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Abstract. A set D of vertices of a graph G = (VG, EG) is a dominating set of G if every vertex
in VG −D is adjacent to at least one vertex in D. The domination number (upper domination
number, respectively) of G, denoted by γ(G) (Γ(G), respectively), is the cardinality of
a smallest (largest minimal, respectively) dominating set of G. A subset D ⊆ VG is called
a certified dominating set of G if D is a dominating set of G and every vertex in D has either
zero or at least two neighbors in VG − D. The cardinality of a smallest (largest minimal,
respectively) certified dominating set of G is called the certified (upper certified, respectively)
domination number of G and is denoted by γcer(G) (Γcer(G), respectively). In this paper
relations between domination, upper domination, certified domination and upper certified
domination numbers of a graph are studied.
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1. NOTATION AND DEFINITIONS

We generally follow the notation and terminology of [7]. For a graphG, the set of vertices
is denoted by VG and the edge set by EG. For a vertex v ∈ VG, the open neighborhood
NG(v) of v is the set of all vertices adjacent to v, and NG[v] = NG(v)∪{v} is the closed
neighborhood of v. The open neighborhood of a set X ⊆ VG is NG(X) =

⋃
v∈X NG(v),

whereas the closed neighborhood of X is the set NG[X] = NG(X) ∪X. For X ⊆ VG

and v ∈ X, the set NG[v] − NG[X − {v}] is denoted by PNG[v,X] and called the
private neighborhood of v with respect to X. Every vertex belonging to PNG[v,X] is
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called a private neighbor of v with respect to X. By PNG(v,X) we denote the set
NG(v)−NG[X−{v}] and call it the open private neighborhood (of v with respect to X).
The degree of a vertex v in G is dG(v) = |NG(v)|. The number min{dG(v) : v ∈ VG}
is the minimum degree of G and is denoted by δ(G). A vertex of degree 0 is called
an isolated vertex, whereas a vertex of degree one in G is called a leaf of G. If v is
a leaf, then its only neighbor is called a support vertex of v. A support vertex is called
strong or weak depending on whether or not it is adjacent to at least two leaves. We
use LG, SG, S1

G and S2
G to denote the set of all leaves, support vertices, weak support

vertices and strong support vertices of G, respectively. Finally, the corona H ◦K1 of
a graph H was defined in [4] as the graph obtained from H by adding exactly one
pendant edge to each vertex of H. A graph G is said to be a corona if it is the corona
H ◦K1 of some graph H. It is obvious that a corona is a graph in which each vertex
is a leaf or a weak support vertex.

Given a graph G, we say that a subset D ⊆ VG is a dominating set of G if
every vertex belonging to VG − D is adjacent to at least one vertex in D. The
domination number (upper domination number, respectively) of G, denoted by γ(G)
(Γ(G), respectively), is the cardinality of a smallest (largest minimal, respectively)
dominating set of G. A dominating (minimal dominating, respectively) set of G of
minimum (maximum, respectively) cardinality is called a γ-set (Γ-set, respectively) ofG.
A subset D ⊆ VG is called a certified dominating set of G if D is a dominating set of
G and every vertex belonging to D has either zero or at least two neighbors in VG−D.
The cardinality of a smallest (largest minimal, respectively) certified dominating set of
G is called the certified (upper certified, respectively) domination number of G and is
denoted by γcer(G) (Γcer(G), respectively). A certified dominating (minimal certified
dominating, respectively) set of G of minimum (maximum, respectively) cardinality is
called a γcer-set (Γcer-set, respectively) of G. For example, it is easy to observe that for
the most common graph families, we have γ(Kn) = γcer(Kn) = Γ(Kn) = Γcer(Kn) = 1
if n 6= 2, γ(Pn) = γcer(Pn) = dn/3e and Γcer(Pn) = b(n− 1)/2c = Γ(Pn)− 1 if n ≥ 5,
γ(Cn) = γcer(Cn) = dn/3e and Γ(Cn) = Γcer(Cn) = bn/2c if n ≥ 3, Γ(K1,n) = n (if
n ≥ 1) and γ(K1,n) = γcer(K1,n) = Γcer(K1,n) = 1 if n ≥ 2, γ(Km,n) = γcer(Km,n) = 2
and Γ(Km,n) = Γcer(Km,n) = n if 2 ≤ m ≤ n.

It is obvious that for any graphG we have the inequalities γ(G) ≤ γcer(G)≤ Γcer(G),
while the parameters γcer(G) and Γ(G), and also the parameters Γcer(G) and Γ(G) are
not comparable. For example, the inequalities γ(G) ≤ Γ(G) ≤ γcer(G) ≤ Γcer(G) hold
for the graph G in Figure 1. In this case it is easy to check that γ(G) = 5, Γ(G) = 6,
γcer(G) = 7, Γcer(G) = 8, and the sets {v1, v2, v3, v5, v6}, {v5, v8, v10, v11, v12, v13},
{v1, v2, v3, v5, v6, v12, v13}, {v1, v2, v3, v5, v8, v10, v12, v13} are examples of γ-, Γ-, γcer-,
and Γcer-sets of G, respectively. The graph F in Figure 1 illustrates the inequali-
ties γ(F ) ≤ γcer(F ) ≤ Γ(F ) ≤ Γcer(F ). One can check that γ(F ) = 3, γcer(F ) = 4,
Γ(F ) = 5, Γcer(F ) = 6, and the sets {v1, v2, v3}, {v1, v2, v5, v9}, {v4, v6, v7, v8, v9}
and {v1, v2, v4, v6, v7, v9} are examples of γ-, γcer-, Γ-, and Γcer-sets of F , respectively.
Finally, the inequalities γ(H) ≤ γcer(H) ≤ Γcer(H) ≤ Γ(H) hold for the graph H in Fig-
ure 1, where γ(H) = 5, γcer(H) = 6, Γcer(H) = 7, Γ(H) = 8, and {v4, v5, v7, v12, v14},
{v4, v5, v6, v7, v12, v14}, {v4, v5, v8, v9, v10, v12, v14} and {v1, v2, v3, v6, v8, v9, v10, v13}
are examples of γ-, γcer-, Γcer- and Γ-sets of H, respectively.
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Fig. 1. Graphs G, F , and H

Domination in graphs is one of the most fundamental and well-studied concepts
in graph theory. The reader is referred to [6, 7] and [8] for more details on these
important topics. The previously mentioned certified domination was introduced by
Dettlaff et al. [2] in order to describe some possible relations in social networks. In
this paper we continue the study of certified dominating sets and certified domination
numbers of graphs. For different classes of graphs G we establish conditions for the
equality of the domination number γ(G) and the certified domination number γcer(G)
of a graph G. Furthermore, we characterize all graphs G for which γ(H) = γcer(H)
for each induced and connected subgraph H 6= K2 of G. The last part of the paper
is concerned with main properties of the upper certified domination number Γcer(G)
of G and its relations to γcer(G) and Γ(G). We conclude with some open problems.

2. GRAPHS G FOR WHICH γcer(G) = γ(G)

In this section we study basic properties which guarantee equalities of domination and
certified domination numbers. We begin with the following necessary and sufficient
condition for the equality of domination and certified domination numbers of a graph.

Theorem 2.1. Let G be a connected graph of order at least three. Then γ(G) = γcer(G)
if and only if G has a γ-set D such that every vertex in D has at least two neighbors
in VG −D.

Proof. Assume that γ(G) = γcer(G). Let D be a γcer-set of G. Then the equality
γ(G) = γcer(G) guarantees that D is also a γ-set of G. Now, let v be a vertex in D.
Since v is not an isolated vertex, the set NG(v) ∩ (VG −D) is nonempty (as otherwise
D − {v} would be a smaller dominating set of G). Consequently, since D is a certified
dominating set, we have |NG(v) ∩ (VG −D)| ≥ 2.

On the other hand, if D is a γ-set of G and |NG(v)∩ (VG−D)| ≥ 2 for every v ∈ D,
then D is also a certified dominating set of G. Hence γcer(G) ≤ |D| = γ(G) ≤ γcer(G)
and therefore γ(G) = γcer(G).
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From Theorem 2.1 we immediately obtain the following corollary.

Corollary 2.2. Let G be a connected graph of order at least three. If G has an
independent γ-set that contains no leaf of G, then γ(G) = γcer(G).

It was already proved in [2] that γ(G) = γcer(G) for all graphs G without leaves.
Here we present another proof of that result.

Corollary 2.3. If G is a graph in which δ(G) ≥ 2, then:

(1) G has a γ-set D such that every vertex in D has at least two neighbors in VG−D;
(2) γ(G) = γcer(G).

Proof. For a γ-set X of G, let q(X) denote the set {x ∈ X : |NG(x) ∩ (VG −X)| ≤ 1}.
Now, let D be a γ-set such that |q(D)| is as small as possible. We claim that q(D) = ∅
and so D is the required set. Indeed, suppose to the contrary that |q(D)| > 0, and
let v be any vertex in q(D). Since dG(v) ≥ δ(G) ≥ 2, the set NG(v) cannot be
a subset of D, as otherwise D − {v} would be a dominating set of G. Consequently
|NG(v) ∩ (VG − D)| = 1, say NG(v) ∩ (VG − D) = {v′}. Again, since dG(v) ≥ 2
and |NG(v) ∩ (VG − D)| = 1, NG(v) ∩ D 6= ∅ and v′ is the only private neighbor
of v with respect to D. Thus NG(v′) − {v} is a non-empty subset of VG − D and
D′ = (D − {v}) ∪ {v′} is a minimum dominating set of G and the set

q(D′) = {x ∈ D′ : |NG(x) ∩ (VG −D′)| ≤ 1}

is of size smaller than |q(D)| (as q(D′) ⊆ q(D)− {v}, since v′ is a private neighbor of
v with respect to D and dG(v′) ≥ 2), a contradiction, which completes the proof of (1).
The property (2) follows from (1) and Theorem 2.1.

It has been proved in [5] that if D is a unique γ-set of a graph G, then every vertex
in D that is not an isolated vertex has at least two private neighbors other than itself,
that is, in the set VG −D. From this and from Theorem 2.1 we have the following
corollary.

Corollary 2.4 ([2]). If a graph G has a unique γ-set, then γ(G) = γcer(G).

The main properties of graphs having unique γ-sets have been studied in [5]
and partialy in [3]. It was also observed in [5] that if D is a γ-set of a graph G and
γ(G − x) > γ(G) for every x ∈ D, then D is the unique γ-set of G. Thus, by
Corollary 2.4, we have the next corollary.

Corollary 2.5. If a graph G has a γ-set D such that γ(G − x) > γ(G) for every
x ∈ D, then γ(G) = γcer(G).

The next theorem provides another sufficient condition for the equality of domina-
tion and certified domination numbers of a graph.

Theorem 2.6. Let G be a connected graph of order at least three. If γ(G− v) ≥ γ(G)
for every vertex v belonging to at least one γ-set of G, then γ(G) = γcer(G).
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Proof. Similarly as in the proof of Corollary 2.3, if X is a γ-set of G, then by q(X)
we denote the set {x ∈ X : |NG(x) ∩ (VG −X)| ≤ 1}. Assume that γ(G− x) ≥ γ(G)
for every vertex x belonging to at least one γ-set of G. To prove that γ(G) = γcer(G),
by Theorem 2.1, it remains to show that q(X) = ∅ for some γ-set X of G.

Let D be a γ-set such that |q(D)| is as small as possible. We claim that q(D) = ∅
and so D is the required set. Indeed, suppose to the contrary that |q(D)| > 0, and let
v be any vertex belonging to q(D). Since v is not an isolated vertex, the minimality
of D implies that NG(v) ∩ (VG −D) 6= ∅ (as otherwise D − {v} would be a smaller
dominating set of G). Thus |NG(v) ∩ (VG −D)| = 1, and let v′ be the only vertex in
NG(v) ∩ (VG −D). Then the set D′ = (D − {v}) ∪ {v′} is a γ-set of G.

We now claim that v′ is a private neighbor of v with respect to D. Suppose, contrary
to our claim, that v′ 6∈ PNG[v,D]. Then v′ ∈ NG(D − {v}) and either NG(v) ∩D 6= ∅
or NG(v)∩D = ∅. The first case is impossible (as otherwise D−{v} would be a smaller
dominating set of G). Thus NG(v) ∩D = ∅, but now D − {v} is a dominating set of
G− v and therefore, γ(G− v) ≤ |D − {v}| < |D| = γ(G), contrary to our assumption.
This proves that v′ is a private neighbor of v with respect to D.

Next, since the private neighbor v′ of v with respect to D is the only neighbor
of v in VG − D and since G is a connected graph of order at least three, the sets
NG(v) − {v′} and NG(v′) − {v} are subsets of D and VG − D, respectively, and at
least one of them is non-empty. If NG(v) − {v′} 6= ∅, then PNG[v′, D′] = {v′} and
D′−{v′} is a dominating set of G−v′, and then γ(G−v′) ≤ |D′−{v′}| < |D′| = γ(G),
contrary to our assumption. Thus assume that NG(v)− {v′} = ∅. Then NG(v′)− {v}
is a non-empty subset of VG −D′, and therefore

|NG(v′) ∩ (VG −D′)| = |{v}|+ |(NG(v′)− {v}) ∩ (VG −D′)|
= 1 + |NG(v′)− {v}| ≥ 2.

This implies that v′ 6∈ q(D′). Now, since v 6∈ q(D′) (as v 6∈ D′), neither v′ nor v belongs
to q(D′), and therefore q(D′) ⊆ q(D)− {v}. Consequently, we have |q(D′)| < |q(D)|,
a contradiction to the choice of D, and this completes the proof.

The fundamental relations between the classes of graphs considered in Corollaries
2.3–2.5 and Theorems 2.1 and 2.6 are illustrated by examples in Figure 2.

A graph G is said to be P4-free if P4 is not an induced subgraph of G. We also
say that a graph G is γγcer-perfect if γ(H) = γcer(H) for each induced and connected
subgraph H 6= K2 of G. It follows from this definition that a graph G is γγcer-perfect
if and only if each component of G, different from K2, is γγcer-perfect. The path P4
is the smallest non-γγcer-perfect graph. The union K2 ∪ C4 is a γγcer-perfect graph,
while the union K2 ∪ C5 is not a γγcer-perfect graph. We now study the equality
γ(G) = γcer(G) for P4-free graphs.

Theorem 2.7. If G is a connected P4-free graph and G 6= K2, then γ(G) = γcer(G).

Proof. The result is obvious if G = K1. Thus assume that G is a connected P4-free
graph of order at least three. We shall prove that γ(G) = γcer(G). Since γ(G) ≤ γcer(G),
it suffices to show that some γ-set of G is a certified dominating set of G.
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Similarly as in the proof of Corollary 2.3 and Theorem 2.6, let D be a γ-set of
G such that D contains no leaf of G and q(D) = {x ∈ D : |NG(x) ∩ (VG −D)| ≤ 1}
is as small as possible (since G is connected and G 6= K2, such D exists). We claim
that q(D) = ∅. Indeed, suppose to the contrary that |q(D)| > 0, and let v be any
vertex belonging to q(D). By the same reason as in the proof of Theorem 2.6, there
exists v′ which is the only neighbor of v in VG − D. Since v is not a leaf and v′

is the only neighbor of v in VG − D, the set NG(v) ∩ D is non-empty. Choose any
vertex u ∈ NG(v) ∩D. The minimality of D and the fact that v and u are adjacent
elements of D imply that the private neighborhoods PNG[v,D] and PNG[u,D] are
disjoint and non-empty subsets of VG−D. Certainly, PNG[v,D] = {v′} and, therefore,
NG(x) ∩ {v′} = ∅ for every x ∈ D − {v}. Now, since G is a P4-free graph, the
vertex v′ is not a leaf and it is adjacent to every vertex in PNG[u,D] and, therefore,
to every vertex in

⋃
u∈NG(v)∩D PNG[u,D]. Again from the fact that G is P4-free

it is easily seen that NG(v) ∩ D = {u} and NG(u) ∩ D = {v} (otherwise, the set
{u′, v′, v, w}, where u′ ∈ PNG[u,D] and w ∈ (NG(v) ∩D)− {u}, or, respectively, the
set {v′, v, u, z}, where z ∈ (NG(u) ∩ D) − {v}, would induce a 4-vertex path in G,
a contradiction). Now let us consider the set D′ = (D − {v}) ∪ {v′}. It is obvious that
D′ is a minimum dominating set of G and D′ contains no leaf of G. It remains to
show that q(D′) ⊆ q(D)− {v}. First, let us observe that v 6∈ q(D′) (as v 6∈ D′) and
{v′, u} ∩ q(D′) = ∅ (as |NG(x) ∩ (VG −D′)| ≥ |{v} ∪ PNG[u,D]| ≥ 2 if x ∈ {v′, u}).
Now, since NG(v) ∩ q(D′) = {v′, u} ∩ q(D′) = ∅, we have NG(x) ∩ {v} = ∅ for every
x ∈ q(D′). Consequently, if x ∈ q(D′), then x ∈ q(D′) − {v, v′, u} and therefore we
have

1 = |NG(x) ∩ (VG −D′)|
= |NG(x) ∩ (VG − ((D − {v}) ∪ {v′}))|
= |NG(x) ∩ (((VG −D)− {v′}) ∪ {v})|
= |NG(x) ∩ ((VG −D)− {v′}) ∪ (NG(x) ∩ {v})|
= |((NG(x) ∩ (VG −D))− (NG(x) ∩ {v′})) ∪ (NG(x) ∩ {v})|
= |NG(x) ∩ (VG −D)|,

as NG(x) ∩ {v′} = ∅ and NG(x) ∩ {v} = ∅. This shows that q(D′) ⊆ q(D) − {v},
a contradiction, which completes the proof.

Theorem 2.7 immediately implies the following characterization of the γγcer-perfect
graphs.

Corollary 2.8. A graph G is a γγcer-perfect graph if and only if G is a P4-free graph.

Proof. The “only if” part of the theorem follows from the fact that γ(P4) = 2 <
4 = γcer(P4). The “if” part follows from Theorem 2.7.D
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Some graphs G with δ(G) = 1 All graphs G with δ(G) ≥ 2

Paths (k ≥ 2)

Cycles (k ≥ 1)

C3k C3k+2 C3k+1

P3k+1 P3k+2 P3k

∀γ-setD ∀x∈D γ(G − x) ≥ γ(G)

∃γ-setD ∀x∈D |PNG(x,D)| ≥ 2

Graphs with unique γ-sets

∃γ-setD ∀x∈D γ(G− x) > γ(G)

Figure 2: The variety of relations between the classes of graphs G with γ(G) = γcer(G).

NG(v) ∩D is non-empty. Choose any vertex u ∈ NG(v) ∩D. The minimality of D and the
fact that v and u are adjacent elements of D imply that the private neighborhoods PNG[v,D]
and PNG[u,D] are disjoint and non-empty subsets of VG −D. Certainly, PNG[v,D] = {v′}
and, therefore, NG(x) ∩ {v′} = ∅ for every x ∈ D − {v}. Now, since G is a P4-free graph,
the vertex v′ is not a leaf and it is adjacent to every vertex in PNG[u,D] and, therefore,
to every vertex in

⋃
u∈NG(v)∩D PNG[u,D]. Again from the fact that G is P4-free it is easily

seen that NG(v) ∩ D = {u} and NG(u) ∩ D = {v} (otherwise, the set {u′, v′, v, w}, where
u′ ∈ PNG[u,D] and w ∈ (NG(v) ∩ D) − {u}, or, respectively, the set {v′, v, u, z}, where
z ∈ (NG(u) ∩ D) − {v}, would induce a 4-vertex path in G, a contradiction). Now let us
consider the set D′ = (D − {v}) ∪ {v′}. It is obvious that D′ is a minimum dominating set
of G and D′ contains no leaf of G. It remains to show that q(D′) ⊆ q(D)− {v}. First, let
us observe that v 6∈ q(D′) (as v 6∈ D′) and {v′, u} ∩ q(D′) = ∅ (as |NG(x) ∩ (VG − D′)| ≥
|{v}∪PNG[u,D]| ≥ 2 if x ∈ {v′, u}). Now, since NG(v)∩q(D′) = {v′, u}∩q(D′) = ∅, we have
NG(x)∩ {v} = ∅ for every x ∈ q(D′). Consequently, if x ∈ q(D′), then x ∈ q(D′)−{v, v′, u}
and therefore we have 1 = |NG(x) ∩ (VG − D′)| = |NG(x) ∩ (VG − ((D − {v}) ∪ {v′}))| =
|NG(x)∩(((VG−D)−{v′})∪{v})| = |NG(x)∩((VG−D)−{v′})∪(NG(x)∩{v})| = |((NG(x)∩
(VG−D))− (NG(x)∩{v′}))∪ (NG(x)∩{v})| = |NG(x)∩ (VG−D)|, as NG(x)∩{v′} = ∅ and
NG(x) ∩ {v} = ∅. This shows that q(D′) ⊆ q(D) − {v}, a contradiction, which completes

6

Fig. 2. The variety of relations between the classes of graphs G with γ(G) = γcer(G)

3. PROPERTIES OF UPPER CERTIFIED DOMINATION NUMBER

In this section we study main properties of upper certified domination number Γcer.
We give a characterization of all graphs with Γcer = n and Γcer = n− 2, respectively.
In addition, we focus on the relation between upper domination number and upper
certified domination number of a graph. We start with the following useful lemma.

Lemma 3.1. Let G be a connected graph of order at least two. If D is a minimal
certified dominating set of G and v is a vertex such that NG[v] ⊆ D, then v ∈ LG∪S1

G,
that is, v is a leaf or a weak support vertex of G. In addition, the induced subgraph
G[{v ∈ D : NG[v] ⊆ D}] is a corona.

Proof. The result is obvious if G = K2. Thus assume that G is a graph of order at
least three. Suppose, contrary to our claim, that the set

D′ = {v ∈ D : NG[v] ⊆ D} − (LG ∪ S1
G)

is non-empty. Let F denote the subgraph G[D′]. Let I be a maximal set of independent
vertices of degree at least two in F . The set I is a proper (possibly empty) subset of D′
and, if I is non-empty, then every vertex in I has at least two neighbors in D′− I. Now
let I ′ denote the set D′−NF [I]. We claim that I ′ is dominated by the set D−(LG∪D′).
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This is trivially true if I ′ = ∅. Thus assume that I ′ 6= ∅ and v0 ∈ I ′. Then dG(v0) ≥ 2
(as v0 6∈ LG) but dF (v0) ≤ 1 (otherwise I ∪ {v0} would be a larger set of independent
vertices of degree at least two in F ) and therefore NG(v0)− VF is a non-empty subset
of D − (LG ∪D′). This proves our claim. Consequently, D − (LG ∪D′) dominates I ′
whereas I is a certified dominating set of F − I ′. This implies that D − (D′ − I) is
a dominating set of G. In addition, it is no problem to observe that D− ((D′− I)∪L′)
is a dominating set of G for every subset L′ of LG (as every x ∈ LG is dominated by
its only neighbor in NG(LG) and NG(LG) ⊆ D).

Let us consider the function s : LG → SG, where s(x) is the only neighbor of
a leaf x, i.e. s(x) is the only element of the set NG(x). This function is not necessarily
an injection, but, since D is a minimal certified dominating set of G, the restriction of s
to LG ∩D is indeed an injection and, in addition, the set NG[s(x)] is a subset of D for
every x ∈ LG ∩D (since otherwise, as both x and s(x) belong to D, the set D − {x}
would be a smaller certified dominating set, a contradiction with the minimality
of D). Moreover, the mapping s : LG ∩D → SG is a bijection between LG ∩D and
{y ∈ SG : NG[y] ⊆ D} (= NG(LG ∩D)). Let S0 and S1 be the sets {x ∈ NG(LG ∩D) :
NG(x) ∩ (D′ − I) = ∅} and {x ∈ NG(LG ∩D) : NG(x) ∩ (D′ − I) 6= ∅}, respectively.
Now let L0 = NG(S0)∩LG (= s−1(S0)) and L1 = NG(S1)∩LG (= s−1(S1)). Observe
that S0 ∩ S1 = ∅ and L0 ∩ L1 = ∅, whereas S0 ∪ S1 = NG(LG ∩ D) ⊆ S1

G and
L0 ∪ L1 = LG ∩D.

We now prove that the set D′′ = D− ((D′−I)∪L1) is a certified dominating set of
G. Since D′′ is a dominating set of G, it suffices to show that no vertex belonging to D′′
has exactly one neighbor in VG −D′′. To show this, let us take a vertex x ∈ D′′. Since
D′′ ⊆ D and D is a certified dominating set of G, we have |NG(x) ∩ (VG −D)| ≥ 2 or
|NG(x)∩(VG−D)| = 0. In the first case |NG(x)∩(VG−D′′)| ≥ 2, as VG−D ⊆ VG−D′′.
Thus assume that |NG(x)∩(VG−D)| = 0. Then NG[x] ⊆ D and, since x 6∈ (D′−I)∪L1,
x is an element of the set I ∪ S1 ∪ (L0 ∪ S0). If x ∈ I, then |NF (x)∩ (D′ − I)| ≥ 2 (by
the definition of I) and therefore |NG(x) ∩ (VG −D′′)| ≥ 2 (as NF (x) ⊆ NG(x) and
D′−I ⊆ VG−D′′). If x ∈ S1 (= NG(L1)), thenNG(x)∩L1 6= ∅ andNG(x)∩(D′−I) 6= ∅,
and therefore |NG(x)∩(VG−D′′)| ≥ 2 as L1 and D′−I are disjoint subsets of VG−D′′.
It remains to show that NG(x) ∩ (VG −D′′) = ∅ (or, equivalently, that NG(x) ⊆ D′′)
if x ∈ L0 ∪ S0. Since D′′ = D − ((D′ − I) ∪ L1), it suffices to show that NG(x) ⊆ D,
NG(x) ∩ (D′ − I) = ∅ and NG(x) ∩ L1 = ∅ if x ∈ L0 ∪ S0. We know already that
NG[S0] ⊆ D, and hence

NG(L0 ∪ S0) = NG(L0) ∪NG(S0) = S0 ∪NG(S0) = NG[S0] ⊆ D,

which proves that NG(x) ⊆ D if x ∈ L0 ∪ S0. It follows from the definition of the set
S0 that NG(S0) ∩ (D′ − I) = ∅ and therefore NG[S0] ∩ (D′ − I) = ∅ (as S0 and D′

are disjoint). Consequently NG(L0 ∪ S0) ∩ (D′ − I) = NG[S0] ∩ (D′ − I) = ∅ and this
proves that NG(x)∩ (D′− I) = ∅ if x ∈ L0 ∪S0. Finally, it follows from the properties
of the sets S0, S1, L0 and L1 that NG(L1) ∩ (L0 ∪ S0) = S1 ∩ (L0 ∪ S0) = ∅ and
consequently NG(x) ∩L1 = ∅ if x ∈ L0 ∪ S0. This completes the proof of the fact that
D′′ is a certified dominating set of G, which, however, contradicts the minimality of
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D (as D′′ is a proper subset of D). This proves that the set {v ∈ D : NG[v] ⊆ D} is
a subset of LG ∪ S1

G, and therefore the induced subgraph G[{v ∈ D : NG[v] ⊆ D}]
is a corona.

Now we give a characterization of the graphs for which the upper certified domina-
tion number is equal to their order.

Theorem 3.2. Let G be a graph of order n. Then the following statements are
equivalent:

(1) every non-trivial component of G is a corona;
(2) γcer(G) = n;
(3) Γcer(G) = n.

Proof. The equivalence of (1) and (2) has been proved in [2]. It remains to prove
the equivalence of (2) and (3). If γcer(G) = n, then n = γcer(G) ≤ Γcer(G) ≤ n
and, therefore, Γcer(G) = n. Assume now that Γcer(G) = n. Then VG is a minimal
certified dominating set of G, and, consequently, no proper subset of VG is a certified
dominating set of G. This implies that it cannot be γcer(G) < n, and, thus, it must be
γcer(G) = n.

It follows from the definition of a certified dominating set that if G is a graph of
order n, then no n − 1 vertices form a certified dominating set of G. Consequently,
either Γcer(G) = n or Γcer(G) ≤ n− 2. It is natural then to characterize all graphs G
of order n for which Γcer(G) = n− 2. We need the following definitions and notation.
A simple diadem is a graph obtained from a corona by adding one new vertex and
joining it to exactly one support vertex of the corona, whereas a diadem is a graph
obtained from a corona by adding one new vertex and joining it to one leaf and its
neighbor in the corona. Finally, by G+H we denote the join of graphs G and H.

Theorem 3.3. Let G be a connected graph of order n ≥ 3. Then Γcer(G) = n − 2
if and only if G is a simple diadem, a diadem, or one of the graphs K2 +Kn−2 and
K2 +Kn−2.

Proof. It is a simple matter to observe that if a connected graph G of order n ≥ 3 is
a simple diadem, a diadem, K2 +Kn−2 or K2 +Kn−2, then Γcer(G) = n− 2.

Assume now that G is a connected graph of order n ≥ 3 such that Γcer(G) = n− 2.
Let D be a Γcer-set of G, and let x and y be the only vertices in VG −D. Let D0 and
D2 be the sets {v ∈ D : NG[v] ⊆ D} and {v ∈ D : {x, y} ⊆ NG(v)}, respectively.

Assume first that D0 = ∅. Then D2 = D = VG − {x, y} and the minimality of D
easily implies the independence of D. Thus G[D] = Kn−2 and now, from the fact that
every vertex in D is adjacent to both x and y, it follows that G is one of the graphs
K2 +Kn−2 and K2 +Kn−2 (depending on whether or not x and y are adjacent).

Assume now that D0 6= ∅. It follows from Lemma 3.1 that every vertex in D0
is a leaf or a weak support vertex of G and the induced subgraph G[D0] of G is
a corona. We consider two subcases |D2| = 1 and |D2| ≥ 2 separately.

First assume that |D2| = 1 and let z be the only vertex in D2. Let F be a connected
component of G[D0]. It follows from the connectivity of G that z is adjacent to at
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least one support vertex of F if F is of order at least four. If F is of order two, then
z is adjacent to exactly one vertex of F (for otherwise z would be adjacent to both
vertices of F and then the proper subset D− VF of D would be a certified dominating
set of G, contrary to the minimality of D). From the above and from the fact that z is
adjacent to both x and y it follows that G is a diadem or a simple diadem (depending
on whether or not x and y are adjacent).

Finally assume that |D2| ≥ 2. We shall prove that this case is impossible. The
connectivity of G implies that there exists a vertex u ∈ D2 adjacent to a support
belonging to D0. Let us consider the sets L = {t ∈ LG : dG(t, u) = 2} and D′ =
D − ({u} ∪ L). Now we claim that the set D′ is a certified dominating set of G.
It is obvious that L ⊆ LG ⊆ D0 and therefore D′ = (D2 − {u}) ∪ (D0 − L) and
VG−D′ = {x, y, u}∪L. The vertices x and y are dominated by every vertex belonging
to the non-empty set D2 − {u}. If t ∈ L, then its only neighbor is in D0 − L and it
dominates both t and u. This proves that D′ is a dominating set of G. Thus it remains
to observe that no vertex belonging to D′ has exactly one neighbor in VG−D′. This is
obvious for every vertex t in D2−{u}, since x and y are two neighbors of t in VG−D′.
Thus assume that t is in D0 − L. Then, since

D0 − L = (SG ∪ LG)− L = NG(L) ∪NG[LG − L],

either t ∈ NG(L) or t ∈ NG[LG − L] = (LG − L) ∪NG(LG − L). If t ∈ NG(L), then u
and the only vertex in NG(t) ∩ L are two neighbors of t in VG −D′. If t ∈ LG − L,
then the only element of NG(t) belongs to NG(LG −L) and so NG(t)∩ (VG −D′) = ∅
(since NG(LG − L) ⊆ NG[LG − L] ⊆ D′). Finally, if t ∈ NG(LG − L), then t ∈
NG(LG) − NG(L) and NG(t) ∩ (VG − D′) = ∅ (because VG − D′ = {x, y, u} ∪ L,
NG({x, y, u} ∪ L) ⊆ {x, y} ∪D2 ∪NG(L), and t 6∈ {x, y} ∪D2 ∪NG(L)). This proves
that the proper subset D′ = D − ({u} ∪ L) of D is a certified dominating set of G,
contrary to the minimality of D. Therefore the case |D2| ≥ 2 is impossible, which
completes the proof.

Next, we study the relation between upper domination number and upper certified
domination number of a graph. The equality γ(G) = γcer(G) for any graph G with
δ(G) ≥ 2 (see Corollary 2.3) could suggest that the analogous equality holds for the
parameters Γ and Γcer. Graph G of Figure 3 shows that this is not the case.

v1

v10

v2

v9

v5

v8

v3 v4

v6

v7

G

x

y

z
G′

Fig. 3. Graphs G and G′
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For this graph we have δ(G) = 2, Γ(G) = 5 and Γcer(G) = 4, and {v2, v3, v6, v7, v9}
and {v2, v4, v6, v10} are examples of Γ- and Γcer-sets of G, respectively. For graphs G
with δ(G) ≥ 2, in fact, we always have Γcer(G) ≤ Γ(G).

Lemma 3.4. If G is a graph with δ(G) ≥ 2, then Γcer(G) ≤ Γ(G).

Proof. Let D be a Γcer-set of G. Since δ(G) ≥ 2, it follows from Lemma 3.1 that the
set {v ∈ VG : NG[v] ⊆ D} is empty. Hence D is also a minimal dominating set of G
which implies that Γcer(G) ≤ Γ(G).

Taking into account the above lemma, it is natural then to characterize all graphs
G with δ(G) ≥ 2 for which Γ(G) = Γcer(G). Here we have the following theorem.

Theorem 3.5. Let G be a connected graph with δ(G) ≥ 2. If G has an independent
Γ-set, then Γ(G) = Γcer(G).

Proof. Let D be an independent Γ-set of G. If v ∈ D, then NG(v) ⊆ VG −D (as D is
independent), |NG(v)| ≥ 2 (as δ(G) ≥ 2), and therefore |NG(v) ∩ (VG −D)| ≥ 2. This
proves that D is a minimal certified dominating set of G and implies the inequality
Γ(G) ≤ Γcer(G). The last inequality and Lemma 3.4 yield the equality Γ(G) =
Γcer(G).

As we have just seen, for graphs G with δ(G) ≥ 2 the equality Γ(G) = Γcer(G)
holds, if G has an independent Γ-set. It should be noted that the converse implication,
however, is not true. For example, one can check that for the graph G′ shown in
Figure 3 is δ(G′) ≥ 2 and Γ(G′) = Γcer(G′) = 3, but the only Γ-set {x, y, z} of G′ is
not independent.

The independence number β0(G) of a graph G is the cardinality of a largest
independent set of vertices of G. It is well-known that β0(G) ≤ Γ(G) for every graph G.
Therefore, by Theorem 3.5, we immediately have our final corollary.

Corollary 3.6. If G is a graph with δ(G) ≥ 2 and β0(G) = Γ(G), then also
β0(G) = Γ(G) = Γcer(G).

The equality of the parameters β0(G) and Γ(G) has been studied by a number of
authors (see for instance [1] and [7, pp. 80–84], and the references there) for well-known
families of graphs, including strongly perfect graphs and their different subclasses:
bipartite graphs, chordal graphs, and circular arc graphs, just to name a few. For all
such graphs G, the equality Γ(G) = Γcer(G) is true if δ(G) ≥ 2.

4. CLOSING OPEN PROBLEMS

We close with the following list of open problems that we have yet to settle.

Problem 4.1. Determine the class of graphs G for which γcer(G) = Γcer(G).

Problem 4.2. Determine all the trees T for which γcer(T ) = γ(T ).
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Problem 4.3. Let a, b, c, d be positive integers with a ≤ b ≤ c ≤ d. Find necessary
and sufficient conditions on a, b, c, d such that there exists a graph G with γ(G) = a,
Γ(G) = b, γcer(G) = c and Γcer(G) = d. Similarly, find necessary and sufficient
conditions on a, b, c, d such that there exists a graph G with γ(G) = a, γcer(G) = b,
Γ(G) = c and Γcer(G) = d. Finally, find necessary and sufficient conditions on a, b, c, d
such that there exists a graph G with γ(G) = a, γcer(G) = b, Γcer(G) = c and Γ(G) = d.
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80-308 Gdańsk, Poland

Jerzy Topp
j.topp@inf.ug.edu.pl

University of Gdańsk
Wita Stwosza 57
80-308 Gdańsk, Poland
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