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Abstract: We consider a conservative second order Hamiltonian system q̈ +∇V (q) = 0 in R3 with a potential V having a
global maximum at the origin and a line l ∩ {0} = ∅ as a set of singular points. Under a certain compactness
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and geometrical arguments, the existence of homoclinic solutions of the system.
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1. Introduction

In this work we shall study the existence of homoclinic orbits for a class of conservative second order Hamiltoniansystems
q̈+∇V (q) = 0, (1)

where q ∈ R3. We will suppose that a potential V satisfies the following conditions:
(V1) there is a line l in R3 such that l ∩ {0} = ∅ and V ∈ C 1(R3 \ l,R),
(V2) lim

x→l
V (x) = −∞,
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(V3) there exists a neighbourhood N of the line l and a function U ∈ C 1(N \ l,R) such that |U(x)| → ∞ as x → l and
|∇U(x)| ≤ −V (x) for all x ∈ N \ l,

(V4) V (x) ≤ 0 and V (x) = 0 if and only if x = 0,
(V5) there is a constant V0 < 0 such that lim sup

|x|→∞
V (x) ≤ V0.

Here and subsequently, x → l stands for d(x, l) = inf{|x − y| : y ∈ l} → 0 and | · | : R3 → R is the norm in R3 inducedby the standard inner product.Condition (V3) governs the rate at which −V (x) → ∞ as x → l. This condition was introduced in [6] by the physicistWilliam B.Gordon. If V satisfies (V3) then∇V is called a strong force. Condition (V4) implies that the origin is a criticalpoint of V , and condition (V5) guarantees that the critical point, 0, is a global maximum of V .
Definition 1.1.A solution q : R→ R3 of (1) is said to be homoclinic (to 0) if q(±∞) = lim

t→±∞
q(t) = 0 and q̇(±∞) = 0.

Let E be given by
E = {q ∈ W 1,2loc (R,R3) : ∫ ∞

−∞
|q̇(t)|2dt < ∞}.

It is known that E equipped with the norm
‖q‖E = (∫ ∞

−∞
|q̇(t)|2dt + |q(0)|2)1/2

is a Hilbert space. We will consider the families of paths that omit l defined as follows:
Λ = {q ∈ E : q(R) ∩ l = ∅}, Ω = {q ∈ Λ : q(±∞) = 0}.

For q ∈ Λ, set
I(q) = ∫ ∞

−∞

(12 |q̇(t)|2 − V (q(t)))dt. (2)
We will minimize the action functional I to prove the existence of a homoclinic solution winding around l. To this end,we will define a rotation (winding) number of q ∈ Ω around l.Let Π be the plane perpendicular to the line l and such that 0 ∈ Π. Let us introduce the cylindrical coordinate systemin R3 with the reference plane Π and the height axis l. We will denote by P the intersection point of Π and l. Then Pis the pole and the half-line P0 is the polar axis. If { ~P0, ~PR} is an orthogonal positively oriented basis of Π then apositive direction of the height axis l is determined by ~P0× ~PR . In this coordinate system, for all q ∈ Λ one has

q(t) = (
r(t) cosφ(t), r(t) sinφ(t), z(t)),

where r(t) is a distance of q(t) from l, φ(t) is a polar angle and z(t) is a distance of q(t) from Π. There is no uniquenessof a function φ. However, if q is continuous then we can assume that r, φ and z are continuous, too.
Definition 1.2.For each q ∈ Ω we can determine the rotation number rot(q) as follows:

rot(q) = φ(∞)− φ(−∞)2π .
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This definition is independent of the choice of a function φ.Set ε0 = |P|/3. From now on, Bε(x) stands for an open ball in R3 of radius ε > 0, centered at a point x ∈ R3.
Remark 1.3.Let 0 < ε ≤ ε0. Assume that q ∈ Ω and there is T ∈ R such that q(T ) ∈ Bε(0). Then, by rot(q�(−∞,T ]) and rot(q�[T ,∞))we mean the rotation numbers of appropriate paths in Ω that arise from q�(−∞,T ] and q�[T ,∞) resp., by connecting q(T )to 0 by a line segment. It is justified by elementary homotopy arguments that

rot(q) = rot(q�(−∞,T ]) + rot(q�[T ,∞)).
Moreover, if q([T ,∞)) ⊂ Bε(0) then rot(q) = rot(q�(−∞,T ]).
Remark 1.4.If q1, q2 ∈ Ω and there exist T1, T2 ∈ R and 0 < ε ≤ ε0 such that T1 < T2, q1((−∞,T1]) ∪ q2((−∞,T1]) ⊂ Bε(0),
q1([T2,∞)) ∪ q2([T2,∞)) ⊂ Bε(0) and q1(t) = q2(t) for all t ∈ [T1, T2], then rot(q1) = rot(q2).
Set Ω± = {q ∈ Ω : ±rot(q) > 0} and define

ω± = inf{I(q) : q ∈ Ω±}. (3)
The main result of this paper is the following.
Theorem 1.5.
If V : R3 \ l → R satisfies (V1)–(V5), then ω± > 0 and there exists q± ∈ Ω± such that I(q±) = ω±. Moreover, q± is
a classical homoclinic solution of (1).
Let us remark that if q ∈ Ω+, then p(t) = q(−t) ∈ Ω− and I(q) = I(p). It follows that ω+ = ω− ≡ ω and for eachminimizer q ∈ Ω+ for (3)+, p(t) = q(−t) is a minimizer for (3)−. Note also that if q ∈ Ω±, then q+ sψ ∈ Ω± for s ∈ Rsmall enough and ψ ∈ C∞0 (R,R3). From this we conclude that if q ∈ Ω± is a minimizer of the action integral I on Ω±,then

d
ds I(q+ sψ)∣∣s=0 = 0 = ∫ ∞

−∞

((q̇(t), ψ̇(t))− (∇V (q(t)), ψ(t)))dt,
and, in consequence, q is a weak solution of (1). Arguments similar to those in [10] show that q is a classical solutionof (1).The case of singular Hamiltonian systems is rather important, due to the fact that potentials arising in physics haveinfinitely deep wells. It seems there are not many works on homoclinics for singular Hamiltonian systems involvingstrong forces.In 1996, in the article [13], P.H. Rabinowitz investigated a nonautonomous planar second order Hamiltonian system
q̈+Vq(t, q) = 0. He assumed that V : R× (R2 \ {ξ})→ R possesses a global maximum at the origin and the singularityat a point ξ . Moreover, V is periodic with respect to a real variable t. He proved that there exist at least two homoclinicsolutions: at least one of a positive rotation and at least one of a negative rotation. In [4], by the extra assumptionabout the existence of a minimal noncontractible periodic orbit around ξ due to S. Bolotin [2], P. Caldiroli and L. Jeanjeanestablished that if V does not depend on a time variable, then for each k ∈ Z there exists a homoclinic solution ofrotation k , cf. [1, 5]. In [3] M. Borges considered a planar second order Hamiltonian system with a potential having aglobal maximum at the origin and two strong force singularities at points ξ1 and ξ2. By the additional assumptionsthat V : R2 \ {ξ1, ξ2} → R is of class C 2 and the second derivative of V at 0 is negative definite, she found homoclinicsolutions winding around each singularity and around both singularities, periodic solutions and heteroclinic solutionsjoining 0 to periodic solutions. For n > 2 and V = V (q), the existence of homoclinic solutions under slightly stronger
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assumptions than (V1)–(V5) was shown by K. Tanaka in [14]. Finally, in [12] Rabinowitz proved the existence of so-calledmultibump homoclinic solutions for a family of singular Hamiltonian systems in R2 which are subjected to almost periodicforcing in time, cf. [11].Our paper extends the result of [13] for the case n = 3 and a line as a set of singular points. The work is organized asfollows. In Section 2 we discuss certain properties of the action integral. Section 3 contains a proof of Theorem 1.5.
2. Some properties of the action integral

In this section we present some properties of the action functional I given by (2). Define
αε = inf{−V (x) : x /∈ Bε(0)},

where 0 ≤ ε ≤ ε0. By (V2), (V4) and (V5) it follows that αε > 0.
Lemma 2.1.
Suppose that q ∈ Λ and q(t) /∈ Bε(0) for each t ∈

⋃k
i=1[ri, si], where [ri, si] ∩ [rj , sj ] = ∅ for i 6= j. Then

I(q) ≥√2αε k∑
i=1 |q(ri)− q(si)|.

The proof of Lemma 2.1 is the same as that of [8, Lemma 2.1] or [10, Lemma 3.6].
Lemma 2.2.
If q ∈ Λ and I(q) < ∞, then q ∈ L∞(R,R3).
Lemma 2.3.
If q ∈ Λ and I(q) < ∞, then q(±∞) = 0.

We can easily prove these two lemmas by the use of Lemma 2.1. For more details we refer the reader to [8, Corollary 2.2and Lemma 2.4] and to [10, Remark 3.10 and Proposition 3.11].
Proposition 2.4.
If {qm}m∈N ⊂ Λ is a sequence such that {I(qm)}m∈N is a bounded sequence in R, then {qm}m∈N possesses a subsequence
that converges weakly in E, and hence strongly in L∞loc(R,R3).
The proof is similar to the proof of [9, Proposition 2.4]. We briefly sketch it.
Proof. It suffices to show that {qm}m∈N is bounded in E . By assumption, there is a constant M > 0 such that0 ≤ I(qm) ≤ M for all m ∈ N. Using (2) we get ‖q̇m‖2L2(R,R3) ≤ 2M for all m ∈ N. By Lemma 2.2, qm ∈ L∞(R,R3) for all
m ∈ N. From Lemma 2.3 it follows that qm(±∞) = 0 for all m ∈ N. Finally, from Lemma 2.1 we deduce that {qm}m∈Nis bounded in L∞(R,R3).
Lemma 2.5.
If q ∈ Λ and q(t) ∈ N for all t ∈ [σ, µ], then

|U(q(µ))| ≤ |U(q(σ ))|+(∫ µ

σ
(−V (q(t)))dt)1/2(∫ µ

σ
|q̇(t)|2dt)1/2

.
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The proof of this lemma is the same as that of the inequality [13, (2.21), p. 271]. Applying the above inequality and (2),for q ∈ Λ such that q(t) ∈ N for all t ∈ [σ, µ] we get
|U(q(µ))| ≤ |U(q(σ ))|+√2 I(q). (4)

Proposition 2.6.
Let {qm}m∈N ⊂ Λ be a sequence such that {I(qm)}m∈N is a bounded sequence in R. Then there is r > 0 such that
d(qm(t), l) > r for all t ∈ R and m ∈ N.

The above proposition is analogous to [9, Proposition 2.6]. However, a slight modification of the proof is needed.
Proof. By Lemma 2.3, qm(±∞) = 0 for each m ∈ N. From Lemma 2.1 we deduce that {qm}m∈N is boundedin L∞(R,R3). Hence there exists r0 > 0 such that qm(t) ∈ Br0 (0) for all t ∈ R and m ∈ N. If Br0 (0) ∩ N = ∅, then
r = d(Br0 (0), l).Consider the case Br0 (0) ∩ N 6= ∅. On the contrary, suppose that there exists a sequence {qm(µm)}m∈N such that
qm(µm)→ l as m →∞. Fix 0 < δ ≤ ε0 such that {S ∈ Π : |S−P| ≤ δ}×{Z ∈ l : |Z −P| ≤ r0} ⊂ N. There is m0 ∈ Nsuch that for m ≥ m0, d(qm(µm), l) < δ. For each m ≥ m0 there exists σm < µm such that qm(σm) ∈ {S ∈ Π : |S−P| = δ}
×{Z ∈ l : |Z −P| ≤ r0} and qm(t) ∈ {S ∈ Π : |S−P| < δ}×{Z ∈ l : |Z −P| < r0} for all t ∈ (σm, µm). Then, by (4),for all m ≥ m0,

|U(qm(µm))| ≤ |U(qm(σm))|+√2 I(qm).
As {U(qm(σm))}m∈N and {I(qm)}m∈N are bounded, we get {U(qm(µm))}m∈N is bounded, too. On the other hand, by (V3),we obtain |U(qm(µm))| → ∞ as m →∞, a contradiction.
3. The proof of Theorem 1.5

Let {qm}m∈N ⊂ Ω− be a sequence such that lim
m→∞

I(qm) = ω−.

From Proposition 2.4 it follows that there is Q ∈ E such that going to a subsequence if necessary, qm ⇀ Q in E , andhence qm → Q in L∞loc(R,R3). By Proposition 2.6 we conclude that Q ∈ Λ.
Remark 3.1.For all T1, T2 ∈ R such that T1 < T2, a functional given by

E 3 q 7→
∫ T2
T1
(12 |q̇(t)|2 − V (q(t)))dt

is weakly lower semi-continuous.
Hence for each k ∈ N,

∫ k

−k

(12 |Q̇(t)|2 − V (Q(t)))dt ≤ lim inf
m→∞

∫ k

−k

(12 |q̇m(t)|2 − V (qm(t)))dt ≤ lim
m→∞

I(qm) = ω−.

Letting k → ∞ we get
I(Q) ≤ ω−. (5)

By Lemma 2.3, Q(±∞) = 0. Thus Q ∈ Ω.
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Fix 0 < ε ≤ ε0. Since qm(−∞) = 0, there is τm ∈ R such that qm(τm) ∈ ∂Bε(0) and qm(t) ∈ Bε(0) for all t < τm. Notethat if q ∈ Λ and τ ∈ R, then τq(t) = q(t − τ) ∈ Λ and I(τq) = I(q). Therefore we can assume that τm = 0 for each
m ∈ N. Consequently, qm(0) ∈ ∂Bε(0) and qm(t) ∈ Bε(0) for all t < 0 and m ∈ N. Hence |Q(t)| ≤ ε for all t ≤ 0.Moreover, Q 6= 0, which implies I(Q) > 0.An indirect argument will be employed to obtain Q ∈ Ω−. Suppose that rot(Q) ≥ 0.
Lemma 3.2.
For each η > 0 there is 0 < r ≤ ε0 such that for all x, y ∈ Br(0) and T ∈ R,

∫ T+1
T

(12 |x − y|2 − V (px,y(t)))dt < η,

where px,y(t) = (T + 1− t)x + (t − T )y for each t ∈ [T , T + 1].
The proof of this lemma is immediate.Fix η > 0. By Lemma 3.2, there is 0 < δ ≤ ε0 such that for all x, y ∈ Bδ (0) and T ∈ R,

∫ T+1
T

(12 |x − y|2 − V (px,y(t)))dt < η2 .
Choose T > 0 such that Q([T ,∞)) ⊂ Bδ (0) and

∫ T

−∞

(12 |Q̇(t)|2 − V (Q(t)))dt > I(Q)− η4 .
Since qm → Q uniformly on [0, T + 1], there is m0 ∈ N such that qm([T , T + 1]) ⊂ Bδ (0) and rot(qm�(−∞,T ]) = rot(Q) forall m ≥ m0.By Remark 3.1, there is m1 ∈ N such that for all m ≥ m1,

∫ T

−∞

(12 |q̇m(t)|2 − V (qm(t)))dt > ∫ T

−∞

(12 |Q̇(t)|2 − V (Q(t)))dt − η4 .
For m ≥ m0, let

um(t) =


0 if t ≤ T ,(t −T )qm(T +1) if t ∈ [T , T +1],
qm(t) if t ≥ T +1.

Since rot(qm) < 0 and rot(qm�(−∞,T ]) = rot(Q) ≥ 0, we get
rot(um) = rot(qm�[T+1,∞)) < 0.

Thus um ∈ Ω−. Furthermore, for m ≥ max{m0, m1},
I(qm)− I(um) = ∫ T+1

−∞

(12 |q̇m(t)|2 − V (qm(t)))dt − ∫ T+1
T

(12 |u̇m(t)|2 − V (um(t)))dt > I(Q)− η,
and so

I(qm) > I(um) + I(Q)− η.
1925
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Passing to a limit we obtain
ω− = lim

m→∞
I(qm) ≥ lim inf

m→∞
I(um) + I(Q)− η ≥ ω− + I(Q)− η.

Letting η → 0+,
ω− ≥ ω− + I(Q) > ω−,

a contradiction. Therefore rot(Q) < 0, and, in consequence, Q ∈ Ω−. From (5) and (3)− it follows that I(Q) = ω−. Tocomplete the proof of Theorem 1.5 we have to show that Q̇(±∞) = 0. For this purpose, we use the inequality [7, (28)].
Fact 3.3.
If q : R→ Rn is a continuous mapping such that q̇ ∈ L2loc(R,Rn), then for each t ∈ R,

|q(t)| ≤ √2(∫ t+1/2
t−1/2 (|q(s)|2 + |q̇(s)|2)ds)1/2

.

Using this inequality we get
|Q̇(t)| ≤ √2(∫ t+1/2

t−1/2 (|Q̇(s)|2 + |Q̈(s)|2)ds)1/2

for all t ∈ R. As Q is a classical solution of (1), we have
|Q̇(t)|2 ≤ 2 ∫ t+1/2

t−1/2 |Q̇(s)|2ds+ 2∫ t+1/2
t−1/2 |∇V (Q(s))|2ds.

Let η > 0. By (V4), there is a constant L1 > 0 such that if |s| > L1, then |∇V (Q(s))|2 < η/4. Since Q ∈ Ω− ⊂ E , thereis a constant L2 > 0 such that ∫ t+1/2
t−1/2 |Q̇(s)|2ds < η4

for |t| > L2. Put L = max{L1, L2}. By the above, if |t| > L+ 1/2, then |Q̇(t)|2 < η. Hence Q̇(t)→ 0 as t → ±∞.
Acknowledgements

The first author is supported by the grant no. N N201 394037 of the Polish Ministry of Science and Higher Education.

References

[1] Bertotti M.L., Jeanjean L., Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc.Roy. Soc. Edinburgh Sect. A, 1996, 126(6), 1169–1180[2] Bolotin S., Variational criteria for nonintegrability and chaos in Hamiltonian systems, In: Hamiltonian Mechanics,Toruń, 28 June – 2 July, 1993, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994, 173–179[3] Borges M.J., Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 2006,17(1), 1–32[4] Caldiroli P., Jeanjean L., Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems,J. Differential Equations, 1997, 136(1), 76–114
1926

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


J. Janczewska, J. Maksymiuk

[5] Caldiroli P., Nolasco M., Multiple homoclinic solutions for a class of autonomous singular systems in R2, Ann. Inst.H. Poincaré Anal. Non Linéaire, 1998, 15(1), 113–125[6] Gordon W.B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 1975, 204, 113–135[7] Izydorek M., Janczewska J., Homoclinic solutions for a class of the second order Hamiltonian systems, J. DifferentialEquations, 2005, 219(2), 375–389[8] Izydorek M., Janczewska J., Heteroclinic solutions for a class of the second order Hamiltonian systems, J. DifferentialEquations, 2007, 238(2), 381–393[9] Janczewska J., The existence and multiplicity of heteroclinic and homoclinic orbits for a class of singular Hamiltoniansystems in R2, Boll. Unione Mat. Ital., 2010, 3(3), 471–491[10] Rabinowitz P.H., Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal.Non Linéaire, 1989, 6(5), 331–346[11] Rabinowitz P.H., Homoclinics for an almost periodically forced singular Hamiltonian system, Topol. Methods Non-linear Anal., 1995, 6(1), 49–66[12] Rabinowitz P.H., Multibump solutions for an almost periodically forced singular Hamiltonian system, Electron. J.Differential Equations, 1995, # 12[13] Rabinowitz P.H., Homoclinics for a singular Hamiltonian system, In: Geometric Analysis and the Calculus of Vari-ations, International Press, Cambridge, 1996, 267–296[14] Tanaka K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. NonLinéaire, 1990, 7(5), 427–438

1927

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	Introduction
	Some properties of the action integral
	The proof of Theorem 1.5
	Acknowledgements
	References



