as Nvidia V100 GPUs. Using GPU power capping we found other
than default configurations minimizing three various metrics: energy (E),
energy-delay product (EDP) as well as energy-delay sum (EDS) which re-
sulted in considerable energy savings, with a low to medium performance
loss for EDP and EDS. Specifically, for Quadro 6000 and minimization
of E we obtained energy savings of 28.5%–32.5%, for EDP 25%–28% of
energy was saved with average 4.5%–15.4% performance loss, for EDS
(k=2) 22%–27% of energy was saved with 4.5%–13.8% performance loss.
For V100 we found average energy savings of 24%–33%, for EDP energy
savings of 23%–27% with corresponding performance loss of 13%–21%
and for EDS (k=2) 23.5%–27.3% of energy was saved with performance
loss of 4.5%–13.8%.

Keywords: energy-aware computing, high performance computing, green
computing, machine learning

1 Introduction

Nowadays, energy consumption has become one of the key aspects, apart from
execution time and scalability, for practically all types of parallel compute in-
tensive applications, not only traditional high performance computing (HPC)
applications executed in clusters [4] but also various workloads run in a cloud
environment [11, 7]. This is also becoming a very interesting and important fac-
tor for the currently very popular and time consuming training of AI models.
These are mostly executed on workstations and systems that feature powerful
GPUs.
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In this paper we tackle investigation of performance-energy configurations
that stem from using GPU power capping for several popular Deep Convolutional
Neural Networks used for image recognition, typically trained on both GPUs and
multi- and many-core CPUs [14, 2, 9]. This power limiting method can be used
for different purposes, such as performance maximization under a defined power
budget or plain energy saving. Former research confirmed the method to be
reliable and provide more predictable results in terms of performance losses in
comparison with a DVFS technique [17]. The main contributions of this paper
in the aforementioned context include:

– deriving configurations showing larger energy savings than performance loss
(percentage wise) results using GPU power capping for specific models of
deep Convolutional Neural Networks for image recognition, and

– investigation of differences in impact of power capping on various network
models using various high performance GPUs including Nvidia V100 and
Nvidia Quadro RTX 6000 GPUs.

The following section presents the related works in the GPU power capping
subject, including general approach and energy-aware machine learning issues.
Then, our testbed systems and used benchmarks are described. Afterwards, in
Sec. 5, we described the performed experiments, monitoring methods and the
results. Finally, we provided some conclusions and future works.

2 Related works

2.1 Power capping for GPU servers

GPU power capping, or limiting, related works are mainly grouped into power
capping design and implementation techniques or methods of management of
heterogeneous systems under a defined power limit. The former is dedicated for
achieving defined power limitation (usually in Watts). The latter generalizes the
hardware/software power limiting methods designed for one component into a
system wide limitation of power or energy, with additional constraints usually
related to the overall performance.

A typical example of the power capping solution is a GPU-CAPP micro-
architectural technique [20] dedicated for power capping limitation over GPU,
with an additional objective to accelerate computations of parallel workloads.
The solution assumes a direct use of hardware on-chip and global voltage regu-
lators, which led to speed up the computations in comparison to two different
fixed frequency sets, using a Nvidia GTX480 GPU system.

Another approach to imply power limitation into GPU is using a dynamic
voltage and frequency scaling (DVFS) technology. A solution [8] proposed by
Huang et al. uses a global-based neural network for modeling Nvidia GPU be-
havior under DVFS limitations, based on task characteristics, for the presented
test cases, the solution enables decreasing energy along with performance im-
provements.
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In [15] Mclaughlin et al. proposed another power capping solution dedicated
for a graph traversal breadth-first algorithm. It was based on two techniques:
DVFS and core scaling, features provided by an AMD A10-5800K GPU card. The
described and evaluated power management algorithm, designed for maximizing
efficiency under a given power cap, showed promising results for a wide range of
graph data.

In [21] Tsuzuku et al. proposed power capping method for CPU-GPU hetero-
geneous systems. They presented performance and power consumption models
used for a static solution setting initial frequencies (with Nvidia DVFS support),
and then during runtime their exact settings are tuned using dynamic approach.

In [1] Ahmed et al. presented a power cap solution for CPU-GPU heteroge-
neous systems by defining a power cap allocation model, and implementing its
simulator using discreet-event simulation engine. They performed trace-based
experiments and crosschecked them with real parallel application executions on
Nvidia based system. The results showed capability of the solution to decrease
energy consumption of the performed computations.

In [3] Ciesielczyk et al. presented an approach limiting power usage for hetero-
geneous systems including GPU servers. They proposed an optimization model
along with heuristic and exact solutions, where the test results using applica-
tion benchmarks showed energy consumption reduction and minimal, negative
impact on the performance.

In [16] Mishra et al. described how DVFS and other power-aware techniques,
such as load balancing and task mapping, can influence the performance and
power usage of CPU-GPU systems. They presented a collection of the up-to-
date solutions and their comparative analysis. However, there was no power
capping technique considered.

In [13] we performed an analysis of the GPU-based power capping for a
collection of typical HPC benchmarks. We found out that using such a tech-
nique provides many possibilities of trade-off between performance and energy
consumption, with different aspects of the overall evaluation, including solely en-
ergy and some in-between metrics. However, the presented results did not cover
any machine learning related applications, which are addressed in this paper.

Power capping can be considered as a higher level mechanism than DVFS
as it can employ core frequency scaling but potentially also shorter/longer term
limits with peaks exceding the limits and thus is of interest to be explored.

2.2 Energy aware machine learning

Firstly, authors of paper [5] introduce several approaches and models of esti-
mation of energy consumption, specifically as a key element to consider energy-
aware processing in machine learning. Subsequently, they consider activities re-
lated to deep learning where energy estimation was adopted in the literature
i.e. training and inference, as well as CPU and GPU based ones. Then energy
estimation is applied to two real use cases. For data stream mining, HAT and
VFDT algorithms obtain accuracy of over 97% for non-concept drift estimations
and 56-65% for concept drift datasets. For energy estimation of inference using
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a regression model they obtained accuracy of 73.7% for Inception-V3, 63% for
MobileNet, 70% for DenseNet.

Furthermore, authors of [14] investigate power and energy of using CNN
models on CPU and GPU systems. Specifically, thorough analysis includes tests
on Xeon CPU, K20 GPU, Titan X GPU based systems, for various frameworks
on GPUs (Caffee, Torch, MXNet, ), various libraries on CPU (Atlas, OpenBLAS
and MKL). Additionally, breakdown of energy and power per layers of a model
has been provided, for various batch sizes, considering HyperThreading as well
as various memory and core frequencies. Results could be used for setting config-
urations for minimization of energy on CPU and GPU systems. However, further
exploration considering training times and accuracies for time limited training
could be extensions of that work. On the other hand, in paper [2] the author pro-
posed NeuralPower—a framework based on sparse polynomial regression aimed
at prediction of power, runtime, and energy consumption of CNNs used on a
GPU. Specifically, the author was able to obtain average accuracy of over 88%
for runtime and power for tested CNN architectures.

In paper [22], authors proposed GPOEO, a new online energy optimization
framework for iterative machine learning applications run on GPUs. The tool is
able to detect iterative phases, measures performance and energy used. Firstly, in
an offline stage, it collects performance metrics and energy for various frequencies
of SM and memory and then in the online stage applies the selected frequencies
to optimize a function of energy and time. Similarly, in paper [24], Zou et al.
proposed a power limiting solution, using resource utilization as an indicator
of iteration bounds. The proposed method used GPU DVFS mechanisms to
set up a defined power limit with performance maximization or performance
degradation level with minimizing the energy consumption. Our work is focused
on research of the power limiting techniques introduced in the tested GPU cards.
We demonstrated and evaluated these mechanisms against the ML applications,
however, they are more general and are useful for other types of workloads.

In paper [10] authors optimize deep learning at a higher level i.e. provide an
allocation method for a GPU cluster for deep learning jobs (training and infer-
ence) minimizing energy consumption and meeting performance requirements.
The approach uses a mixed-integer nonlinear problem (MINLP) formulation.
The solution is able to turn off the nodes that have no DL jobs. Experiments
have been conducted using GTX 1000 and RTX 2000 series GPUs showing e.g.
energy savings of 43% compared to PA-MBT and 15% compared to EPRONS
approaches.

Another approach, related to optimization of selected steps of training CNNs
meant for energy consumption reduction was proposed in [23]. Specifically, three
types of optimizations were proposed: stochastic skipping mini-batches with 0.5
probability, selection of a different subset of CNN layers for updates, and com-
puting the sign of a gradient without computing the full gradient. The authors
have demonstrated results from an FPGA board e.g. for ResNet-74 trained using
CIFAR-10, energy was saved of over 90% and 60%, with a top-1 accuracy loss
of about 2% and 1.2%.
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In paper [18], authors explored energy-aware optimization of running deep
learning workloads using GPU power capping as well as frequency capping for
reduction of Energy-to-Solution (ETS) and Energy-Delay-Product (EDP) on a
system with POWER8 and one P100 GPU. The authors demonstrated savings
of ETS up to 27% and half of the examples decreasing EDP.

3 Testbed systems

Table 1 presents testbed systems used for the research in this paper. We have
performed the tests on two systems with modern Nvidia GPUs. Testbed 1 has 8
Nvidia Quadro RTX 6000 (Turing architecture) cards which were released in Au-
gust 2018. Testbed 2 has 8 Nvidia Tesla V100-SXM2-16GB (Volta architecture)
cards which were firstly released in June 2017. Both systems run on Ubuntu
OS (20.4 and 18.4 respectively), both have CUDA 11 installed (11.5 and 11.2
respectively) and both has python 3.8 installed.

Table 1. Testbed configurations

Testbed system Testbed 1: Quadro 6000 Testbed 2: V100

CPU model 2 x Intel® Xeon® Silver 4210 CPU
@ 2.20GHz

2 x Intel® Xeon® CPU E5-2686 v4
@ 2.30GHz

CPU cores [physical / logical] 2 x [10 / 20] 2 x [16 / 32]
System memory size (RAM) 376 GB RAM 480 GB RAM

GPU model Nvidia Quadro RTX 6000 (Turing) Nvidia Tesla V100-SXM2-16GB
(Volta)

GPU memory 24 GB GDDR6 16 GB HBM2
GPU default power limit 260W 300W
GPU available power limit range 100W–260W 150W–300W
Cuda cores 4608 5120
Core clock speed 1440 MHz 1370 MHz

Operating System Ubuntu 20.04.3 LTS Ubuntu 18.04.6 LTS
Python version 3.8.10 3.8.12
Cuda version V11.5.119 V11.2.152
Tensorflow version 2.8.0 2.4.0

4 Deep CNN benchmarks used for experiments

In the experiments we have used six popular Convolutional Neural Networks
(CNN) designed for image recognition. The CNNs we have chosen are: Alexnet
(presented in 2012, 63e6 parameters), VGG-19 (2014, 143e6 parameters), In-
ception V3 (2015, 24e6 parameters), Inception V4 (2016, 43e6 parameters),
Resnet50 (2015, 26e6 parameters) and Resnet152 (2015, 60e6 parameters). The
models used by us as a representative set of CNN benchmarks for the experiments
were trained with synthetic ImageNet dataset. We have reduced the number of
synthetic data samples to 100,000 for V100 system and to 32,000 for Quadro 6000
system. Each benchmark was executed on a single GPU, with either the batch
size 128 (for Alexnet, VGG-19, Inception V3, Resnet50) or batch size 64 (for
Inception V4 and Resnet152) where the model reached the GPU memory limit.
The code of the benchmarks were taken from the official Tensorflow benchmarks
github available online1.

1
https://github.com/tensorflow/benchmarks/
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5 Experiments and results

5.1 Power monitoring and controlling methodology

For the Nvidia GPUs power monitoring and controlling we have used the Appli-
cation Programmable Interface (API) exposed in Nvidia Management Library
(NVML). The API allows to read the current power usage in milliwatts using
nvmlDeviceGetPowerUsage and – according to Nvidia’s documentation – it is
accurate to within ±5% of current power draw. The GPU power limit is set
via nvmlDeviceSetPowerManagementLimit API call. The power consumption is
read with the fixed T = 0.5 s period. The energy consumption E is calculated as
a definite integral of current power P and the sampling period T products for the
given interval identical with application total execution time. The application
execution time is measured using C++ std::chrono::high resolution clock.
The whole process of power limits exploration and evaluation of the performance-
energy trade-offs was fully automated and enclosed within a software tool we call
StaticEnergyProfiler (StEP). The tool was originally introduced as EnergyPro-
filer in [12] as an automatic tool for exploration of software power caps in Intel
CPUs. Since then we have extended the tool with Nvidia GPU support and
published the code with new naming convention in an open source repository
with Software Power Limiting Tools (SPLiT) suite available online2.

All the results presented in Section 5.3 and 5.4 were obtained with the StEP
automatic tool. For each system we have evaluated the full available power limits
range (100 W–260 W for Quadro 6000 system and 150 W–300 W for V100 system)
with a 5 W step. For each power limit we have executed 5 test runs and we present
an average result. Each of six benchmark CNNs was executed in a training
mode for just a one epoch with reduced ImageNet synthetic dataset. We assume
the potential real life use case of proposed StEP tool as a fast way of power
limits exploration with performance-energy trade-offs evaluation as an initial
step before launching the full CNN training for the target number of epochs and
full dataset with a power limit selected by user.

It should be noted that our approach extends benchmarking of various models
for various hyperparameters and compute devices such as in [9] by generating
more configurations by power capping. However, this does not result in changes
to the important model accuracy, precision or recall values.

5.2 Target metrics for bi-objective energy-performance optimization

Exploration of available power limits results in a series of the energy-performance
results which may form a Pareto-optimal front. If we target for a bi-objective
optimization which is considering both energy savings and performance loss any
result included in a Pareto-optimal front might be chosen as a desired solution. In
order to evaluate the results within Pareto-optimal front we may want to evaluate

2
https://projects.task.gda.pl/akrz/split/
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each result using various target metrics. One of the simplest is consideration of
only the total energy consumption where we seek for energy minimum:

ME(E, t) = E (1)

Another metric that we would like to evaluate is already used by us in [13] total
energy and total execution time product which aims for bi-objective optimiza-
tion. The energy-performance product is known in the literature as energy-delay
product (EDP)[6]:

MEDP (E, t) = Et (2)

Finally, the third bi-objective oriented metric for energy aware optimization
which we will evaluate in this paper is energy-delay sum (EDS) proposed by
Roberts et al. in [19]:

MEDS(E, t) = αE + βt (3)

EDS is a weighted sum of energy E and total execution time t. The metric
assumes that we adjust the proposed weights α and β the way that we arbitrarily
choose a theoretical acceptable time increase for the abstract scenario when the
energy consumption would be 0. Since we need to know the theoretical time
increase represented by k parameter we also need to know the reference time
and energy result. Thus, the EDS metric may be only evaluated as a relative
value based on some reference result. Taking the two points with a reference
result and a theoretical result of k · tref time and zero energy we may construct
an equation considering the metric as a linear function based on two points:
E − Eref =

0−Eref

k·tref−tref
· (t − tref ) out of which after transformation we obtain

the formula:

1 =
k − 1

k · Eref
· E +

1

k · tref
· t (4)

and we may read the α = k−1
k·Eref

and β = 1
k·tref weights where k is a theoretical

accepted time increase.
Any result for which the equation 4 is true will indicate that the performance

loss with given energy savings is proportionally equivalent to the reference result
with respect to proportion defined by k parameter. Any result for which the EDS
metric value is lower than 1 will be considered as better than the reference result
in terms of EDS metric evaluation for particular k parameter value.

Figure 1 presents graphical visualization of three target metrics aforemen-
tioned above. The axes represent normalized energy and normalized execution
time. The value of 1 on each axis represent the reference result obtained for the
default system setup. Each data point represents a single energy-performance
result obtained with some power limit applied. We present the E metric as a
horizontal line with the value of 1 on the normalized energy axis. The EDP met-
ric is a hyperbole which pass through point with (1,1) values. The EDS metric is
a linear function which is presented by us for two values of k parameter (k = 1.5
and k = 2.0). Any result which is below the metric line will be accepted by this
metric as a better than default result. The result point which euclidean distance
from the metric line is the biggest will be considered as a result with minimal
value for this metric.
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Fig. 1. Graphical visualization of selected target metrics for exemplary series of energy-performance
results obtained for 1-epoch training of Resnet50 with different power limits executed on both
Quadro 6000 (on the left) and V100 (on the right) systems.

5.3 Results obtained for Quadro 6000 system

Figure 2 presents the relative results obtained for all six CNN benchmarks exe-
cuted on Quadro 6000 system. Table 2 presents specific absolute results with all
the target metrics optimal results and their corresponding power limits obtained
for the Quadro 6000 system. For all of the tested CNN benchmarks any power
limit lower than default one results in a lower energy (E) value. The minimum
of energy for each of six tested CNN benchmarks on Quadro 6000 system can be
found somewhere within a range of power limits of 120 W–130 W. The typical
obtained minimum of energy results in 28.5%–32.5% of energy saved.

The EDP metric, which represents the energy and time product, has a value
less than 1 for any of tested CNN benchmarks typically in the range of power
limits of 120 W–255 W. That means that for any power limit within that range we
obtain the EDP value better than the default one. Typically the EDP minimum
can be found within the power limits range of 140 W–170 W on the Quadro 6000
system. The aforementioned EDP minimum results mostly in 25%–28% of energy
saved with an average 4.5%–15.4% of performance loss. Considering the EDP
metric minimum we get the trade-off of much higher energy savings than the
cost of performance loss we bear.

The EDS metric was evaluated for two values of the k parameter. For k = 1.5
the values of a metric which are better than the reference result are mostly found
when power limit is set in the range of 160 W–255 W. For k = 2.0 the range is
wider and starts at 140 W. Typically, the minimum of EDS(k=1.5) is found in
the power limits range of 190 W–215 W and results on average in 12%–26% of
energy savings with only 3.9%–6.8% of performance loss. For EDS(k=2.0) the
typical power limits range for finding a minimum of this metric is within 140 W–
180 W what results on average in 22%–27% of energy savings with 4.5%–13.8%
of performance loss. Minimization of EDS metric for both k parameter values
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Fig. 2. Normalized results (average power, total energy consumption, total execution time, EDP
and EDS metric) for all six CNN benchmarks (Alexnet, VGG-19, Inception 3, Inception 4, Resnet50,
Resnet152) obtained for different power caps in range 100 W–260 W applied to Quadro 6000 system.

allows then for significant energy savings with minor or negligible performance
loss.

5.4 Results obtained for V100 system

Figure 3 presents relative results obtained for all six CNN benchmarks executed
on V100 system. Table 3 presents specific absolute results with all the target
metrics optimal results and their corresponding power limits obtained for the
V100 system.
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Table 2. Results of minimization of selected three target metrics (E, EDP, EDS) for all six
CNN benchmarks (Alexnet, VGG-19, Inception 3, Inception 4, Resnet50, Resnet152) obtained for
Quadro 6000 system with synthetic ImageNet dataset reduced to 32,000 of samples.

CNN
benchmark

Target
Metric

Power
cap

Average
Power

Total
Energy

Total
Energy

vs default

Total
Time

Total
Time

vs default

[W] [W] [kJ] [%] [s] [%]

default 260 116.459 3.288 - 28.2 -
min E 120 71.9 2.336 -28.5 32.5 +11.5

Alexnet min EDP 140 79.6 2.427 -25.7 30.5 +4.5
min EDS(k=2.0) 140 79.6 2.427 -25.7 30.5 +4.5
min EDS(k=1.5) 140 79.6 2.427 -25.7 30.5 +4.5

default 260 233.6 51.516 - 220.5 -
min E 135 126.9 36.342 -29.9 286.4 +29.9

VGG-19 min EDP 165 153.8 38.646 -25.0 251.2 +13.9
min EDS(k=2.0) 175 162.5 39.734 -22.9 244.5 +10.9
min EDS(k=1.5) 205 188.5 43.686 -15.2 231.8 +5.1

default 260 224.4 41.382 - 184.4 -
min E 125 115.0 28.157 -32.0 244.9 +32.8

Inception3 min EDP 155 139.8 29.720 -28.2 212.6 +15.3
min EDS(k=2.0) 175 156.6 31.668 -23.5 202.2 +9.7
min EDS(k=1.5) 190 169.3 33.346 -19.4 197.0 +6.8

default 260 235.9 82.316 - 348.9 -
min E 125 119.1 56.450 -31.4 474.0 +35.8

Inception4 min EDP 160 149.9 60.360 -26.7 402.6 +15.4
min EDS(k=2.0) 165 154.1 61.202 -25.7 397.3 +13.8
min EDS(k=1.5) 215 198.4 71.921 -12.6 362.4 +3.9

default 260 215.5 27.068 - 125.4 -
min E 130 114.8 18.264 -32.5 159.1 +26.8

Resnet50 min EDP 155 134.5 19.323 -28.6 143.7 +14.5
min EDS(k=2.0) 160 139.1 19.683 -27.3 141.2 +12.8
min EDS(k=1.5) 200 169.9 22.445 -17.1 132.1 +5.3

default 260 230.4 64.522 - 280.2 -
min E 130 121.1 43.839 -32.1 362.0 +29.2

Resnet152 min EDP 170 155.1 47.958 -25.7 309.2 +10.4
min EDS(k=2.0) 180 163.6 49.471 -23.4 302.4 +7.9
min EDS(k=1.5) 205 183.3 53.645 -16.9 292.7 +4.5

Similarly to the Quadro 6000 system, on the V100 system we can also observe
a wide range of performance-energy trade-offs which may be obtained when
applying power limits. What is different between V100 and Quadro 6000 is that
V100 has much higher lowest power limit value available and therefore in most
of tested CNN benchmark cases the minimal value for the energy (E) metric is
obtained for the lowest available power limit which is 150 W. The minimal energy
(E) value for the V100 system allows for average energy savings of 24%–33%.

The EDP bi-objective metric which represents the energy and time product
has its minimum for the most of tested CNN benchmarks when the power limit is
set within range 170 W–180 W. We observe for EDP metric minimum the average
energy savings of 23%–27% with corresponding performance loss of 13%–21%.
This shows that for the V100 system the EDP metric minimum allows again
for obtaining interesting and satisfactory trade-offs when proportionally more
energy may be saved than we loose on execution time increase.

The EDS metric minimum for the V100 system was also evaluated for two
values of the k parameter. For k = 1.5 most of the tests with selected CNN
benchmarks show that the results better than the reference one which means
results with the value of EDS metric less than 1 were found for the V100 system
mostly when power limit was set within 210 W–295 W. The optimal solutions
(min of EDS) for k = 1.5 were found for power limits set within the range of
190 W–215 W. We observed significant energy savings of 12.6%–25.7% with only
a minor performance loss of 3.9%–6.8%. For k = 2.0 the range of power limits
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Fig. 3. Normalized results (average power, total energy consumption, total execution time, EDP
and EDS metric) for all six CNN benchmarks (Alexnet, VGG-19, Inception 3, Inception 4, Resnet50,
Resnet152) obtained for different power caps in range 100 W–260 W applied to V100 system.

with better than default results was covered by the range of 150 W–295 W. The
minimal EDS(k=2.0) metric values for most of the tested CNNs were obtained
for power limits set within the range of 160 W–180 W. The EDS(k=2.0) metric
allowed for finding the solutions where we can save 23.5%–27.3% with perfor-
mance loss of 4.5%–13.8%. Thus, the EDS metric minimized for V100 again
allowed for significant energy savings with minor performance loss.

Unlike Quadro 6000, for V100 the E metric has its optimal value (except
for Inception v3) for minimal power limit. The reason for that seem to be much
higher minimal power limit available on V100 (150 W) compared to Quadro 6000
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Table 3. Results of optimization of selected four target metrics (E, EDP, EDS(k=2.0),
EDS(k=1.5)) for all six CNN benchmarks (Alexnet, VGG-19, Inception 3, Inception 4, Resnet50,
Resnet152) obtained for V100 system with synthetic ImageNet dataset reduced to 100,000 of samples.

CNN
benchmark

Target
Metric

Power
cap

Average
Power

Total
Energy

Total
Energy

vs default

Total
Time

Total
Time

vs default

[W] [W] [kJ] [%] [s] [%]

default 300 181.4 7.206 - 39.7 -
min E 150 119.4 5.425 -24.7 45.4 +14.4

Alexnet min EDP 155 121.9 5.477 -24.0 44.9 +13.1
min EDS(k=2.0) 165 127.5 5.603 -22.2 43.9 +10.6
min EDS(k=1.5) 195 145.5 6.091 -15.5 41.9 +5.4

default 300 264.9 130.369 - 492.5 -
min E 150 143.8 94.703 -27.4 658.6 +33.8

VGG-19 min EDP 180 170.5 99.494 -23.7 583.5 +18.6
min EDS(k=2.0) 200 189.9 105.181 -19.3 553.8 +12.5
min EDS(k=1.5) 275 242.9 122.194 -6.3 503.1 +2.2

default 300 265.8 104.941 - 394.8 -
min E 170 160.9 75.608 -26.7 470.0 +20.2

Inception3 min EDP 170 160.9 75.608 -26.7 470.0 +20.2
min EDS(k=2.0) 210 195.0 83.257 -19.4 427.0 +9.2
min EDS(k=1.5) 245 219.7 90.106 -12.7 410.2 +4.9

default 300 273.1 230.8 - 845.1 -
min E 150 143.4 157.5 -31.8 1098.5 +30.0

Inception4 min EDP 170 162.6 166.602 -27.8 1024.4 +21.2
min EDS(k=2.0) 200 190.9 181.532 -21.4 950.7 +12.5
min EDS(k=1.5) 270 245.9 213.249 -7.6 867.4 +2.6

default 300 262.3 69.886 - 266.4 -
min E 150 141.2 47.866 -31.5 339.0 +27.3

Resnet50 min EDP 180 166.7 51.431 -26.4 308.4 +15.8
min EDS(k=2.0) 190 177.6 53.430 -23.5 300.8 +12.9
min EDS(k=1.5) 260 229.5 63.002 -9.9 274.5 +3.0

default 300 273.7 186.948 - 683.0 -
min E 150 143.2 125.352 -33.0 875.3 +28.2

Resnet152 min EDP 185 176.3 137.879 -26.2 782.1 +14.5
min EDS(k=2.0) 185 176.3 137.879 -26.2 782.1 +14.5
min EDS(k=1.5) 255 233.7 165.032 -11.7 706.2 +3.4

(100 W). If the V100 offered a wider range of available power limits, with the
lower possible minimum, we could probably observe slightly lower minimal en-
ergy consumption with a bigger performance penalty. Then, the E characteristics
would probably have their own clear minimal values for the corresponding power
limits, that could be different from the imposed by the manufacturer minimal
power caps.

6 Conclusions and future work

In this paper, we investigated performance-energy trade-offs for a collection
of popular machine learning architectures, supported by power limiting (a.k.a.
capping) features of two Nvidia GPU cards: V100 and Quadro 6000. The per-
formed benchmarks cover training of Deep Convolutional Neural Networks, such
as Alexnet, Resnet or Inception, which were used used for image recognition.

The results proved that power capping and its underlying implementation
limiting computational use of GPU resources can result in limited performance
and consequently prolonged execution time but for some configurations allows
even larger, percentage wise, reduction of energy used. Power limiting can imply
much lower energy consumption (up to 33% for V100 and Quadro 6000), along
with a low to medium performance penalty. Moreover, usage of well defined
metrics enabled this bi-objective optimization to support the selection of the
desired configuration.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


GPU power capping for energy-performance trade-offs in training of Deep. . . 13

The future works will cover the following areas:

– automation of the selection of a power-related configuration, based on a cho-
sen metric, supporting the dynamic adaptation to the application behavior,

– CPU/GPU resource allocation, depending on the performance and energy
requirements defined for a whole HPC system,

– modeling and simulation of the GPU/CPU behavior for selection of a static
power-related configuration.

Basing on our research results, we are convinced that the power-performance
optimization can significantly decrease the carbon footprint and energy cost of
the machine learning solutions.
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