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Abstract 

One of the ways to improve the fuel economy of heavy duty trucks is to op-

erate the combustion engine in its most efficient operating points. To do that, a 

mathematical model of the engine is required, which shows the relations be-

tween engine speed, torque and fuel consumption in transient states. In this pa-

per, easy accessible exploitation data collected via CAN bus of the heavy duty 

truck were used to obtain a model of a diesel engine. Various  polynomial re-

gression, K-Nearest Neighbor and Artificial Neural Network models were eval-

uated, and based on RMSE the most relevant sets of parameters for the given 

algorithm were selected. Finally, the models were compared by using RMSE 

and Absolute Relative Error scores for 5 test samples. These represent the 

whole engine’s operating area. Apart from goodness of fit, the models were an-

alyzed in terms of sensitivity to the size of the training samples. ANN and KNN 

proved to be accurate algorithms for modeling fuel consumption by using ex-

ploitation data. The ANN model was ranked best, as it required less observa-

tions to be trained in order to achieve an absolute relative error which was low-

er than 5%. A conventional method, i.e. polynomial regression, performed sig-

nificantly worse than either the ANN or the KNN models. The approach pre-

sented in this study shows the potential for using easy accessible exploitation 

data to modeling fuel consumption of heavy duty trucks. This leads to the re-

duction of fuel consumption having a clear positive impact on the environment. 

Keywords: neural networks, combustion engine, heavy duty truck, fuel econo-

my, fuel consumption, refuse collection vehicle 

1 Introduction 

Trucks, whether used for freight transportation or as utility vehicles, play an im-

portant role in a countries economy and improving their fuel efficiency can undoubta-

ble prove highly beneficial. One of the ways to improve the fuel economy is to oper-

ate the combustion engine at its most efficient operating points. It is particularly sig-

nificant when it comes to performing duty cycles by the vehicle. For instance,  when 
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the engine runs the hydraulic or electric power receiver in the body. However, the 

information about the engine provided by the manufacturers does not cover the full 

engine characteristics and it is impossible to determine an optimal duty cycle in terms 

of the engine’s speed and load. Conventional methods for obtaining general engine 

characteristics use engine or chassis dynamometers. This is associated with high 

costs. What is more, they provide steady state characteristics, which can lead to rela-

tively high errors when used to model fuel consumption in transient states. This study 

presents methods for using exploitation data collected from a utility truck in order to 

obtain a mathematical model of the engine. Such model should provide an accurate 

fuel consumption prediction for any simulated duty cycle of the vehicle. Then, it can 

be used to compare the duty cycles and lead to an optimal design of the drivetrain, 

which will set the engine into its more efficient operating points during its work. In 

this study three models are presented: polynomial regression, K-Nearest Neighbor and 

Artificial Neural Network. The performance levels of the models are compared based 

on the RMSE and Absolute Relative Error over 5 test samples. Each of the samples 

has various observation distributions representing various operating areas of the en-

gine. The models are also analyzed in terms of the influence of the trainset size on the 

model accuracy. As the result of this study, the KNN and the ANN models show high 

accuracy in fuel consumption prediction for even relatively small trainsets. Thus, by 

using easily accessible exploitation data it is possible to obtain an accurate model of 

the engine and use it to improve fuel consumption. 

This paper is organized as follows. Section 2 describes the collected data and the 

principles of the truck’s operation. Section 3 explains the selection of test samples. 

Polynomial regression, KNN and ANN models are described in sections 4, 5 and 6 

respectively. Section 7 explains the validation of the models by using test samples, 

followed by discussion in Section 8. The conclusions derived from the results are 

presented in the last section. 

2 Exploitation data description 

The analysis presented in the paper is based on data collected using the vehicle’s 

CAN bus. This was done using the FMS-interface [1]. This is an open standard, which 

gives third parties access to vehicle data, containing among others: engine speed n, 

torque T and fuel consumption Ge. The examined truck was a Scania P320, working 

as a Refuse Collection Vehicle (RCV). The chassis was equipped with a diesel engine 

(9.3 dm
3
 of displacement, max power = 235 kW, max torque =  1600 Nm)[2]. The 

engine parameters were recorded for 8 hours, with the frequency of 10 Hz. This re-

sulted in 290000 observations. This corresponds to a representative day of RCV oper-

ation, which is described further in the text. Although the FMS-interface is an option-

al interface in a truck, a large number of RCV (and other heavy duty vehicles) are 

equipped with it when purchased. Therefore, data collection does not require any 

modification of the vehicle’s systems nor does it require additional measuring devic-

es, except for the data logger. Similarly, the tests conducted on the trucks using FMS 

interface are described in [3,4]. 
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A regular day of the RCV operation consists of short distance travels and frequent 

stops. The truck stops close to a bin or set of bins, collects the waste and moves to 

another bin. The distances between stops and time spend collecting waste is depend-

ent on the number of bins to be emptied, their size and distribution in the operating 

area. Approximately twice a day, the RCV needs to be discharged at the garbage 

dump. However, this has a minor effect on the presented analysis.  

Most of rear loaders RCVs are equipped with a hydraulic system powered by a 

twin-flow, fixed displacement pump. The pump supplies the power to two separate 

circuits: the compactor circuit and the lifter circuit. The former drives a compaction 

mechanism, the ejector plate and the cylinders which lift the tailgate. The latter is 

used to operate the lifting mechanism. The principles of RCV operations are dis-

cussed in detail in [5,6,7]. In terms of truck’s engine operation, it is important that 

when the RCV stops, the engine is idling i.e. its speed is close to 600 rpm. Then the 

hydraulic pump is turned on by the driver, and it is possible to operate the lifting 

mechanism. The engine speed remains the same, due to low power demand and suffi-

cient oil flow provided by the pomp. When the compactor is activated, the engine 

speed is raised to 900 rpm. This value can be arbitrarily set by the RCV manufacturer, 

and usually ranges from 850 to 1050 rpm. The lifting mechanism can be operated 

regardless of the engine speed, and is not related to the compactor. 

The above description explains measuring points distribution in an n-T domain of 

the data collected during a regular operation day. This is presented as a 2D histogram 

in Fig. 1. Approximately 50% of the time the engine speed was around 600 rpm, 

which corresponds to vehicle’s stops and idling. This time periods are related to the 

stops due to traffic, the stops pending pump activation, and the lifter operation (with-

out compacting). In general, the low values of torque for n=600 rpm on the histogram 

are related to the former, and higher values to the latter. The second concentration of 

the measuring points is related to waste compaction, when the engine speed is set to 

900 rpm. It represents about 15% of the daily operation time. 

3 Selection of test samples 

All models presented in further sections, are evaluated using a cost function. In most 

cases, the cost function is related to the difference between the real response value 

and the one calculated by the model. The final model is obtained by minimizing this 

error using e.g. Least Squares Method, Gradient Descend [8] etc. A widely used ap-

proach is to split the dataset into a training and a testing set, typically in a percentage 

proportion of 70:30, 80:20 or 85:15. Then the model is trained using the train set, to 

obtain the lowest product of the cost function. Then, a response value is predicted 

using the test set, and real values are compared with predicted ones. Based on this, a 

model accuracy score can be calculated, such as Root Mean Squared Error (RMSE). 

The non-uniform distribution of the observations leads to a good fit of the model in 

the areas of high observation density, but a relatively poorer fit elsewhere. Splitting 

the dataset randomly does not solve this problem, because distribution in the test set is 

analogous to the one in the train set. In order to assess accuracy of the reconstructed 
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performance map of the engine, test samples from different areas in n-T domain are 

needed. Thus, 5 test samples were selected, each representing 20 succeeding seconds 

of the engine’s operation. The paths in n-T domain of each sample are presented in 

Fig. 2. Test sample 1 covers the range of 1200-1450 rpm and 200-750 Nm. Test sam-

ple 2 may be assigned to the RCV body operation when the engine speed is raised 

from idling at 600 rpm to 900 rpm while the compacting mechanism is activated. Test 

sample 3 covers 1100-1250 rpm and a larger spectrum of torque: 0-1000 Nm. Test 

samples 4 and 5 represent the engine operation during driving, from idle engine speed 

to higher values of up to 1600 rpm. They also cover a wide range of torque, up to 900 

and 1400 Nm per sample 4 and 5 respectively. In the following sections, the models 

are validated and compared by using RMSE and Absolute Relative Error for these 5 

test samples. 

4 Polynomial regression model 

The data collected can be used to reconstruct the engine’s performance map, as they 

contain information about the engine speed, the torque and the fuel consumption. 

Conventional methods, used during tests on chassis dynamometers or in laboratories, 

assume that the engine operates in a quasi–steady state i.e. the changes on its parame-

ters do not exceed previously specified values at a given time [9]. The engine’s per-

formance map is also termed as a general engine characteristic. It is a vector function 

given by equation: 𝑌 =  𝑓(𝑛, 𝑇);  (𝑛, 𝑇)  ∈  𝐿. Where L is a range of engine operat-

ing points. A polynomial surface of Ge values is obtained by an approximation of the 

measured values of Ge in the n-T domain using the least squares method [10,11].  

However, as described in [12], during regular daily operation the engine works 

mostly in transient states. Thus, applying the conventional method to the data present-

ed in this paper, may lead to inaccuracy in the fuel prediction when using polynomial 

regression model. This is due to the time delay Δt between the change of input varia-

bles: engine rotational speed and torque, and the engine’s response (Ge).  This is pre-

sented in Fig. 3, where the Δt can reach up to 1.5 s. Because of that, a large number of 

similar observations with similar n and T can correspond to significantly different Ge.  

A common practice is to use the engine’s performance map obtained in quasi-

steady states in order to model fuel consumption in transient states [10,11,13]. In this 

paper, transient state observations are used to evaluate the performance map, and then 

the model is used for fuel consumption modelling. This is the only possible approach 

for applying the conventional method using exploitation data, due to the very limited 

number of observations present in quasi-steady states [12]. 

A polynomial regression model was used, as one of the three algorithms in this 

study, to reconstruct the engine performance map. Later on is referred to as the Poly-

nomial Regression Model (PRM). The polynomial function may be of arbitrary de-

gree, however higher degrees are associated with higher risk of overfitting. In this 

paper polynomial surfaces of 2
nd

, 3
rd

, 4
th
 and 5

th
 degree are exanimated.  
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5 

 
Fig. 1. Histogram of the observations. Engine data collected during a regular working day of 

the RCV. 

 
Fig. 2. Test samples measuring points presented as paths in n-T domain. 

 
Fig. 3. Engine operation in a transient state. Time delay Δt between the input values (n and T) 

and the response (Ge) 
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Each of the models was trained 30 times on the given train set. The train set con-

sisted each time of a randomly selected sample from the dataset. The influence of the 

sample size was also considered. The models were trained on 22 sample sizes, which 

logarithmically increase in the range between 100-250000 observations. As a result, 

for each model 660 RMSE scores were calculated, 30 for each sample size. These 

scores were calculated both for the training set and for the 5 test samples and are pre-

sented in Fig. 4. For sample sizes larger than 1000 observations, the RMSE become 

similar for both the training and the testing data sets. However, for small number of 

observations (<1000) the overfitting in 4th and 5th degree models is apparent. Thus, 

for the comparison with alternative algorithms in following sections, the 3rd degree 

polynomial regression model was selected. 

Fig. 4. Polynomial regression models scores: left) RMSE train; right) mean RMSE for all 5 test 

samples. Scores smoothed by using LOESS. 

5 K-Nearest Neighbor model 

PRM uses a surface to approximate the engine’s performance map. However, given 

enough observations, it is possible to find similar observations to the one used to pre-

dict engine fuel consumption. Moreover, this method is also useful with relatively 

large datasets with a uniform distribution of observations. The accuracy of the model 

is expected to correlated with the size of the dataset size and/or its uniform distribu-

tion. To find similar observations, a K-Nearest Neighbors (KNN) algorithm can be 

applied [8]. The principle of KNN is that the algorithm calculates the Euclidean dis-

tances of all of the observations in the dataset for a given input value. Then the algo-

rithm chooses k-number of the closest observations. In classification problems, the 

predicted class is the class of the majority of k-nearest samples. In regression, such as 

in this paper, the predicted value is an average of the value of the k-nearest samples.  

In the analysis of transient states of combustion engines, the inclusion of infor-

mation related to speed and torque changes in the model, generally results in a higher 

accuracy of the model. In [14] as additional input variables: derivatives of n and T 
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were used. In [15] a number of values from a time window before observation were 

considered.  However, the examined engines differ from the one presented in these 

papers in terms of size, ignition type and even emission regulations which they need 

to comply to. There is no direct suggestion as to which additional values preceding 

observations should be included in order to obtain an accurate model. Moreover, it 

seems that this issue depends on the inertia of the engine, which is directly related to 

the engine displacement. In this research it was assumed, that changes should be con-

sider up to 1.5 s before the measuring point.  

In this paper four KNN models were calculated. The first model (KNN 1) consid-

ers n and T as input variables, and assign Ge to the one nearest value (k=1). The sec-

ond model (KNN 2) consists of 8 input variables: n, T, n500, T500, n1000, T1000, n1500, 

T1500. The subscript indicates the number of milliseconds before the observation. For 

example, n500 indicates the engine speed value 500 ms before the actual measuring 

point. Consequently T1000  indicates the value of the engine’s torque 1000 ms before. 

KNN 2 also considers only one nearest point (k=1). Models KNN 3 and KNN 4 cor-

responds to KNN 1 and KNN 2, however the k value was not set in advance, but was 

chosen from values based on the lowest RMSE values obtained through cross valida-

tion.  

Before training the models, the data was centered and scaled, so the mean and 

standard deviation of each variable were 0 and 1 respectively. Then, a 10-folds cross 

validation was performed for each model, and the mean RMSE value was calculated. 

This score is referred to as the training score later in the text. Models KNN 3 and 

KNN 4 were cross-validated multiple times, each for different k value ranging from 

(3, 5, …, 17, 19). The models with the lowest RMSE were then selected. 

Next, the accuracy of the models was validated by using 5 test samples. In order to 

investigate the influence of the sample size on the model score, the procedure de-

scribed above was conducted multiple times for random samples of different sizes in 

the range of 100 to 250000 observations, similarly to PRM, 30 times per sample size. 

Results for train RMSE scores and mean RMSE for 5 test samples are presented in 

Fig. 5. KNN models with input 8 variables clearly outperform the ones with 2 varia-

bles. Moreover, lower RMSE values for KNN 4 than KNN 2 suggest, that for k-

values greater than 1 the accuracy of the model improves. The best K-Nearest Neigh-

bors model was selected for further comparison. This corresponds to  the KNN 4. 

6 Artificial Neural Network model 

The artificial neural network model used in this study is the ANN. This model is 

based on a multi-layer feedforward artificial neural network, that is trained with sto-

chastic gradient descent using back-propagation. A rectifier was used as activation 

function [15]. In order to produce an optimal ANN, a combination of 3 sets of predic-

tors and 7 sets of hidden layers were analyzed, resulting in 21 models. The models are 

summarized in Table 1. A subscript in the predictors notation indicates the time in 

milliseconds before the observation, similarly as for KNN models. Additionally, Δ 

indicates that the variable corresponds to the difference between the actual value and 
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the value of x milliseconds before; e.g. Δn1500 corresponds to difference between ac-

tual n and n1500. One hidden layer or two hidden layers with equal number of neurons 

were used.  

Table 1. ANN model possible configuration: 3 sets of predictors and 7 sets of hidden layer 

resulted in combination of 21 models 

 Set of predictors Neurons in hidden layers 

Set 1 n, T 
5, 10, 20, 50 

5-5, 10-10, 20-20 
Set 2 n, T, Δn500, Δn1000, Δn1500, ΔT500,  ΔT1000, ΔT1500 

Set 3 n, T, n500, T500, n1000, T1000, n1500, T1500 

 

Before training the models, the data was centered and scaled, so that the mean and 

standard deviation of each variable were 0 and 1 respectively. Each neural network 

model was computed 30 times with a 10-fold cross-validation for each size of training 

sample in the range of 100-250000; the epochs were set to a 100. To measure the 

performance of the model RMSE was used. To select most accurate ANN model from 

21 possible, the mean cross-validation RMSE values from the training process were 

compared. Results are shown in Fig. 6. On the left graph, the scores are grouped by 

the set of predictors. Set 1 is clearly underperforming regardless of sample size, with 

a constant RMSE around 2.5. Sets 2 and 3 are convergent for large sample sizes to 

RMSE=0.6,  but the latter is much better for sample sizes smaller than 5000 observa-

tions. On the right graph, only the scores from Set 3 were shown and grouped by the 

set of hidden layers. The RMSE decreases along with the increase of sample size, and 

the largest differences between the models can be observed for small training sample 

size. Based on that, the best ANN model was selected for comparison with PRM and 

KNN.  The best model has 8 input variables (Set 3) and 50 neurons in 1 hidden layer. 

Fig. 5. KNN models comparison for increasing training sample size: left) mean cross-validation 

RMSE; right) mean RMSE for all 5 test samples. Scores smoothed by using LOESS. 
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Fig. 6. ANN models comparison: left) mean cross-validation RMSE for 3 sets of predictors; 

right) mean cross-validation RMSE for best set of predictors (Set 3) for different configuration 

of hidden layers. Scores smoothed by using LOESS. 

7 Models’ validation by using 5 test samples 

In previous sections three algorithms for diesel engine fuel consumption model were 

described. They were polynomial regression, K-Nearest Neighbors and Artificial 

Neural Networks. For each of the algorithms a model with optimal parameters was 

selected, according to the lowest RMSE values. In this section a validation of these 

three models is presented by using 5 test samples described in section 2. Each model 

was trained 30 times on a random sample of the given size and for each test sample 

the fuel consumption was predicted. Two measures of model accuracy were used: 

RMSE and the Absolute Relative Error (ARE). The ARE is a percentage difference 

between real total fuel used and predicted total fuel used in a given test sample. While 

RMSE assesses the goodness of the model fit, the ARE focuses on the engineering 

application of the model. The results are presented in Fig. 7, where mean values are 

represented by the lines and the shaded areas shows the ± standard deviation.  

8 Discussion 

The test samples have significantly different distribution of observations compering to 

the training samples. Moreover, each of the test samples cover distinctive operating 

areas of the engine. Thus, in order to assess the accuracy of the model, each test sam-

ple should be considered separately. It is possible that a particular model fits the data 

well, due to the similar distribution of observations both in the train and the test sam-

ple X. At the same time, the fit is rather poor in the test sample Y, which has a differ-

ent distribution. The best algorithm (ANN, KNN or PRM) should deliver a good fuel 

consumption prediction, despite the test sample distribution. It should also represent 

the whole operating area of the engine (n-T domain) with satisfactory accuracy. Con-
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sidering RMSE values, ANN and KNN clearly outperform the more traditional meth-

od PRM in every test sample. Although the scores are similar for both methods ANN 

and KNN for large sample sizes, the KNN performs significantly worse than the ANN 

for smaller sample sizes. The ANN model appears to be relatively insensitive to train-

set size, e.g. in test sample 1 the RMSE slightly decreased from 1.1 to 0.8, while for 

the KNN model it started of with a RMSE value of 3.2 for sample size equal 100 and 

decreased to 0.9. There is no improvement for the PRM model when the trainset size 

exceeds 1000 observations and the RMSE is several times higher than in other mod-

els, however the standard deviation decreases. Although the RMSE values vary in 

every test sample, the ANN model appears to be the best model in each of them.  

Fig. 7. Comparison between the models: ANN (red), KNN (black) and polynomial 

regression (blue): a) Mean RMSE for each test sample; b) Absolute Relative Error for 

each test sample; c) mean values of RMSE and Absolute Relative Error for all test 

samples. Shaded areas represent ± standard deviation 
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The Absolute Relative Error allows comparing models in terms of the final result 

of fuel consumption prediction. Even if a particular model does not fit well to each of 

the observation (high RMSE), the total amount of fuel predicted in the test sample 

may be close to the real value. In other words, for some points the model predicts 

higher Ge, and for other points lower values of Ge. Then, the differences are neutral-

ized when the total fuel consumption is calculated. Values of ARE below 5% are 

considered as satisfactory from the perspective of engineering application. 

In test sample 1,2 and 4 the ANN model fulfills the above criterion regardless of 

trainset size. In samples 3 and 5 more than 5000 and 500 data samples are needed, 

respectively. The KNN model performs worse and is highly sensitive to the trainset 

size. This is more evident in sample 5, where more than 10000 observations are need-

ed to obtain a ARE score ARE below 5%. However, the KNN seems to be a reasona-

ble model to apply when the training data set size is larger than 10000 observations. 

On the contrary, the PRM model performs poorly regardless of trainset size. It scores 

below 5% only in test sample 5. Thus, the application of polynomial regression, by 

using exploitation data, appears to be problematic in this case. This conventional 

method is computationally cheap and intuitive, because it can be displayed as a sur-

face in 3D. However, its accuracy in fuel consumption modelling is unacceptable and 

an Artificial Neural Network model should be used instead. 

 Conclusions 

Real exploitation data from a heavy duty vehicle was used in this paper to evaluate a 

model of fuel consumption in a diesel engine. Polynomial regression, which is a con-

ventional method used for fuel consumption modeling for the engine operating in 

quasi-steady states, under performed in comparison with K-Nearest Neighbor and 

Artificial Neural Network models. Both the KNN and the ANN models were evaluat-

ed by using 8 variables instead of 2. This resulted in a high accuracy of the models 

and low values of Absolute Relative Error (<5%). The KNN model, as expected, ap-

peared to be more sensitive to the size of the training sample than the ANN one. This 

study shows, that the Artificial Neural Network is a more robust algorithm for the 

modeling of fuel consumption in transient states of combustion engine operation. The 

K-Nearest Neighbor model present also satisfactory accuracy. On the contrary, the 

use of  polynomial regression is  not recommended due to the high Absolute Relative 

Error obtained in fuel consumption prediction (>6%). 

The presented approach of using data logged via CAN bus of the vehicle in order 

to reconstruct the characteristics of the engine proved to be accurate and can be ap-

plied for fuel consumption modeling of heavy duty trucks. Such models may be used 

to optimize the design or configuration of the drivetrains and to allow a comparison 

between the trucks selected to performed similar tasks. Knowing beforehand the 

amount of fuel required to perform a given task for similar vehicles, can help to select 

the more efficient one. This is important and useful information for truck users, as it 

will allow them to make fuel savings while at the same time reducing the impact to 

the environment. 
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