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Abstract: Graphene is a two-dimensional nanomaterial composed of carbon atoms with sp2 hybrid
orbitals. Both graphene and graphene-based composite have gained broad interest among researchers
because of their outstanding physiochemical, mechanical, and biological properties. Graphene
production techniques are divided into top-down and bottom-up synthesis methods, of which
chemical vapor deposition (CVD) is the most popular. The biomedical applications of graphene and
its composite include its use in sensors, implantology, and gene and drug delivery. They can be used
for tissue engineering, anticancer therapies, and as antimicrobial agents in implant application. The
biocompatibility of graphene-based nanomaterials enables their use in the field of biomedicine. This
article reviews the properties of graphene, the methods used to produce it, the challenges associated
with its use, and the potential applications of this material in biomedicine, regenerative medicine,
and drug delivery systems.
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1. Introduction

Carbon nanostructures have attracted a lot of attention, especially single-walled car-
bon nanotubes, multi-walled carbon nanotubes, graphene, and reduced graphene oxide
(rGO) [1]. Graphene is a two-dimensional material composed of carbon (C) atoms with an
sp2 hybrid orbital [2–5], displaying a single π orbital and three σ bonds perpendicular to the
plane [6]. It is a honeycomb like structure formed with a single thick planer carbon sheet [7].
Graphene can be wrapped up into zero-dimensional fullerenes, rolled into one-dimensional
carbon nanotubes, or piled together with an inter-planar spacing of 0.335 nm to form
three-dimensional graphite [6,8]. Due to its outstanding physical, mechanical, electrical,
and chemical properties, materials based on graphene have attracted a lot of interest. These
include excellent thermal and electrical conductivity, high specific surface area, elastic
moduli (about 1 TPa [9]), an intrinsic strength of 130 GPa [5], adaptability to both flat and
irregular surfaces, flexibility in chemical and biological functionalization, and simplicity in
mass production, [10–15]. Sensors, energy harvesting, and storage devices such as solar
cells and supercapacitors can all be improved by the use of graphene, as can lightweight
polymer composites, membranes, and actuators. Graphene derivatives could also be used
in biomedical applications such as drug delivery systems, gene therapies, photothermal
therapies, antibacterial agents, and bioimaging tools [5,10,16–18]. However, scientists
still face numerous challenges when attempting to utilize graphene such as cytotoxicity,
biodistribution, and immunological responses.

Currently, there are many ways to produce graphene. Those include chemical vapor
deposition, the mechanical cleavage of highly ordered pyrolytic graphite (HOPG), the
chemical reduction of chemically exfoliated graphene oxide, epitaxial growth, and chemical
synthesis [11,14]. Graphene oxide (GO), reduced graphene oxide (rGO), graphene, and
graphene quantum dots (GQDs) are all included in the graphene family [19]. The molecular
structures are shown in Figure 1 [20]. Chemical modification can reduce GO to rGO [18].
GQDs, also known as nano-graphene (NG), are nanomaterials that can be used in a range
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of applications. To create NG, top-down and bottom-up techniques are used [18,21].
Furthermore, there is a separate kind of carbon-based nanomaterial called nano-graphene
oxide (NGO). NGO is created by top-down methods. Graphene oxide can be oxidized to
form nano-graphene oxide, which has hydrophobic properties and the qualities suitable
for creating very stable aqueous colloidal suspensions [18].
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Both GO and rGO are well recognized for their lower dispersion in water but also easy
aggregation. This can reduce their surface areas, which would limit their usability and abil-
ity to be recycled from treated water. Additionally, graphene composites have significant
limitations because of their hydrophobic qualities, which tend to result in the aggregation
of sheets, along with curled, folded, and corrugated formations on base materials [19].
However, because of their enormous clinical potential in tissue regeneration therapy, GO
and rGO-based scaffolds are particularly promising. The proliferation and differentiation
of applied stem cells have been strongly influenced by both GO and rGO, but there are
still some challenges to overcome, e.g., cytotoxicity, biodistribution, biotransformation, and
immune response [17]. Graphene-reinforced polymer composites are also of great interest.
The use of graphene as a reinforcing agent in the polymer matrix improves the composites’
properties (for example, adding carbon nanotubes and graphene to metals reduces the
coefficient of friction and the wear rate while increasing tensile strength) [5,22,23].

In this review, we will describe the properties of graphene and graphene composites,
and the methods used to manufacture them with a particular emphasis on the challenges
and potential applications of these materials in biomedicine, tissue engineering, and drug
carrier systems.

2. Graphene Production Techniques

Several methods including pyrolysis, epitaxial growth, the chemical and electrochem-
ical exfoliation of graphite, physical vapor deposition, and chemical vapor deposition
have been used to produce graphene [6,11,14]. We divide these techniques into top-down
(mechanical exfoliation, chemical exfoliation, chemical synthesis) and bottom-up synthesis
methods (epitaxial growth, pyrolysis, CVD, etc.) [6]. To obtain graphene, it is possible to use
the thermal expansion of graphite/graphite oxide [8,24], which can lead to its formation.
However, this process rarely leads to results in the complete exfoliation of graphene to the
atomic level of individual sheets of graphene [8]. There are also known methods such as
liquid phase exfoliation of graphite employing ultrasonication, chemical exfoliation meth-
ods, or the electrochemical exfoliation method [8,25–27]. The disadvantages of graphene

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Crystals 2023, 13, 1413 3 of 14

obtained by liquid phase exfoliation of graphite employing ultrasonication include the
graphene sheet size because it is typically smaller than 1 µm2, and the graphene yield is
too low to be utilized in technological applications. Chemical exfoliation methods involve
the oxidation of graphite to graphene oxide and then reduction chemically or thermally.
These methods have attracted a lot of interest due to their potentially low cost and easy
production, but to obtain the graphene structure, the thermal reduction of graphite oxide is
carried out at high temperatures. However, the oxidized forms of graphite oxide cannot be
completely removed with a chemical reducing agent, which may cause the degradation of
the electronic properties [8].

Among these technologies, CVD appears to be the most promising process for indus-
trial development and scale-up production of graphene. Nearly all of the transition metals
included in the periodic table may be used as catalysts for the production of graphene,
according to recent developments in the CVD process for growing graphene [28]. Most
commonly, CVD of graphene involves injecting a precursor in the gas phase into a reaction
chamber. In the reaction chamber at elevated temperature, the precursor reacts with the
catalyst, and graphene is produced on the surface of the catalyst. The precursor may be a
hydrocarbon (for example, methane or ethylene) or also low-molecular-weight alcohols.
The temperatures of growth range from a few hundred degrees Celsius to the melting
point of the catalyst metal [29]. Nickel (Ni) and copper (Cu) are two catalysts mostly used
to prepare homogeneous and high-quality graphene. Nickel-catalyzed graphene, consist-
ing of a large proportion of few-layer or multilayer, could therefore be widely used as
stretchable transparent electrodes. In contrast, graphene grown on Cu is a monolayer with
a large area that has great potential in high-mobility field-effect transistors. The catalyst
surface is where graphene grains often form during the CVD growth of graphene on met-
als. During graphene growth, the grains coalesce and eventually lead to the formation of
grain boundaries, which are mainly dispersed in the as-grown graphene layer. As a result,
CVD-grown graphene is frequently polycrystalline and composed of a patchwork of grains
with different sizes and orientations. Two methods can be used to obtain monocrystalline
graphene without grain boundaries using chemical vapor deposition. The first method
involves complete control of the number of nucleation centers, as reducing the nucleation
number to one will finally result in the formation of individual graphene crystals. The
second method, on the other hand, involves controlling the orientation of the graphene
grains. In the absence of grain boundaries in the stitching areas, grains with aligned crystal
lattices would merge neatly, resulting in large-sized graphene crystals [28].

The catalyst-assisted CVD approach is an intriguing synthetic method for producing
wafer-sized graphene. When the nucleation and growth of crystallized graphene domains
take place in an atmospheric pressure CVD process, the average size of graphene domains
raises with increasing temperature and CH4 partial pressure, but the domain density
decreases (but it is independent of the CH4 partial pressure). In addition, research by
Liu L. et al. [30] indicates that the nucleation of graphene domains on Cu depends on the
initial annealing temperature [30]. Plasma-enhanced chemical vapor deposition (PECVD)
has great potential for graphene production due to its low-temperature growth and fast
reaction rate. The high temperature provides the energy needed for graphene nucleation
and growth in the thermal CVD process. However, in the PECVD process, the growth of
multilayer graphene is dominated mostly by radicals generated in the plasma, so it does
not need to use high temperatures. Notwithstanding, the disadvantages of this method
include poor controllability and quality of obtained graphene after the graphene is grown.
Due to these limitations, this method is not widely used [11,31]. Li N. et al. [11] studied
the nucleation and growth of graphene at different temperatures by PECVD. They noted
that graphene could not be grown at temperatures under 600 ◦C. In the temperature range
of 650–800 ◦C, they obtained a high nucleation density of nanoscale graphene. In the
temperature range from 850 ◦C to 900 ◦C, they formed bigger grains of graphene, and over
950 ◦C, the coexistence of large and small grains was produced [11].
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Electrochemical exfoliation graphene is a popular top-down graphene recovery method.
It is composed of oxidizing, expanding, and exfoliating graphite to produce graphene with
a lower oxygen content. The process is schematically shown in Figure 2. The electrochem-
ical exfoliation method is an environmentally friendly technique to fabricate graphene
and enables production at room temperature [8,32,33]. This technique uses many types of
graphite, including graphite foils, rods, plates, and powders, as electrodes in an aqueous or
non-aqueous electrolyte, together with an electric current to cause electrode expansion [6].
The surface shows high roughness after electrolytic exfoliation, which is associated with
a large surface area. The highest surface area was obtained after 1 h of exfoliation, and
after that it declined rapidly [8]. Applying a voltage of 10 V resulted in the formation
of multilayer graphene platelets with high defect concentration. Awasthi G. et al. [33]
produced multi-layered (i.e., 1–5), high-quality graphene nanoplatelets using low voltage
(3–4 V) during the process. For this purpose, they used potassium hydroxide solution
as an electrolyte. The stirring of an electrolyte during electrolysis affected the properties
of graphene, i.e., the average size of graphene nanoplatelets increased in that case, but
also a reduction in the defect concentration was observed with an increase in several
layers of C atoms in graphene [33]. To create high-yield solution-processable graphene,
Zhang Y. et al. [34] used an electrochemical anode and cathode co-exfoliation technique.
They obtained graphene with an ultralow defect and oxygen content on electrodes. The
flexible supercapacitor exhibits great electrochemical performance and can be potentially
used in wearable electronics [34].
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3. Application of Graphene

Graphene has received a lot of attention in a variety of sectors, including energy stor-
age, electrochemical sensors, nanoelectronics, optical biosensors, membranes, composites,
drug delivery systems, etc. [5,9,10].

3.1. Biosensors

A biosensor is a device that detects chemical or biological reactions by producing
signals proportional to the concentration of an analyte in the reaction. Applications for
biosensors include the detection of pollutants, disease-causing microorganisms, and mark-
ers that are indicators of disease in bodily fluids like blood, saliva urine, or even sweat.
Biosensors are also used in the discovery of new medicines and the monitoring of dis-
eases. A typical biosensor consists of a bioreceptor, transducer, electronics, and display. A
bioreceptor is a molecule that recognizes the analyte specifically [35]. A transducer turns
biological interactions into physical signals (for example, optical, chemical, electrical, or
thermal signals) [36]. Electronics is a part that processes the transduced signal and prepares
it for display. On the display, the output signal is presented in numerical, graphical, tabular,
or pictorial form, depending on the requirements of the user [35].

Due to its excellent charge transfer, high specific surface area (2620 m2/g), thermal con-
ductivity of 500 W/mK, optical properties (visible and infrared light transmittance of 98%),
and ability to immobilize molecules, graphene has become a widely used material in sensor
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manufacturing [7,9]. Graphene can be modified, for example, with gold or silver nanopar-
ticles. It has been proven that the addition of nanogold resulted in greater surface area,
enhanced electrochemical reactions, and interaction between elements or nanoparticles, as
well as simplified charge transfer for better robustness, sensitivity, and specificity [9,37].
Narayanan J. et al. [38] successfully developed an electrochemical immunosensor for the
detection of botulinum neurotoxin-E, where glassy carbon electrodes were modified using
graphene nanosheets-aryldiazonium salt as a sensing platform and enzyme induced silver
nanoparticles, which were deposited on gold nanoparticles as a signal amplifier [38].

Graphene-based electrochemical sensors are used for the detection of cancer biomark-
ers and neurotransmitters, but also as immunosensors and for the detection various other
bioanalytes [39]. Graphene’s self-assembling characteristics are easily monitored, allowing
it to be used in highly sensitive biosensors for DNA detection. Furthermore, due to their
large surface area, superior electrical conductivity, and ability to load analytes, GO-based
electrochemical biosensors have shown promising results in detecting cancers [18].

Ansari G. et al. [40] prepared a nanosensor using zinc oxide nanowires (ZnO NWs) and
graphene. It can detect changes in hemoglobin content in vivo. ZnO NWs were produced
using vapor-liquid–solid fabrication. The graphene layer can improve the sensitivity and
response time of the biosensor, while the ZnO NWs can offer a significant surface area
for immobilizing the biological molecules. The biosensor’s sensitivity is improved by
graphene’s changed chemical potential. Furthermore, combining these two materials raises
the selectivity of this device [40]. Soman G. et al. [41] designed a GO-based molecularly
imprinted polymer for selective uric acid detection in blood serum. The main advantages of
the manufactured sensor include the possibility of direct analysis of blood samples without
requiring any pre-treatment, as well as extraordinary stability and reproducibility. The
findings showed the potential of the developed sensor in uric acid analysis [41].

Additionally, Mubarakali A. et al. [42] worked on a sensor to detect glucose. They
obtained that using colloidal Cu nanoparticles modified with graphene coated on indium-
coated tin oxide glass substrate as a working electrode. The results indicate that the
bioelectrode shows adequate stability and repeatability with a shorter response time.
Because of those properties, the electrode may be one option for a non-enzymatic glucose
biosensor [42]. Li B. et al. [43] also studied biosensors for glucose detection. A flexible
glucose oxidase/chitosan/graphene sponge/Prussian blue biosensor for sweat glucose
detection was designed (fabrication process is presented in Figure 3). The immobilization of
glucose oxidase with chitosan offers glucose oxidase good isolation from the environment
and protection, which increases glucose oxidase’s stability, reusability, and activity. The
gaphene sponge (graphene aerogel) is characterized by a large specific surface area, high
porosity, excellent electrical conductivity, and biocompatibility. As an electron transport
medium, Prussian blue was electrochemically deposited on the working electrode. The
results presented that the biosensor has a high selectivity for glucose and responds well
to glucose in human sweat. In addition, the many binding sites of the graphene sponge
allow for further composites with other functional materials to improve the flexible sweat
glucose biosensors [43].

However, Pareek S. et al. [44] fabricated an electrochemical DNA biosensor for human
papillomavirus-16 (HPV-16) detection. Cervical cancer is caused by the HPV-16 virus. GO
and silver-coated gold nanoparticles were used to modify an indium tin oxide-coated glass
electrode. The results indicate that the biosensor has a high sensitivity for the detection of
HPV-16, and it is possible to detect it in the early stage, which can be crucial in developing
point-of-care devices [44]. Bao J. et al. [45] developed an electrochemical biosensor for
methylated DNA detection. DNA methylation is related to cell proliferation and differenti-
ation. More and more often, there is information that abnormal methylation contributes to
the occurrence of diseases, especially in tumorigenesis. It can also be used as biomarkers to
predict response to chemotherapy strategies [45,46]. They proposed the biosensor, which in-
cluded gold electrodes and nanocomposite based on gold nanoparticles, rGO, and graphite
carbon nitride. The nanocomposite showed excellent electrochemical properties by the
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synergistic effects of each component. The proposed biosensor also displayed features
of high specificity, stability, and reproducibility. Because of the synergistic effect of each
component, the nanocomposite demonstrated good electrochemical characteristics [45].
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3.2. Tissue Engineering

Tissue engineering is “an interdisciplinary field that applies the principles of engi-
neering and the life sciences toward the development of biological substitutes that restore,
maintain, or improve tissue function” [47]. Tissue engineering is often known as “regener-
ative medicine”. It offers a variety of solutions, from building new organs for transplant
surgery to repairing damaged tissues. Tissue engineering, apart from cell culture and
stem cell differentiation, also uses biodegradable and biologically safe materials to create
structures called “scaffolds” [48]. Due to different design restrictions related to tissue
engineering, features including mass transport, scaffold degradation, and biocompatibility
must be taken into consideration while designing scaffolds [49]. For successful tissue
engineering, it is essential to produce a biocompatible porous scaffold to support the cells,
delivering bioactive molecules (for example, growth factors); as a result, they can pro-
duce physical and chemical cues that will ultimately determine the cell fate and cellular
organization [50]. The cell microenvironment has an impact on the adhesion, migration,
differentiation, communication, and proliferation of cells on the surface, biomaterials, or
inside the extracellular matrix (ECM). A perfect biomaterial for tissue engineering and
regenerative medicine often aims to imitate the corresponding ECM, providing cells with
the right microenvironment [51].

The commonly used materials for tissue engineering are presented in Table 1. In
addition, 2D nanomaterials have recently attracted great interest. 2D nanomaterials have
a thickness of a few nanometers but a large lateral size. The unique energy level struc-
ture and optical properties, controllable thickness, simplicity in modification and doping,
inherent bioactivity, high biocompatibility, and biodegradability are just a few of the dis-
tinctive properties of 2D nanomaterials. Additionally, 2D nanomaterials’ large specific
surface area makes them good carriers of nanoparticles or medicines [52]. In addition to
graphene, scientists in recent years have proposed the following: 2D oxide and hydroxide
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nanosheets [53], black phosphorus nanoparticles, nanodots, nanosheets [54], non-spherical
metal nanomaterials (noble metal or transition metal dichalcogenides) [55], or hexagonal
boron nitride (hBN) nanoparticle [56]. Tarhan T. et al. [56] used hexagonal boron nitride
nanoparticles, silver nanoparticles, and polydopamine to stimulate wound healing. Silver
nanoparticles were chosen because of their anti-inflammatory properties and hBN for in-
duced proliferation and migration of cells. Even the low concentration of the obtained agent
enhances wound healing besides it reduces ROS production, promotes wound closure,
and reorganizes tube formation in cells [56]. Whereas, non-spherical metal nanoparticles
are used in biomedicine, including regenerative medicine and cancer therapy. What is
important, the architecture of metal-based nanomaterials influences their interaction with
biological systems, i.e., particle geometry is an important factor and can affect their biodis-
tribution, interactions with blood vessels, tumor penetration, transport across endothelial
cells, etc. [56,57].

Table 1. Examples of materials used for tissue engineering [49,51,58].

Natural Materials Synthetic Polymers Inorganic Material

collagens;
hyaluronic acid;

chondroitin sulfate;
chitosan (CS);

silk fibroin

polyethylene glycol (PEG);
poly(lactic-co-glycolic acid)

(PLGA);
polycaprolactone (PCL);

ultra-high molecular weight
polyethylene (UHMWPE)

hydroxyapatite (HAp);
bioglass;

calcium phosphate cement
(CPC)

Sharifi S. et al. [59] proposed magnesium–zinc–graphene oxide nanocomposite scaf-
folds for bone tissue engineering. Scaffolds were fabricated by using powder metallurgy
method. Because of their biodegradability, adequate mechanical qualities, and required
biocompatibility, magnesium (Mg) scaffolds are an appropriate option for bone tissue
regeneration in several studies. The addition of Zn to Mg increases its corrosion resistance
and mechanical qualities. Furthermore, zinc is an element crucial for the human organism;
therefore, the released products should not be toxic to the body. Among the known alloys,
Mg-6Zn is interesting because of its corrosion resistance, mechanical properties, and cell
compatibility. However, GO indicates a positive effect on the adhesion and differentiation
of osteoblasts and stimulates biomineralization [59–62]. The addition of graphene oxide
made the mechanical strength and corrosion resistance significantly improved compared to
Mg-Zn scaffolds. Additionally, Mg-Zn-GO scaffolds were biocompatible and not cytotoxic
in contact with L-929 cells [59].

Chitosan is an amino polysaccharide that is largely found in the cell walls of fungi,
plants, insects, and marine invertebrates. Due to its chemical stability, high biocompatibility,
antibacterial activity, biodegradability, ability to adsorb proteins, and to accelerate wound
healing, CS is used in implantology, as a drug delivery system or scaffold [58,63,64].
Valencia A.M. [65] proposed to use chitosan functionalized GO by a covalent bond (CS-GO).
The results show the potential application of the CS-GO compound in tissue engineering
because of a low inflammatory response in vivo test and advanced resorption at 60 days
of implantation [65]. Nakagawa de Arruda M. et al. [32] designed a few-layer graphene
using the electrochemical exfoliation of graphite. It was supplemented with chitosan
to form a homogeneous composite with low oxygen content. In addition to increasing
surface area and enhancing chemical interactions, chitosan creates homogenous coatings
with graphitic materials that improve the percolation of charges and electrical signals,
increasing conductivity or capacitance. Because of its higher dispersion and resonance
active groups, the graphene composite’s electrical conductivity increased. Furthermore, it
is environmentally friendly because it uses less water and produces less toxic waste [32].

Hydroxyapatite (Ca10(PO4)6(OH)2) is a commonly used material because of its simi-
larity with natural bone in terms of chemistry and structure. It has high biocompatibility,
bioactivity, and osteoconductivity. HAp also shows osteoinductive properties and it pro-
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motes bone regeneration [66–69]. However, HAp’s limited mechanical strength and fracture
toughness limit its clinical applicability because they could cause the propagation of cracks
and an increase in corrosion rate [66,67,69,70]. To improve mechanical properties, some
materials are used as reinforcements of Hap, i.e., polyethylene, Al2O3, TiO2, and carbon
nanotubes. Unfortunately, these reinforcements may reduce the biological properties of
hydroxyapatite and affect adjacent tissues [66]. However, HAp/GO composite showed
improved in vitro osteoblast adhesion and apatite mineralization [71].

Liu Y. et al. [72] proposed HAp and HAp–graphene nanosheet (GN) composites syn-
thesized using a liquid precipitation approach and deposited using vacuum cold spraying.
The results demonstrated that the osteoblast cells spread and proliferated more readily on
the GN-containing coatings [72]. Ramadas M. et al. [71] proposed hydroxyapatite nanorods
grown on a graphene oxide sheet using a hydrothermal process. To assess cytotoxicity at
various concentrations of material, they used human skin cancer cells. The nanocomposites
presented no cytotoxicity effects on cancer cell lines. Although HAp/GO provides excel-
lent biocompatibility [71]. However, Sánchez-Campos D. et al. [73] prepared a composite
containing HAp, GO, and silver nanoparticles using a microwave-assisted hydrothermal
method, a modified Hummer’s synthesis, and by using dietary quercetin for silver nanopar-
ticles formation and deposition. A dose-dependent toxic response was found in eukaryotic
cells. It depended on the presence of GO, but superior cytocompatibility was observed
for the samples with HAp. Furthermore, the composite increased the inhibition zone for
S. aureus and E. coli compared to silver nanoparticles. The results of the antibacterial study
are presented in Figure 4. These indicate that the material can be applied as a bactericidal
agent for tissue replacement and surface coating [73].
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Han W. et al. [66] prepared graphene oxide/hydroxyapatite composite coatings on
a titanium substrate using the electrophoretic deposition method. GO/HAp composite
coatings outperformed HAp coatings in terms of adhesion strength and corrosion resis-
tance. An appropriate amount of graphene oxide promoted the proliferation of the mouse
fibroblast cells and enhanced the mineralization properties. The results showed that 5 wt%
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GO exhibited optimal mechanical properties, bioactivity, corrosion resistance, and good
biocompatibility [66]. Fardi S.R. et al. [67] deposited hydroxyapatite–graphene oxide
nanocomposites on titanium using an ultrasound-assisted electrophoretic technique. Ti
sheets were anodized and then coated with HAp-GO with various compositions (0, 1, and
3 wt% of GO). They improved the mechanical properties with the best reported adhesion
strength demonstrated by coating with 1 wt% GO. This coating showed excellent bioactivity
and corrosion resistance [67]. Daulbayev C. et al. [74] fabricated a graphene oxide/calcium
hydroxyapatite/polycaprolactone composite using an electrospun technique. Graphene
oxide/hydroxyapatite composite was dispersed in biodegradable PLC. The results showed
good antimicrobial activity against Gram-positive and Gram-negative bacterial strains,
which depended on the GO loading. Furthermore, the composite had no cytotoxic effect on
the preosteoblast MC3T3-E1 cell line. This indicates that this composite scaffold can be used
for potential bone tissue regeneration [74]. Zhao H. et al. [75] fabricated porous graphene
oxide/hydroxyapatite composite ceramic scaffolds using digital light processing technol-
ogy. They demonstrated that adding a small amount of GO (0.1–0.4 wt%) to composite
ceramics can improve their mechanical properties. The findings revealed that no scaffolds
are cytotoxic. The composite scaffold increased cell adhesion, proliferation, and the expres-
sion of osteogenesis-related genes, while GO (0.1–0.2 wt%)/HAp scaffolds demonstrated
superior alkaline phosphatase activity and more effective bone mineralization, as well as
osteoinductivity [75].

3.3. Drug Delivery

Most conventional therapies and drug delivery systems have disadvantages such as
rapid metabolism and excretion of drugs before reaching the target, poor water solubility,
non-specificity to the target site, and opposing impacts on normal tissues. Therefore, nan-
otechnology and nanomaterials are becoming more and more popular in the development
of innovative drug transport mechanisms. The efficiency of intelligent drug delivery sys-
tems is continually being improved. This is to maximize therapeutic activity and reduce
side effects [76–78].

Li W. et al. [79] constructed a rectal delivery system using temperature-sensitive hy-
droxybutyl chitosan gel cross-linked with GO with pingyangmycin as a model drug. The
temperature-sensitive gels are mostly based on polyisopropyl acrylamide, poloxamer, and
CS. Because of their good biocompatibility, high permeability, and low drug toxicity, they
are frequently used for injectable drug administration, oral drug delivery, rectal drug deliv-
ery, or mucosal drug delivery. The obtained material presented an effectively prolonged
action time of the drug in vivo with rectal administration, and a sustained release effect [79].
Whereas, pH-responsive chitosan-based hydrogel can also be used as a drug delivery sys-
tem. Hydrogel was efficiently fabricated by varying amounts of GO for controlled cephra-
dine release. The content of GO proportionally affected the thermal stability. The material
was most effective against Escherichia coli and Pseudomonas aeruginosa. Furthermore,
pH-responsive swelling (schematic diagram presented in Figure 5) and biodegradability
were confirmed in phosphate-buffered saline and proteinase K solutions [80].
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Breast cancer is one of the most common cancers in women and has a high mortality
rate. Chemotherapy, immunotherapy, radiotherapy, and surgery are just a few of the
methods that have been used to treat cancer, and combining these methods typically results
in a more successful treatment [81–83]. However, scientists are still working on improving
therapeutic methods. Matiyani M. et al. [84] developed a multi-functionalized GO-based
novel drug nanocarrier for the delivery of the chemotherapeutic. They used quercetin and
curcumin, which are potent anticancer drugs. The drug delivery system was created by
combining graphene oxide with a hydrophilic polymer and metal oxides, zinc oxide and
titanium dioxide. The results showed that the nanocarrier exhibits a pH-sensitive release of
loaded drugs, besides demonstrating cytotoxicity towards breast cancer cells [84]. Whereas,
Rajaei M. et al. [81] synthesized pH-sensitive hydrogel of chitosan/agarose/graphene
oxide with glyoxal as the cross-linker. It was prepared using the water-in-oil-in-water
emulsification technique. The results indicate that the loading and entrapment efficiencies
of the drug are satisfactory. A highly effective and sustained medicine release profile was
observed at pH 5.4; within 48 hours, almost the entire content of the drug model was
released. In addition, effective cytotoxicity was observed against breast cancer cell lines
(MCF-7) [81].

Quantum dots can be used to minimize the size of sheets to less than 100 nm. More-
over, quantum dots show better properties with more active groups on their surface than
typical graphene and graphene oxide. They exhibit unique properties, i.e., water solubility,
non-toxicity, high biocompatibility, a small size with a large surface area, high drug loading
capacity, and better cellular uptake [85–87]. Mohammed-Ahmed H.K. et al. [85] exam-
ined graphene oxide quantum dots conjugated with glucosamine and boric acid with and
without doxorubicin (DOX) for cancer therapy. The results showed that nanocomposite
with boric acid improved the loading and release of DOX, with higher cellular internaliza-
tion. Seyyedi Zadeh et al. [86] also worked on the production of a drug carrier based on
quantum dots. They synthesized a magnetic graphene quantum dots-Fe3O4 nanocarrier
targeted with folic acid (FA) and loaded with curcumin. pH-dependent drug release was
observed for both GQDs-Fe3O4 and GQDs-Fe3O4-FA. The bare nanocarrier had no cyto-
toxic effect on normal cells. In addition, folic acid acted as a selective targeting agent in the
nanocarriers [86].

4. Conclusions

Single-walled carbon nanotubes, multiwalled carbon nanotubes, graphene, and re-
duced graphene oxide are just a few of the carbon nanostructures that have drawn a lot
of research interest. Graphene is a 2D sheet of sp2-hybridized carbon atoms of atomic
thickness that are organized in a honeycomb crystal lattice. Graphene is attracting a lot of
interest due to its unique structural, optical, chemical, thermal, mechanical, electrical, and
biological properties. Its derivatives are graphene oxide and reduced graphene oxide and
graphene quantum dots. Graphene can be created using a variety of processes, including
pyrolysis, epitaxial growth, chemical and electrochemical exfoliation of graphite, physical
vapor deposition, and chemical vapor deposition. But the most promising method for
industrial development and the production of graphene among those approaches is CVD.

Biomedical applications such as biosensing, medication delivery, regenerative medicine,
and diagnostic tools are rapidly expanding. Graphene-based scaffolds are a particularly
promising technology and have attracted interest due to their strong clinical potential in
tissue regeneration therapies due to their substantial influence on the proliferation and
differentiation of used stem cells. However, scientists still have many problems to solve,
the biggest challenges are as follows: cytotoxicity, biodistribution, biotransformation, and
immune response.

In conclusion, graphene nanomaterials have a bright future in biomedical applica-
tions. However, scientists still have many problems to solve, the biggest challenges being
cytotoxicity, biotransformation, and immune response.
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