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The article presents a method for improving the accuracy of bearing in multibeam sonar 
with a cylindrical array. The antenna’s non-linear shape and the resulting non-uniform sampling 
of the signal in space, mean that known methods of high-resolution spectral analysis cannot be 
used. In order to apply an algorithm from this group, a linear virtual antenna must be produced. 
The paper presents a technique of mapping a cylindrical array to the equivalent linear form. 
The simulation results present the accuracy of bearing estimation in the presence of white noise. 
Furthermore, the limitations of the method and practical aspects of the application in a real 
sonar system are discussed.
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1. Introduction
Direction of arrival (DOA) estimation is one of the basic technical problems faced by radi-

olocation (RADAR) devices and, by analogy with the phenomena, underwater location systems 
(SONAR). Known for decades, the problem has been researched extensively producing a number 
of estimation methods. A broad overview of the methods is given in the paper [1]. Despite years 
of research, estimating the direction of arrival continues to be the topic of numerous studies. A 
lot of the work focuses on multi-element array systems, with the array’s discrete elements uni-
formly spaced along a straight line. All known methods have been derived and described based 
on the model of a plane wave incident on a uniform linear array (ULA). Because the methods 
were originally developed for linear arrays, irregular arrays should be seen as a special case.

Estimating the direction of arrival goes hand-in-hand with the problem of estimating fre-
quencies for discrete-time signals. There is a close relation between the frequency of acoustic 
pressure distribution sampled along a straight line, and the angle of incidence of the wavefront 
on that line. As a result, the accuracy of spatial frequency estimation determines the accuracy
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of bearing estimation. As we know from the theory of signal processing, the higher the number
of discrete samples, the greater the resolution of discrete frequencies of signal spectrum. The
conclusion is simply that the more transducers an array has, the better the accuracy of deter-
mining the direction. While it is correct, this simple reasoning leads to impractical solutions.
For obvious reasons, it is impossible to use an infinitely long antenna. In practice, antennas have
finite dimensions. In the case of systems on board boats and ships, the basic constraint is the size
of the vessel. Equipped with a linear antenna, underwater acoustic systems can in theory help
to locate objects in the range of angles from −90◦ to +90◦ relative to the boresight of the array.
In a multibeam system a lot of beams must be produced to cover the observation sector, making
the range of listening limited to about +/ − 40◦ . This is the result of the increase in width
of the deflected beam in a delay-sum beamformer [2]. Systems which require the full range of
observation angles, use conformal arrays. In this case, hydroacoustic transducers are mounted
on the shell plating. A full observation range can also be achieved by using the multi-element
cylindrical array. In the classic multibeam sonar using a uniform cylindrical array (UCA), bear-
ing accuracy is accepted as θ3dB width of the receiving beam. Fig.(1) shows three neighbouring
receiving beams generated in a delay-sum beamformer [3] for an M = 36 element array based
on the signal received on neighbouring N = 13 transducers.

Fig. 1. Beam pattern of receiving beam based on N = 13 neighbouring transducers in a delay-sum
beamformer for an M = 36 element cylindrical array.

The beam’s width is the result of the cylinder’s geometric dimensions, and is approximately equal
to the angle between neighbouring transducer columns. This means that, in the case in question,
the bearing of the object can be estimated with up to about 10◦ accuracy. Improving the accuracy
of bearing would require additional columns with transducers mounted on the cylinder’s surface.
If the same relation between wavelength and the distance between neighbouring transducers is
to be maintained, the diameter of the array must be increased. In some cases, this may prove
impractical because of the array’s physical dimensions, making the array too big to fit onto the
ship’s hull. If the cylinder can only take a limited number of array transducers, then, by analogy
to arrays with a linear arrangement of transducers, the next best choice is to use known high-
resolution methods [4]. There is a problem, however, when the methods are used directly with
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a cylindrical array for bearing purposes. This is the result of array geometry which introduces
non-uniform signal sampling in space. If achieved like this, the data is not good enough for
spectrum estimation, due to errors, and cannot be relied upon. This can be solved by using a
procedure to transform the shape of any array, including a cylindrical array, to a corresponding
linear form. At present, there are two classes of transformation methods. These include Davies’
transformation [5] and interpolated arrays such as Bronez [6], Friedlander [7] and Cook [8]. The
result of interpolation is an array with uniformly spaced virtual hydrophones, which ensures the
right conditions for signal sampling in space. This technique makes it possible to use high-
resolution methods for bearing estimation in systems with a uniform cylindrical array.

2. Signal model
First, let us consider the model of a signal received by a multi-element uniform linear array.

Let us assume that the echo is a narrow band signal and has this form

s(t) = pke
j(2πft+ϕ) (1)

where pk is the amplitude of pressure, f is the signal frequency and ϕ is its initial phase. Let
us also assume that echo source is located in the far field. Therefore, we can assume that the
wave incident on the array is a locally plane wave. Fig.( 2) shows the wavefront incident on the
uniform linear array at angle θk.

Fig. 2. Plane wave incident on a uniform linear array at angle θk.

The transducers are placed along the x line at equal d spaces between them. The time delay
between the wavefront’s equiphase surface and the successive transducers is expressed in the
form

τn =
nd sin(θk)

c
(2)
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where n is the number of array transducers, c is the velocity of acoustic wave propagation in a
medium. For any moment of time the complex form of acoustic pressure measured at transducers
placed along the array is expressed as follows

xn(t) = pke
j(2π cλ (t+τn)+ϕ), f =

c

λ
(3)

where λ is the wavelength. Considering the fact that the array is built of a discrete number of N
elements, the signal at the output of the individual transducers can be written as a vector

X(t) =


x1(t)
x2(t)

...
xN(t)

 =


1

ej2π
nd
λ

sin(θk)

...
ej2π

(N−1)d
λ

sin(θk)

 pkej(2πft+ϕ) = a(θk)s(t) (4)

The column vector a(θk) steers the array and carries information about phase shifts of signal
s(t) received at transducer outputs. In addition, let us note that the form of the steering vector
depends on the number and spatial distribution of the transducers, and on the angle of incidence
of the wave. For a fixed moment of time t0 the expression (4) takes this form

X(t0) =


1

ej2π
nd
λ

sin(θk)

...
ej2π

(N−1)d
λ

sin(θk)

 pkej(2πft0+ϕ) = a(θk)pke
jϕ0 (5)

and represents the distribution of acoustic pressure recorded by array elements along the straight
line. As a result, the a(θk) steering vector describes a spatial signal along line x. By analogy
to the signal in the time domain, if the expression nd/λ is treated as an equivalent of discrete
time, then the expression sin(θk) can be treated as an equivalent of frequency. Thus, the spatial
distribution of pressure on array elements is a sinusoidal signal

a(θk)
T = ej2πFknD, n = [0, . . . , N − 1], D =

d

λ
, Fk = sin(θk) (6)

where Fk expressed the frequency of the spatial signal. As a result, estimating the direction
of wave arrival is closely related to estimating the frequency of acoustic pressure distribution
recorded at array transducers.

For the purposes of the simulation a cylindrical array model was used. It is made up of
M = 36 columns spaced every 10◦ on the cylinder’s surface. The cylinder’s ray R was deter-
mined to ensure that the distance between neighbouring transducers would be half the wave-
length (d/λ = 0.5) of the sounding signal’s centre frequency. The classic delay-sum beam-
former generates receiving beams based on the signal received at neighbouring array elements.
It was assumed that a single receiving beam is generated from N = 13 real array elements. The
shape of the receiving beam is shown in Fig.(1). The neighbouring beams intersect at −3dB,
and the range of angles between the intersections determines θ3dB beamwidth. It is 10◦ and de-
termines the system’s bearing accuracy. To improve bearing accuracy within a single receiving
beam, the Root-Music high-resolution frequency estimation method was chosen [10]. Fig.(3)
shows a section of the array’s cylinder with an active transducer section. With the transducers
distributed as shown, signal sampling in the space domain becomes non-uniform. As a con-
sequence, high-resolution methods for estimating the direction of wave arrival cannot be used
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directly. Instead, a linear virtual array must be generated. As we can see, the virtual uniform lin-
ear array is placed along the chord which cuts across the extreme elements of the real array. Fact
that the arc length is greater than the chord length, and keeping the spacing between the virtual
transducers such as between the real ones, number of virtual elements K is reduced (K < N).

Fig. 3. Fragment of the cylindrical array and the corresponding linear virtual array.

Because of the geometry shown in Fig.(3) we can define the steering vectors for the real array

a(θk) =
[
ejkRcos(β1−θk), . . . , ejkRcos(βN−θk)

]T
, k =

2π

λ
(7)

and virtual array respectively.

b(θk) =
[
ejk(x1sin(θk)+y1cos(θk)), . . . , ejk(xKsin(θk)+yKcos(θk))

]T (8)

Where xk and yk are the Cartesian coordinates of the position of virtual transducers. Vectors
a(θk) and b(θk) describe the phase relations of the signal received at particular array elements.
The vectors are determined relative to the joint point of reference, which is the wavefront going
through the centre of cylinder O. By including the steering vectors, we can write the signal
incident on the real transducers in this form

X(t) = a(θk)s(t) (9)

The signal received on the linear virtual array’s transducers has this form

Y (t) = b(θk)s(t) (10)

3. Interpolated array transformation
The linear virtual array is the result of interpolation performed on samples of the signal

received by real transducers (9). The transformation used in the simulation was proposed by
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Friedlander [7]. It approximates the linear array in the least-squares sense for directions of
arrival that fit within the optimisation sector defined as follows

∆Θ = [θ1, . . . , θM ] = [θ1, θ1 + δθ, . . . , θM ] (11)

where θ1 and θM are the left and the right boundaries of ∆Θ, δθ is the size of interpolation step.
Using steering matrices A and B made up of steering vectors a(θ) (7) and b(θ) (8) determined
for optimisation directions

A = [a(θ1), a(θ2), . . . , a(θM)] (12)

B = [b(θ1), b(θ2), . . . , b(θM)] (13)

a matrix of transformation T is built which solves the equation

T = arg min
T
||TA−B||2F (14)

where F denotes Frobenius norm [11]. In matrix notation the result of the equation (14) takes
this form

T = BA† (15)

where symbol (†) denotes the pseudo inverse matrix defined as follows

A† = AH
(
AAH

)−1 (16)

Considering this design of the transformation matrix T, signal Y at array virtual elements is
determined as follows

TX(t) = T (a(θk)s(t)) = b̂(θk)s(t) = Ŷ (t) (17)

whereX(t) is the vector of input data recorded on the real array’s transducers, b̂(θk) is estimated
steering vector of the virtual array. It is important to note that the transformation matches the
steering vectors a(θk) to those of the virtual linear array in a least squares sense, for each angle
within the sector of optimization.

Fig.(4) shows the normalised error of the transformation procedure defined as follows

e(θ) = 20Log
||Ta(θ)− b(θ)||

K
(18)

depending on the selected optimisation sector. The level of error is expressed in dB. Fig.(4)
shows clearly that for wave arrival angles θ from the range outside the optimisation sector, the
approximation error increases sharply in relation to the area inside the sector. We can also see
the relation between the width of the selected range, and the accuracy of interpolation. The best
results are achieved for a narrow 30◦ sector. For ranges of 60◦ and 90◦ respectively, while error
levels clearly increase, they stay relatively low. For the broadest sector the error fits between -40
to -35 dB, which ensures a good array approximation in a broad range of wave arrival angles.

An important parameter that needs to be considered when designing the transformation
matrix, is the matrix’s condition number, defined with the formula

κ(T ) = ||T || · ||T †|| (19)
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Fig. 4. Normalised transformation error depending on the selected optimisation sector versus angle of
incidence θ.

Fig. 5. Condition number of matrix T for a virtual array with K = 7, 9, 11 elements depending on the
selected optimisation sector ∆Θ.

The parameter’s numerical value defines how strongly the changes in input signal X(t)
affect the estimated signal Y (t) in the linear system described with the relation (17). If the
condition number is approximately equal to one, matrix T is well-conditioned, and defines the
approximation procedure well. Fig.(5) shows how the selection of the optimisation sector and
the number of interpolated virtual array transducers affects the value of the parameter. We can
see clearly that for three different linear arrays withK = 7, 9, 11 elements, the condition number
of matrix κ(T ) decreases as the width of the optimisation sector increases. In all three cases, the
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value of the parameter is approaching a relatively low value, approximately equal to two. There
are significant differences in the condition number in the narrowest sector of optimisation. It is
clear from Fig.(4) and Fig.(5) that when designing the transformation matrix T , the width of the
sector and number of estimated virtual transducers must be selected very carefully, due to their
effect on approximation errors and their importance for how resistant the interpolation procedure
will be to the noise that accompanies the input signal X(t).

4. Simulation
Fig.(6) shows the block diagram of the simulated system. This is the receiving channel

of the active sonar with a cylindrical array. Its sounding pulse is a signal with linear frequency
modulation. The echo of the received signal is a shifted in time copy of the transmitting pulse,
having this form

sc(t) = ej(2π(fo+
B(t−τ)

2τ )t−ϕo), 0 ≤ t ≤ τ (20)
The following signal parameters were considered: central frequency fo = 7, 5kHz, pulse dura-
tion τ = 800ms and bandwidth B = 800Hz.

Fig. 6. Block diagram of the simulated system.

The echo signal is received by 36 columns spaced every 10◦ on the surface of the cylinder. The
distance between the neighbouring array elements is half the wavelength of the signal’s centre
frequency. The echo signal in the presence of white noise is received on N = 13 active array
elements indicated by the red circles. The received signal is sampled at sampling rate Fs = 4fo,
which is followed by matched filtering (MF block) to match the transmitting pulse. Filtration is
performed in the frequency domain as follows

φSS(t) = F−1(Sc(jω)∗X(jω)), Sc(jω) = F (sc(t)), X(jω) = F (X(t)) (21)

whereS∗c (jω) is the conjugate spectrum of the transmitting chirp pulse,X(jω) is the spectrum of
the received echo and F and F−1 denotes the Fourier and inverse Fourier transform respectively.
The result at matched filter output is a compressed echo signal with the following form

φSS(t) = φSST (t)ej2πfot ≈ sinc(πBt)ej2πfot (22)
where φSST is the envelope of chirp (20) autocorrelation function, and as shown in [12], is very
similar to a sinc function in the range of maximum. This is a narrow band signal with a frequency

Volume 19 HYDROACOUSTICS

272

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


equal to the centre frequency of the transmitting pulse. Because of the nature of the received
signal, the problem of estimating the bearing of a broadband echo may be reduced to a much
simpler case involving narrow band signals. Received echo is delayed by a time td, proportional
to the distance between the transmitter and the target. Taking into account time delays due to
the geometry of the antenna, as shown in Fig.(3) and expressed as

τn =
R cos(βn − θk)

c
(23)

the output of the matched filter for N active transducers is as follows

φSSn(t− td + τn) ≈ sinc(πB(t− td + τn))ej2πfo(t−td+τn) (24)

Complex signal samples at N outputs of matched filters contain information about phase shifts
in the particular receiving channels. Upon detection, a determination is made of the moment of
time for which the matched filter output signal takes on maximum values. Taking maximum of
sinc function as a value proportional to pressure pk, the output of the filter can be expressed as

φSSn(t− td + τn) ≈ ej2πfoτnpke
j2πfo(t−td) ≈ a(θk)s(t− td) (25)

where a(θk) thing a steering vector (7). As can be seen, equation (25) takes the form of equation
(9). The important is the phase difference between channels of the receiver expressed by steer-
ing vector (7). In addition, the effect of matched filtration is that the output signal to noise ratio
SNRout is clearly improved in relation to the input signal to noise ratio SNRin on array trans-
ducers. The processing gain depends on the parameters of the sounding signal, and is expressed
as follows

SNRout = 2BτSNRin (26)
The presented results are for the output SNRout, generally called the SNR further in the paper.
For the set moment of time, a vector X(t) of complex samples are collected, and due to the
interpolation process a virtual linear antenna is formed. The vector X(t) is multiplied by a
previously defined transformation matrix T (IAT block). The end result is vector Ŷ (t), which
represents an equivalent of the signal received on a virtual linear transducer indicated by the
green circles. Depending on the matrix, for a set optimisation sector, a linear array with K =
7, 9, 11 virtual transducers is estimated. The resultant vector Ŷ (t) represents the spatial signal
with frequency which depends on the angle of incidence of the wavefront on the virtual array θk.
To estimate the spatial frequency the Root-Music algorithm was used (RM block), an extension
of the basic direction estimator proposed by Schmidt [9]. Due to pulse compression, which is
the result of matched filtration, it is assumed that echoes of different objects are clearly separated
in the time domain. If that is the assumption, the Root-Music method searches for exactly one
value of spatial pulsation ω̂. The bearing estimate (BE block) is related to spatial pulsation using
this formula

θ̂k = sin−1
(
ω̂λ

2πd

)
(27)

In the simulation the worst case is considered, that is, estimating the bearing for maximum
angle of incidence within θ3dB beamwidth of a single receiver beam. For a 10◦ beamwidth, the
maximum angle of wave front incidence relative to the axis of symmetry of the receiving beam
is 5◦. Because of the non-linear nature of relation (27), for this angle errors in spatial frequency
estimation cause the biggest possible error in θ̂k angle estimation.

Volume 19 HYDROACOUSTICS

273

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5. Results of the simulation
Fig.(7) shows the mean squared error of the estimated bearing defined as follows:

MSE(θ) =
1

L

L∑
l=1

(θk − θ̂k)2 (28)

where L = 1000 is number of tries and θk = 5◦ is direction of arrival.

Fig. 7. Mean squared error for the antenna with K=11 elements optimised for three sectors
∆Θ = 30◦, 60◦, 90◦ and mean squared error for a real linear antenna.

For a virtual array built of K = 11 transducers and optimised for three different sectors ∆Θ =
30◦, 60◦ and 90◦ (red, green and blues lines respectively). In addition, Fig.(7) shows the mean
squared error of bearing estimation for a real linear array, which is an array that is the desired
result of interpolated transformation (black line). This is the target array, and one that is the
point of reference when assessing bearing estimation errors. Fig.(7) shows that for a low level
of SNR at matched filter output, the mean squared error is significantly large. It is important to
remember, however, that underwater acoustic systems can detect signals if the signal-to-noise
ratio is sufficiently high. This ensures a certain level of detection probability, and keeps the
probability of a false alarm sufficiently low. For detection probability Pd = 0.8 and false alarm
probability Pfa = 10−5, the expected SNR at receiver output should be in the order of about
14 dB [13]. Given this SNR, the mean squared error of bearing is about 0.1◦. Compared to the
original 10◦ accuracy, bearing estimation has improved a hundredfold for a classic beamformer.
An increasing SNR is accompanied by a more accurate bearing. Please note that the results
obtained for approximation optimised in the sector ∆Θ = 90◦ are quite close to the results
obtained for the real linear array (target array). Fig.(8) shows the results obtained for three
arrays withK = 7, 9 and 11 elements, and optimised in the ∆Θ = 90◦ sector which has yielded
the best results. It is clear in Fig.(8) that the mean squared error of bearing also depends on the
number of approximated array elements.
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Fig. 8. Mean squared error for the antenna with K = 7, 9, 11 elements, optimised for the sector
∆Θ = 90◦.

6. Conclusions
Interpolated array transformation helps to generate a linear virtual array using signal sam-

ples collected from non-linear array transducers. As a result, high-resolution methods can be
used to estimate the direction of arrival in a sonar with cylindrical array. Simulation results have
shown that bearing accuracy depends on the parameters of the transformation matrix T. Special
attention should be paid to the matrix’s condition number, whose value should be close to unity.
It is important to note that the design and selection of the transformation matrix T, for a specific
array, is done offline. The numerical cost of defining the matrix T is only incurred upon system
design. The process of interpolation (17), which involves matrix multiplication, does not require
any substantial computational effort. The results of the simulation have shown that a properly
selected matrix T can create a virtual array, for which the method used for direction of arrival
estimation gives results comparable to those obtained for the target linear array having the same
dimensions. There is a significant hundredfold improvement of bearing accuracy in the simu-
lated system, if the SNR at matched receiver output corresponds to the echo detection threshold.
As well as improving the signal-to-noise ratio, matched filtration helps to compress the pulse of
the received echo and, as a consequence, can separate in the time domain any echoes coming
from other underwater objects. This keeps the problem of estimating the number of detected sig-
nal sources fairly simple, which is important for the Root-Music method. What is important, the
method does not require any device modifications, and can be used in an existing sonar system.
While the solution presented here should not replace the conventional delay-sum beamformer,
it can be used as an additional tool for improving the accuracy of target bearing.
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