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Abstract

We study the existence of homoclinic orbits for the second order Hamiltonian system q̈ +
Vq(t, q)=f (t), where q ∈ Rn and V ∈ C1(R×Rn, R), V (t, q)=−K(t, q)+W(t, q) is T-periodic
in t. A map K satisfies the “pinching” condition b1|q|2 �K(t, q)�b2|q|2, W is superlinear at
the infinity and f is sufficiently small in L2(R, Rn). A homoclinic orbit is obtained as a limit
of 2kT -periodic solutions of a certain sequence of the second order differential equations.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we shall be concerned with the existence of homoclinic orbits for the
second order Hamiltonian system:

q̈ + Vq(t, q) = f (t), (HS)

∗ Corresponding author. Fax: +48 58 347 28 21.
E-mail addresses: izydorek@mifgate.pg.gda.pl (M. Izydorek), janczewska@mifgate.pg.gda.pl

(J. Janczewska).
1 Supported by Grant KBN no.1 P03A 042 29.

0022-0396/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2005.06.029

http://www.elsevier.com/locate/jde
mailto:izydorek@mifgate.pg.gda.pl
mailto:janczewska@mifgate.pg.gda.pl


376 M. Izydorek, J. Janczewska / J. Differential Equations 219 (2005) 375–389

where t ∈ R, q ∈ Rn and functions V : R × Rn → R and f : R → Rn satisfy:

(H1) V (t, q) = −K(t, q)+W(t, q), where K, W : R×Rn → R are C1-maps, T-periodic
with respect to t , T > 0,

(H2) there are constants b1, b2 > 0 such that for all (t, q) ∈ R × Rn

b1|q|2 �K(t, q)�b2|q|2,

(H3) for all (t, q) ∈ R × Rn, K(t, q)�(q, Kq(t, q))�2K(t, q),
(H4) Wq(t, q) = o(|q|), as |q| → 0 uniformly with respect to t ,
(H5) there is a constant � > 2 such that for every t ∈ R and q ∈ Rn \ {0}

0 < �W(t, q)�(q, Wq(t, q)),

(H6) f : R → Rn is a continuous and bounded function.

Here and subsequently, (·, ·): Rn × Rn → R denotes the standard inner product in Rn

and | · | is the induced norm.
We will say that a solution q of (HS) is homoclinic (to 0) if q(t) → 0 as t → ±∞.

In addition, if q /≡ 0 then q is called a nontrivial homoclinic solution.
For each k ∈ N, let Ek := W

1,2
2kT (R, Rn), the Hilbert space of 2kT -periodic functions

on R with values in Rn under the norm

‖q‖Ek
:=
(∫ kT

−kT

(|q̇(t)|2 + |q(t)|2) dt

)1/2

.

Furthermore, let L∞
2kT (R, Rn) denote a space of 2kT -periodic essentially bounded (mea-

surable) functions from R into Rn equipped with the norm

‖q‖L∞
2kT

:= ess sup{|q(t)| : t ∈ [−kT , kT ]}.

We begin with a result which is a direct consequence of estimations made by Rabi-
nowitz in [12].

Proposition 1.1. There is a positive constant C such that for each k ∈ N and q ∈ Ek

the following inequality holds:

‖q‖L∞
2kT

�C‖q‖Ek
. (1)

One can easily show that the inequality (1) holds true with constant C = √
2 if

T � 1
2 (see Fact 2.8).
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Set M := sup{W(t, q): t ∈ [0, T ], |q| = 1}, b̄1 := min{1, 2b1}, b̄2 := max{1, 2b2}
and suppose that:

(H7) 2M < b̄1 and (
∫

R |f (t)|2 dt)1/2 � �
2C

, where 0 < � < b̄1−2M and C is a constant
from Proposition 1.1.

We will prove the following theorem:

Theorem 1.2. If the conditions (H1)–(H7) are satisfied then the system (HS) possesses
a nontrivial homoclinic solution q ∈ W 1,2(R, Rn) such that q̇(t) → 0 as t → ±∞.

In recent years several authors studied homoclinic orbits for Hamiltonian systems
via critical point theory. In particular, the second order systems were considered in
[1,3,5–7,11–13,16], and those of the first order in [4,8–10,14,15]. Our study is motivated
by a paper of Rabinowitz [12] in which the existence of a nontrivial homoclinic solution
for the second order Hamiltonian system

q̈ + Vq(t, q) = 0

was proved. The function V considered by the author is of the form

V (t, q) = − 1
2 (L(t)q, q) + W(t, q), (2)

where L is a continuous T-periodic matrix valued function such that L(t) is positive
definite and symmetric for all t ∈ [0, T ], W satisfies (H4) and (H5). Let us note that
conditions (H2) and (H3) are satisfied if K(t, q) = 1

2 (L(t)q, q). On the other hand,
one can easily check that if

K(t, x) =

⎧⎪⎨
⎪⎩
(

1 + 1
1+x2

)
x2 for x�0,(

1 + 2
1+x2

)
x2 for x < 0

and W(t, x) = x4, where t, x ∈ R, then V (t, x) = −K(t, x) + W(t, x) cannot be
represented in the form (2) with W satisfying (H4), (H5) while V satisfies conditions
(H1)–(H5). Hence, our theorem extends the result from [12] even if f (t) = 0. It follows
from our assumptions that q(t) = 0 is a solution of (HS) only if f (t) = 0. Therefore,
if f is a nonzero function the existence of a homoclinic solution of (HS) implies its
nontriviality.

Similarly to [12] a homoclinic solution of (HS) is obtained as a limit, as k → +∞,
of a certain sequence of functions qk ∈ Ek . However, in our approach, we consider a
sequence of systems of differential equations:

q̈ + Vq(t, q) = fk(t), (HSk)
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where for each k ∈ N, fk: R → Rn is a 2kT -periodic extension of the restriction of f
to the interval [−kT , kT ] and qk is a 2kT -periodic solution of (HSk) obtained via the
Mountain Pass Theorem.

Part of the difficulty in treating (HS) is caused by the fact that in order to get
appropriate convergence of the sequence of approximative functions {qk}k∈N we need
the constants � and � appearing in the condition (iii) of the Mountain Pass Theorem
(see Theorem 2.5) to be independent of k.

2. Proof of Theorem 1.2

At first let us recall some properties of the function W(t, q) from [12]. They all are
necessary to the proof of Theorem 1.2.

Fact 2.1. For every t ∈ [0, T ] the following inequalities hold:

W(t, q)�W

(
t,

q

|q|
)

|q|� if 0 < |q|�1, (3)

W(t, q)�W

(
t,

q

|q|
)

|q|� if |q|�1. (4)

To prove this fact it suffices to show that for every q �= 0 and t ∈ [0, T ] the function
(0, +∞) 	 � → W(t, �−1q)�� is nonincreasing. It is an immediate consequence of
(H5).

Fact 2.2. Set m := inf{W(t, q): t ∈ [0, T ], |q| = 1}. Then for every � ∈ R \ {0} and
q ∈ Ek \ {0} we have∫ kT

−kT

W(t, �q(t)) dt �m|�|�
∫ kT

−kT

|q(t)|� dt − 2kT m. (5)

Proof. Fix � ∈ R \ {0} and q ∈ Ek \ {0}. Set Ak = {t ∈ [−kT , kT ]: |�q(t)|�1}, and
Bk = {t ∈ [−kT , kT ]: |�q(t)|�1}. From (4) we obtain∫ kT

−kT

W(t, �q(t)) dt �
∫

Bk

W(t, �q(t)) dt �
∫

Bk

W

(
t,

�q(t)

|�q(t)|
)

|�q(t)|� dt

� m

∫
Bk

|�q(t)|� dt

� m

∫ kT

−kT

|�q(t)|� dt − m

∫
Ak

|�q(t)|� dt

� m|�|�
∫ kT

−kT

|q(t)|� dt − 2kT m. �
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Fact 2.3. Let Y : [0, +∞) → [0, +∞) be given as follows: Y (0) = 0 and

Y (s) = max
t∈[0,T ]

0<|q| � s

(q, Wq(t, q))

|q|2 (6)

for s > 0. Then Y is continuous, nondecreasing, Y (s) > 0 for s > 0 and Y (s) → +∞
as s → +∞.

It is easy to verify this fact applying (H4), (H5) and (4).
Assumptions (H4) and (H5) imply that W(t, q) = o(|q|2) as q → 0 uniformly for

t ∈ [0, T ] and W(t, 0) = 0, Wq(t, 0) = 0. Moreover, from (H2) we conclude that
K(t, 0) = 0, Kq(t, 0) = 0.

Before we will prove Theorem 1.2, we have to introduce more notation and some
necessary definitions. For each k ∈ N, let L2

2kT (R, Rn) denote the Hilbert space of 2kT -

periodic functions on R with values in Rn under the norm ‖q‖L2
2kT

=
(∫ kT

−kT
|q(t)|2dt

)1/2
.

Let fk: R → Rn be a 2kT -periodic extension of f|[−kT ,kT ] onto R. From (H7) it follows
that ‖fk‖L2

2kT
��/2C. Consider the second order Hamiltonian system:

q̈ + Vq(t, q) = fk(t). (HSk)

Let �k: Ek → [0, +∞) be given by

�k(q) =
(∫ kT

−kT

[
|q̇(t)|2 + 2K(t, q(t))

]
dt

)1/2

. (7)

By (H2),

b̄1‖q‖2
Ek

��2
k(q)� b̄2‖q‖2

Ek
. (8)

It is worth pointing out that if the function K(t, q) is of the form 1
2 (L(t)q, q) with

a matrix valued function L satisfying the same conditions as in [12] then �k deter-
mined by (7) is a norm in Ek equivalent to the norm ‖ · ‖Ek

. Let Ik: Ek → R be
defined by

Ik(q) =
∫ kT

−kT

[
1

2
|q̇(t)|2 − V (t, q(t))

]
dt +

∫ kT

−kT

(fk(t), q(t)) dt

= 1

2
�2
k(q) −

∫ kT

−kT

W(t, q(t)) dt +
∫ kT

−kT

(fk(t), q(t)) dt. (9)

Then Ik ∈ C1(Ek, R) and it is easy to check that

I ′
k(q)v =

∫ kT

−kT

[
(q̇(t), v̇(t)) − (Vq(t, q(t)), v(t))

]
dt +

∫ kT

−kT

(fk(t), v(t)) dt, (10)
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and

I ′
k(q)q ��2

k(q) −
∫ kT

−kT

(Wq(t, q(t)), q(t)) dt +
∫ kT

−kT

(fk(t), q(t)) dt. (11)

Moreover, it is clear that critical points of Ik are classical 2kT -periodic solutions of
(HSk).

We have divided the proof of Theorem 1.2 into a sequence of lemmas.

Lemma 2.4. If V and f satisfy (H1)–(H7) then for every k ∈ N the system (HSk)

possesses a 2kT -periodic solution.

We will obtain a critical point of Ik by the use of a standard version of the Mountain
Pass Theorem (see [2]). It provides the minimax characterisation for the critical value
which is important for what follows. Therefore, we state this theorem precisely.

Theorem 2.5 (see Ambrosetti and Rabinowitz [2]). Let E be a real Banach space and
I : E → R be a C1-smooth functional. If I satisfies the following conditions:

(i) I (0) = 0,
(ii) every sequence {uj }j∈N in E such that {I (uj )}j∈N is bounded in R and I ′(uj ) →

0 in E∗, as j → +∞, contains a convergent subsequence (the Palais-Smale
condition),

(iii) there exist constants �, � > 0 such that I|�B�(0) ��,

(iv) there exists e ∈ E \ B�(0) such that I (e)�0,

where B�(0) is an open ball in E of radius � centred at 0, then I possesses a critical
value c�� given by

c = inf
g∈�

max
s∈[0,1] I (g(s)),

where

� = {g ∈ C([0, 1], E): g(0) = 0, g(1) = e}.

Proof of Lemma 2.4. In our case it is clear that Ik(0) = 0. We show that Ik satisfies the
Palais-Smale condition. Assume that {uj }j∈N in Ek is a sequence such that {Ik(uj )}j∈N

is bounded and I ′
k(uj ) → 0 as j → +∞. Then there exists a constant Ck > 0 such

that

|Ik(uj )|�Ck, ‖I ′
k(uj )‖E∗

k
�Ck (12)
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for every j ∈ N. We first prove that {uj }j∈N is bounded. By (9) and (H5),

�2
k(uj ) � 2Ik(uj ) + 2

�

∫ kT

−kT

(Wq(t, uj (t)), uj (t)) dt

−2
∫ kT

−kT

(fk(t), uj (t)) dt. (13)

From (13) and (11) we obtain(
1 − 2

�

)
�2
k(uj ) � 2Ik(uj ) − 2

�
I ′
k(uj )uj

−
(

2 − 2

�

)∫ kT

−kT

(fk(t), uj (t)) dt. (14)

From (14) and (8) it follows that(
1 − 2

�

)
b̄1‖uj‖2

Ek
� 2Ik(uj )

+
(

2

�
‖I ′

k(uj )‖E∗
k

+
(

2 − 2

�

)
‖fk‖L2

2kT

)
‖uj‖Ek

. (15)

Combining (15) with (H7) and (12) we get(
1 − 2

�

)
b̄1‖uj‖2

Ek
−
(

2Ck

�
+
(

2 − 2

�

)
�

2C

)
‖uj‖Ek

− 2Ck �0. (16)

Since � > 2, (16) shows that {uj }j∈N is bounded in Ek . Going if necessary to a
subsequence, we can assume that there exists u ∈ Ek such that uj ⇀ u, as j → +∞, in
Ek , which implies uj → u uniformly on [−kT , kT ]. Hence

(
I ′
k(uj ) − I ′

k(u)
)
(uj −u) →

0, ‖uj − u‖L2
2kT

→ 0 and

∫ kT

−kT

(Vq(t, uj (t)) − Vq(t, u(t)), uj (t) − u(t)) dt → 0,

as j → +∞. Moreover, an easy computation shows that

(
I ′
k(uj ) − I ′

k(u)
)
(uj − u) = ‖u̇j − u̇‖2

L2
2kT

−
∫ kT

−kT

(Vq(t, uj (t)) − Vq(t, u(t)), uj (t) − u(t)) dt,

and so ‖u̇j − u̇‖2
L2

2kT

→ 0. Consequently, ‖uj − u‖Ek
→ 0.
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We now show that there exist constants �, � > 0 independent of k such that every
Ik satisfies the assumption (iii) of Theorem 2.5 with these constants. Assume that
0 < ‖q‖L∞

2kT
�1. By (3) we have

∫ kT

−kT

W(t, q(t)) dt �
∫ kT

−kT

W

(
t,

q(t)

|q(t)|
)

|q(t)|� dt

� M

∫ kT

−kT

|q(t)|2 dt �M‖q‖2
Ek

,

and, in consequence, combining this with (8) and (H7) we obtain

Ik(q) � 1

2
b̄1‖q‖2

Ek
− M‖q‖2

Ek
− ‖fk‖L2

2kT
‖q‖L2

2kT

� 1

2
b̄1‖q‖2

Ek
− M‖q‖2

Ek
− �

2C
‖q‖Ek

= 1

2
(b̄1 − � − 2M)‖q‖2

Ek
+ �

2
‖q‖2

Ek
− �

2C
‖q‖Ek

. (17)

Note that (H7) implies b̄1 − � − 2M > 0. Set

� = 1

C
, � = b̄1 − � − 2M

2C2
.

By (1), if ‖q‖Ek
= � then 0 < ‖q‖L∞

2kT
�1 and (17) gives Ik(q)��.

It remains to prove that for every k ∈ N there exists ek ∈ Ek such that ‖ek‖Ek
> �

and Ik(ek)�0. By the use of (5), (9) and (8) we have that for every � ∈ R \ {0} and
q ∈ Ek \ {0} the following inequality holds:

Ik(�q) � b̄2�
2

2
‖q‖2

Ek
− m|�|�

∫ kT

−kT

|q(t)|� dt

+|�| · ‖fk‖L2
2kT

‖q‖L2
2kT

+ 2kT m. (18)

Take Q ∈ E1 such that Q(±T ) = 0. Since � > 2 and m > 0, (18) implies that there
exists � ∈ R \ {0} such that ‖�Q‖E1 > � and I1(�Q) < 0. Set e1(t) = �Q(t) and

ek(t) =
{

e1(t) for |t |�T ,

0 for T < |t |�kT
(19)

for k > 0. Then ek ∈ Ek , ‖ek‖Ek
= ‖e1‖E1 > � and Ik(ek) = I1(e1) < 0 for every

k ∈ N. By Theorem 2.5, Ik possesses a critical value ck �� given by

ck = inf
g∈�k

max
s∈[0,1] Ik(g(s)), (20)
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where

�k = {g ∈ C([0, 1], Ek): g(0) = 0, g(1) = ek}.

Hence, for every k ∈ N, there is qk ∈ Ek such that

Ik(qk) = ck, I ′
k(qk) = 0. (21)

The function qk is a desired classical 2kT -periodic solution of (HSk). Since ck > 0,
qk is a nontrivial solution even if fk(t) = 0. �

Let C
p

loc(R, Rn), where p ∈ N ∪ {0}, denote the space of Cp functions on R with
values in Rn under the topology of almost uniformly convergence of functions and all
derivatives up to the order p. Using the Arzelà-Ascoli theorem we prove what follows.

Lemma 2.6. Let {qk}k∈N be the sequence given by (21). There exist an increasing
function 	: N → N and a C1 function q0: R → Rn such that q	(k) → q0, as k →
+∞, in C1

loc(R, Rn).

Proof. The first step in the proof is to show that the sequences {ck}k∈N and {‖qk‖Ek
}k∈N

are bounded. For every k ∈ N, let gk: [0, 1] → Ek be a curve given by gk(s) = sek ,
where ek is determined by (19). Then gk ∈ �k and Ik(gk(s)) = I1(g1(s)) for all k ∈ N

and s ∈ [0, 1]. Therefore, by (20),

ck � max
s∈[0,1] I1(g1(s)) ≡ M0 (22)

independently of k ∈ N. As I ′
k(qk) = 0, we receive from (9), (11) and (H5) that

ck = Ik(qk) − 1

2
I ′
k(qk)qk

�
(�

2
− 1

) ∫ kT

−kT

W(t, qk(t)) dt + 1

2

∫ kT

−kT

(fk(t), qk(t)) dt,

and hence

∫ kT

−kT

W(t, qk(t)) dt � 1

� − 2

(
2ck −

∫ kT

−kT

(fk(t), qk(t)) dt

)
.

Combining the above with (8), (9) and (22) we have

b̄1‖qk‖2
Ek

� 2�M0

� − 2
+ 2� − 2

� − 2
‖fk‖L2

2kT
‖qk‖L2

2kT
,
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and, in consequence, by (H7)

b̄1‖qk‖2
Ek

− �(� − 1)

C(� − 2)
‖qk‖Ek

− 2�M0

� − 2
�0. (23)

Since b̄1 > 0 and all coefficients of (23) are independent of k, we see that there is
M1 > 0 independent of k such that

‖qk‖Ek
�M1. (24)

We now observe that the sequences {qk}k∈N, {q̇k}k∈N and {q̈k}k∈N are uniformly
bounded. By (1),

‖qk‖L∞
2kT

�CM1 ≡ M2 (25)

for every k ∈ N. Since qk satisfies (HSk), if t ∈ [−kT , kT ] we have

|q̈k(t)|� |fk(t)| + |Vq(t, qk(t))| = |f (t)| + |Vq(t, qk(t))|.

Therefore (25), (H1) and (H6) imply that there is M3 > 0 independent of k such that

‖q̈k‖L∞
2kT

�M3. (26)

From the Mean Value Theorem it follows that for every k ∈ N and t ∈ R there exists

k ∈ [t − 1, t] such that

q̇k(
k) =
∫ t

t−1
q̇k(s) ds = qk(t) − qk(t − 1).

In consequence, combining the above with (25) and (26)

|q̇k(t)| =
∣∣∣∣
∫ t


k

q̈k(s) ds + q̇k(
k)

∣∣∣∣
�
∫ t

t−1
|q̈k(s)| ds + |qk(t) − qk(t − 1)|�M3 + 2M2 ≡ M4,

and hence for every k ∈ N

‖q̇k‖L∞
2kT

�M4. (27)
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The task is now to show that {qk}k∈N and {q̇k}k∈N are equicontinuous. Of course, it
suffices to prove that both sequences satisfy the Lipschitz condition with some constants
independent of k. Let k ∈ N and t, t0 ∈ R. Then

|qk(t) − qk(t0)| =
∣∣∣∣
∫ t

t0

q̇k(s) ds

∣∣∣∣ �
∣∣∣∣
∫ t

t0

|q̇k(s)| ds

∣∣∣∣ �M4|t − t0|,

by (27), and analogously,

|q̇k(t) − q̇k(t0)|�M3|t − t0|,

by (26). Since {qk}k∈N and {q̇k}k∈N are bounded in L∞
2kT (R, Rn) and equicontinuous,

we obtain the existence of a subsequence {q	(k)}k∈N convergent to a certain q0 in
C1

loc(R, Rn) by using the Arzelà-Ascoli theorem. �

Our next goal is to show that q0 is the desired homoclinic solution of (HS). For this
purpose, we need the following observations.

Fact 2.7. Let q: R → Rn be a continuous mapping. If a weak derivative q̇: R → Rn

is continuous at t0, then q is differentiable at t0 and

lim
t→t0

q(t) − q(t0)

t − t0
= q̇(t0).

Proof. Fix ε > 0. By the assumption, there exists � > 0 such that for every t ∈ R, if
|t − t0| < � then |q̇(t) − q̇(t0)| < ε. Hence

∣∣∣∣q(t) − q(t0)

t − t0
− q̇(t0)

∣∣∣∣ =
∣∣∣∣∣
∫ t

t0
(q̇(s) − q̇(t0)) ds

t − t0

∣∣∣∣∣ �
∫ t

t0
|q̇(s) − q̇(t0)| ds

|t − t0| �ε

provided that 0 < |t − t0| < �. �

Let L2
loc(R, Rn) denote the space of functions on R with values in Rn locally square

integrable.

Fact 2.8. Let q: R → Rn be a continuous mapping such that q̇ ∈ L2
loc(R, Rn). For

every t ∈ R the following inequality holds:

|q(t)|�√
2

(∫ t+1/2

t−1/2

(
|q(s)|2 + |q̇(s)|2

)
ds

)1/2

. (28)
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Proof. Fix t ∈ R. For every 
 ∈ R,

|q(t)|� |q(
)| +
∣∣∣∣
∫ t



q̇(s) ds

∣∣∣∣ . (29)

Integrating (29) over [t − 1
2 , t + 1

2 ] and using the Hölder inequality we obtain

|q(t)| �
∫ t+1/2

t−1/2

(
|q(
)| +

∣∣∣∣
∫ t



q̇(s) ds

∣∣∣∣
)

d


�
(∫ t+1/2

t−1/2

(
|q(
)| +

∣∣∣∣
∫ t



q̇(s) ds

∣∣∣∣
)2

d


)1/2

�
(

2
∫ t+1/2

t−1/2

(
|q(
)|2 +

∣∣∣∣
∫ t



q̇(s) ds

∣∣∣∣
2
)

d


)1/2

�
√

2

(∫ t+1/2

t−1/2
|q(
)|2 d
 +

∫ t+1/2

t−1/2
|q̇(s)|2 ds

)1/2

. �

Lemma 2.9. The function q0 determined by Lemma 2.6 is the desired homoclinic so-
lution of (HS).

Proof. The proof will be divided into four steps.
Step 1: We show that q0 is a solution of (HS). For every k ∈ N and t ∈ R we have

q̈	(k)(t) = f	(k)(t) − Vq(t, q	(k)(t)). (30)

Since q	(k) → q0 and f	(k) → f almost uniformly on R, we obtain that q̈	(k) → w

almost uniformly on R, where w(t) = f (t) − Vq(t, q0(t)). Fix a, b ∈ R such that
a < b. There is k0 ∈ N such that for every k�k0 and t ∈ [a, b], (30) becomes

q̈	(k)(t) = f (t) − Vq(t, q	(k)(t)).

Hence, if k�k0 then the restriction of q̈	(k) onto [a, b] is continuous. From Fact 2.7 it
follows that q̈	(k) is a derivative of q̇	(k) in (a, b) for every k�k0. Since q̈	(k) → w

and q̇	(k) → q̇0 almost uniformly on R, we have w = q̈0 in (a, b). By the above, we
conclude that w = q̈0 in R and q0 satisfies (HS). Moreover, note that we have actually
proved that {q	(k)}k∈N converges to q0 in the topology of C2

loc(R, Rn).
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Step 2: We prove that q0(t) → 0, as t → ±∞. We have

∫ +∞

−∞

(
|q0(t)|2 + |q̇0(t)|2

)
dt = lim

i→+∞

∫ iT

−iT

(
|q0(t)|2 + |q̇0(t)|2

)
dt

= lim
i→+∞ lim

k→+∞

∫ iT

−iT

(
|q	(k)(t)|2 + |q̇	(k)(t)|2

)
dt.

Clearly, for every i ∈ N there exists ki ∈ N such that for all k�ki we have∫ iT

−iT

(
|q	(k)(t)|2 + |q̇	(k)(t)|2

)
dt �‖q	(k)‖2

E	(k)
�M2

1 ,

by (24). Letting k → +∞, we get

∫ iT

−iT

(
|q0(t)|2 + |q̇0(t)|2

)
dt �M2

1 ,

and now, letting i → +∞, we have

∫ +∞

−∞

(
|q0(t)|2 + |q̇0(t)|2

)
dt �M2

1 ,

and so ∫
|t |� r

(
|q0(t)|2 + |q̇0(t)|2

)
dt → 0, (31)

as r → +∞. Combining (31) with (28) we receive our claim.
Step 3: We now show that q̇0(t) → 0, as t → ±∞. To do this, observe that

|q̇0(t)|2 �2
∫ t+1/2

t−1/2

(
|q0(s)|2 + |q̇0(s)|2

)
ds + 2

∫ t+1/2

t−1/2
|q̈0(s)|2 ds, (32)

by (28). Since we have (31) and (32) it suffices to prove that

∫ r+1

r

|q̈0(s)|2 ds → 0, (33)

as r → ±∞. By (HS) we obtain

∫ r+1

r

|q̈0(s)|2 ds =
∫ r+1

r

(
|Vq(s, q0(s))|2 + |f (s)|2

)
ds

−2
∫ r+1

r

(Vq(s, q0(s)), f (s)) ds.
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Since Vq(t, 0) = 0 for all t ∈ R, q0(t) → 0, as t → ±∞ and
∫ r+1
r

|f (s)|2 ds → 0, as
r → ±∞, (33) follows.

Step 4: In the end, we have to show that if f ≡ 0 then q0 /≡ 0. For this purpose, as
Rabinowitz we use the properties of Y given by (6). The definition of Y implies

∫ kT

−kT

(Wq(t, qk(t)), qk(t)) dt �Y (‖qk‖L∞
2kT

)‖qk‖2
Ek

(34)

for every k ∈ N. Since I ′
k(qk)qk = 0, (10) gives

∫ kT

−kT

(Wq(t, qk(t)), qk(t)) dt =
∫ kT

−kT

|q̇k(t)|2 dt +
∫ kT

−kT

(Kq(t, qk(t)), qk(t)) dt. (35)

Substituting (35) into (34), and next applying (H3) and (H2) we obtain

Y (‖qk‖L∞
2kT

)‖qk‖2
Ek

� min{1, b1}‖qk‖2
Ek

,

and hence

Y (‖qk‖L∞
2kT

)� min{1, b1} > 0. (36)

The remainder of the proof is the same as in [12]. If ‖qk‖L∞
2kT

→ 0, as k → +∞, we
would have Y (0)� min{1, b1} > 0, a contradiction. Thus there is � > 0 such that

‖qk‖L∞
2kT

�� (37)

for every k ∈ N. Clearly, qk(t + jT ) is a 2kT -periodic solution of (HSk) for every
j ∈ Z. By replacing earlier, if necessary, qk by qk(t + jT ) for some j ∈ [−k, k] ∩ Z,
one can assume that the maximum of qk occurs in [−T , T ]. Suppose, contrary to our
claim, that q0 ≡ 0. Then, by Lemma 2.6,

‖q	(k)‖L∞
2	(k)T

= max
t∈[−T ,T ] |q	(k)(t)| → 0,

which contradicts (37). �
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