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Abstract

We shall be concerned with the existence of homoclinic solutions for the second order Hamiltonian
system q̈ − Vq(t, q) = f (t), where t ∈ R and q ∈ R

n. A potential V ∈ C1(R × R
n,R) is T -periodic in t ,

coercive in q and the integral of V (·,0) over [0, T ] is equal to 0. A function f : R → R
n is continuous,

bounded, square integrable and f �= 0. We will show that there exists a solution q0 such that q0(t) → 0 and
q̇0(t) → 0, as t → ±∞. Although q ≡ 0 is not a solution of our system, we are to call q0 a homoclinic
solution. It is obtained as a limit of 2kT -periodic orbits of a sequence of the second order differential
equations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let us consider the second order Hamiltonian system

q̈ − Vq(t, q) = f (t), (HS)

where t ∈ R, q ∈ R
n and V : R × R

n → R and f : R → R
n satisfy the following conditions:
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(A1) V is C1-smooth, T -periodic with respect to t , T > 0,
(A2) there is a constant b > 0 such that for all (t, q) ∈ R × R

n

V (t, q) � V (t,0) + b|q|2,
(A3)

∫ T

0 V (t,0) dt = 0,
(A4) f �= 0 is a continuous and bounded function such that

∫
R

|f (t)|2 dt < ∞.

Here and subsequently, | · | : Rn → [0,∞) is the norm induced by the standard inner product
(·,·) : Rn × R

n → R given by

(x, y) =
n∑

i=1

xiyi,

where x = (x1, . . . , xn), y = (y1, . . . , yn).
The existence of connecting orbits (homoclinic and heteroclinic orbits) is one of the most im-

portant problems in the theory of Hamiltonian systems. It has been intensively studying by many
mathematicians. Let us only mention here [1,3,4,7,10,12,13]. A lot of papers are concerned with
solutions homoclinic to 0. See for instance [2,6,8,11,14]. In our case, q ≡ 0 is not a solution
of (HS). Thus our Hamiltonian system does not possess a solution homoclinic to 0, in the clas-
sical meaning. However, we can still ask about the existence of solutions emanating from 0 and
terminating at 0.

Definition 1.1. We will say that a solution q : R → R
n of (HS) is homoclinic to x ∈ R

n, if
q(t) → x, as t → ±∞.

In this paper we will study the existence of solutions homoclinic to x = 0. Under the com-
paratively general assumptions (A1)–(A4), we will show that the Hamiltonian system (HS) has
a homoclinic solution with an additional regularity property. Our main result states as follows.

Theorem 1.1. If the conditions (A1)–(A4) are satisfied then the system (HS) possesses a homo-
clinic solution q ∈ W 1,2(R,R

n) such that q̇(t) → 0, as t → ±∞.

At the end of this section, we give the main idea of the proof.
For each k ∈ N, let Ek := W

1,2
2kT (R,R

n), the Hilbert space of 2kT -periodic functions from R

into R
n under the norm

‖q‖Ek
:=

( kT∫
−kT

(∣∣q̇(t)
∣∣2 + ∣∣q(t)

∣∣2)
dt

) 1
2

.

In order to receive a homoclinic solution of (HS), we consider a sequence of systems of
differential equations:

q̈ − Vq(t, q) = fk(t), (HSk)

where for every k ∈ N, fk : R → R
n is a 2kT -periodic extension of the restriction of f to the

interval [−kT , kT ). Let us remark that fk has not to be continuous at points kT + 2kTj , j ∈ Z.
Our homoclinic solution is a limit in C1

loc-topology of a certain sequence of functions qk ∈ Ek .
Each qk is a 2kT -periodic solution of (HSk) obtained via a standard minimizing argument (see
Theorem 2.2).
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The presented method generalizes that of [11]. Paul Rabinowitz obtained a homoclinic so-
lution of a Hamiltonian system q̈ + Vq(t, q) = 0 as a limit of its periodic solutions. We adapt
his method to the system (HS) by introducing an approximative sequence of differential equa-
tions (HSk).

2. Proof of Theorem 1.1

For each k ∈ N, let L2
2kT (R,R

n) denote the Hilbert space of 2kT -periodic functions on R

with values in R
n under the norm

‖q‖L2
2kT

:=
( kT∫

−kT

∣∣q(t)
∣∣2

dt

) 1
2

.

Let Ik :Ek → R be defined by

Ik(q) :=
kT∫

−kT

(
1

2

∣∣q̇(t)
∣∣2 + V

(
t, q(t)

) + (
fk(t), q(t)

))
dt. (1)

Then Ik ∈ C1(Ek,R) and one can easily check that

I ′
k(q)v =

kT∫
−kT

[(
q̇(t), v̇(t)

) + (
Vq

(
t, q(t)

)
, v(t)

) + (
fk(t), v(t)

)]
dt. (2)

Furthermore, critical points of Ik are classical 2kT -periodic solutions of (HSk).
We have divided the proof of Theorem 1.1 into a sequence of lemmas.

Lemma 2.1. If V and f satisfy (A1)–(A4) then for every k ∈ N the system (HSk) possesses a
2kT -periodic solution.

We will obtain a critical point of Ik by the use of a standard minimizing argument, i.e. the
following

Theorem 2.2. (See [9, Theorem 4.4].) Let E be a Banach space, I :E → R a functional bounded
from below and differentiable on E. If I satisfies the Palais–Smale condition then I has a mini-
mum on E.

Let us remind that I satisfies the Palais–Smale condition if every sequence {uj }j∈N in E

such that {I (uj )}j∈N is bounded in R and I ′(uj ) → 0 in E∗, as j → ∞, contains a convergent
subsequence.

Proof of Lemma 2.1. Set

β := min{1,2b}, M :=
(∫

R

∣∣f (t)
∣∣2

dt

) 1
2

.

From (A4), M is finite. Moreover, we have

‖fk‖L2 � M. (3)

2kT

http://mostwiedzy.pl
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Applying (A2) and (A3), for q ∈ Ek , we receive

Ik(q) �
kT∫

−kT

(
1

2

∣∣q̇(t)
∣∣2 + V (t,0) + b

∣∣q(t)
∣∣2 + (

fk(t), q(t)
))

dt

=
kT∫

−kT

(
1

2

∣∣q̇(t)
∣∣2 + b

∣∣q(t)
∣∣2 + (

fk(t), q(t)
))

dt

� β

2
‖q‖2

Ek
+

kT∫
−kT

(
fk(t), q(t)

)
dt

� β

2
‖q‖2

Ek
− ‖fk‖L2

2kT
‖q‖Ek

.

From this and (3) we get

Ik(q) � β

2
‖q‖2

Ek
− M‖q‖Ek

. (4)

Consequently, Ik is a functional bounded from below.
We now show that Ik satisfies the Palais–Smale condition. Assume that {uj }j∈N in Ek is a

sequence such that {Ik(uj )}j∈N is bounded and I ′
k(uj ) → 0, as j → ∞. Then there is Ck > 0

such that∣∣Ik(uj )
∣∣ � Ck (5)

for each j ∈ N. Combining (5) with (4) we receive

β‖uj‖2
Ek

− 2M‖uj‖Ek
− 2Ck � 0. (6)

Since β > 0, by (6) we conclude that {uj }j∈N is a bounded sequence in Ek . Therefore it pos-
sesses a weakly convergent subsequence. Without loss of generality, we can assume that there
is u ∈ Ek such that uj ⇀ u, as j → ∞, which implies uj → u uniformly on [−kT , kT ]. Thus
‖uj − u‖L2

2kT
→ 0, I ′

k(u)(uj − u) → 0 and

kT∫
−kT

(
Vq

(
t, uj (t)

) − Vq

(
t, u(t)

)
, uj (t) − u(t)

)
dt → 0,

as j → ∞. Moreover, since I ′
k(uj ) → 0, as j → ∞, we have∣∣I ′

k(uj )(uj − u)
∣∣ �

∥∥I ′
k(uj )

∥∥
E∗

k
‖uj − u‖Ek

→ 0.

Finally, using (2) we get

‖u̇j − u̇‖2
L2

2kT

= (
I ′
k(uj ) − I ′

k(u)
)
(uj − u)

−
kT∫

−kT

(
Vq

(
t, uj (t)

) − Vq

(
t, u(t)

)
, uj (t) − u(t)

)
dt.

Hence ‖u̇j − u̇‖L2 → 0, and, in consequence, ‖uj − u‖Ek
→ 0, as j → ∞.
2kT

http://mostwiedzy.pl
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By Theorem 2.2 we conclude that for every k ∈ N there exists qk ∈ Ek such that

Ik(qk) = inf
q∈Ek

Ik(q), I ′
k(qk) = 0. (7)

Set

� := M + √
M2 + 2β

β
> 0.

Let us notice that � is independent of k. By (A3), for every k ∈ N, we have Ik(0) = 0. Therefore
Ik(qk) � 0. Furthermore, from (4) it follows that for every k ∈ N, if ‖q‖Ek

� � then Ik(q) � 1.
Hence, for each k ∈ N,

‖qk‖Ek
< �. � (8)

Remark. From the inequality (4) we conclude that for each k ∈ N, Ik is coercive. Applying some
elementary arguments we are able to prove that every Ik is weakly lower semicontinuous. In this
way we also get a critical point of Ik (see [5, Theorem 1] and [9, Theorem 1.1]).

For every p ∈ N ∪ {0}, let C
p

loc(R,R
n) denote the space of Cp-smooth functions on R with

values in R
n under the topology of almost uniformly convergence of functions and all derivatives

up to the order p.

Lemma 2.3. Let {qk}k∈N be the sequence defined by (7). Then there exists a subsequence
{qkj

}j∈N convergent to a certain q0 in C1
loc(R,R

n).

To prove this lemma we need the estimation made by Rabinowitz in [11].
Let L∞

2kT (R,R
n) be a space of 2kT -periodic essentially bounded measurable functions from

R into R
n under the norm

‖q‖L∞
2kT

:= ess sup
{∣∣q(t)

∣∣: t ∈ [−kT , kT ]}.
Fact 2.4. (See (2.18) in [11].) There exists C > 0 such that for each k ∈ N and for each q ∈ Ek ,

‖q‖L∞
2kT

� C‖q‖Ek
. (9)

Proof of Lemma 2.3. First, we will show that {qk}k∈N, {q̇k}k∈N and {q̈k}k∈N are equibounded
sequences.

Combining (8) with (9), for each k ∈ N, we get

‖qk‖L∞
2kT

� C‖qk‖Ek
< C�. (10)

Since qk is a 2kT -periodic solution of (HSk), for every t ∈ [−kT , kT )

q̈k(t) = Vq

(
t, qk(t)

) + fk(t).

From this and (A4)∣∣q̈k(t)
∣∣ �

∣∣Vq

(
t, qk(t)

)∣∣ + ∣∣fk(t)
∣∣ = ∣∣Vq

(
t, qk(t)

)∣∣ + ∣∣f (t)
∣∣

�
∣∣Vq

(
t, qk(t)

)∣∣ + sup
t∈R

∣∣f (t)
∣∣

for k ∈ N and t ∈ [−kT , kT ). By (10) and (A1) we conclude that there exists a constant M1 > 0
independent of k such that

‖q̈k‖L∞ � M1. (11)

2kT

http://mostwiedzy.pl
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Finally, for each k ∈ N and t ∈ R, there is tk ∈ [t − 1, t] such that

q̇k(tk) =
t∫

t−1

q̇k(s) ds = qk(t) − qk(t − 1)

and

q̇k(t) =
t∫

tk

q̈k(s) ds + q̇k(tk).

Thus

∣∣q̇k(t)
∣∣ �

t∫
t−1

∣∣q̈k(s)
∣∣ds + ∣∣qk(t) − qk(t − 1)

∣∣.
Consequently, for each k ∈ N,

‖q̇k‖L∞
2kT

� M1 + 2C� ≡ M2. (12)

To finish the proof it is sufficient to remark that {q̇k}k∈N and {qk}k∈N are equicontinuous.
Indeed, for every k ∈ N and for all t, s ∈ R, we have

∣∣q̇k(t) − q̇k(s)
∣∣ =

∣∣∣∣∣
t∫

s

q̈k(τ ) dτ

∣∣∣∣∣ �
∣∣∣∣∣

t∫
s

∣∣q̈k(τ )
∣∣dτ

∣∣∣∣∣ � M1|t − s|.

Similarly,∣∣qk(t) − qk(s)
∣∣ � M2|t − s|.

Applying now the Arzelà–Ascoli lemma, we receive the claim.

Lemma 2.5. Let q0 : R → R
n be a function determined by Lemma 2.3. Then q0 is a solution of

(HS) such that q0(t) → 0 and q̇0(t) → 0, as t → ±∞.

The proof of this lemma is based on two simple facts.

Fact 2.6. Let q : R → R
n be a continuous map. If q̇ : R → R

n is continuous at t0 then

lim
t→t0

q(t) − q(t0)

t − t0
= q̇(t0).

Fact 2.7. Let q : R → R
n be a continuous map such that q̇ is locally square integrable. Then

∣∣q(t)
∣∣ �

√
2

( t+ 1
2∫

t− 1
2

(∣∣q(s)
∣∣2 + ∣∣q̇(s)

∣∣2)
ds

) 1
2

(13)

for every t ∈ R.

http://mostwiedzy.pl
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The elementary proofs of these two facts can be found in [8, pp. 385–386]. Let us also remark
that from (13) we immediately obtain (9). In particular, if T > 1

2 then one can choose C = √
2.

Proof of Lemma 2.5. First, we will show that q0 satisfies (HS).
By Lemmas 2.1 and 2.3, we have qkj

→ q0 in C1
loc(R,R

n), as j → ∞, and

q̈kj
(t) = Vq

(
t, qkj

(t)
) + fkj

(t)

for every j ∈ N and t ∈ [−kjT , kjT ). Take a, b ∈ R such that a < b. There exists j0 ∈ N such
that for all j > j0 and for every t ∈ [a, b] we have

q̈kj
(t) = Vq

(
t, qkj

(t)
) + f (t).

In consequence, for j > j0, q̈kj
is continuous in [a, b] and q̈kj

(t) → Vq(t, q0(t)) + f (t) uni-
formly on [a, b]. From Fact 2.6 it follows that q̈kj

is a classical derivative of q̇kj
in (a, b) for

each j > j0. Moreover, since q̇kj
→ q̇0 uniformly on [a, b], we get

Vq

(
t, q0(t)

) + f (t) = q̈0(t)

for every t ∈ (a, b). Since a and b are arbitrary, we conclude that q0 satisfies (HS).
In the next step we will prove that q0(t) → 0, as t → ±∞.
Remark that for every l ∈ N there is j0 ∈ N such that for j > j0 we have

lT∫
−lT

(∣∣qkj
(t)

∣∣2 + ∣∣q̇kj
(t)

∣∣2)
dt � ‖qkj

‖2
Ekj

� �2.

From this and Lemma 2.3 it follows that for each l ∈ N,

lT∫
−lT

(∣∣q0(t)
∣∣2 + ∣∣q̇0(t)

∣∣2)
dt � �2.

Letting l → ∞, we obtain

∞∫
−∞

(∣∣q0(t)
∣∣2 + ∣∣q̇0(t)

∣∣2)
dt � �2.

Hence ∫
|t |�r

(∣∣q0(t)
∣∣2 + ∣∣q̇0(t)

∣∣2)
dt → 0, (14)

as r → ∞. By (13) and (14), we get q0(t) → 0, as t → ±∞.
Finally, we will show that q̇0(t) → 0, as t → ±∞.
Applying (13), we receive

∣∣q̇0(t)
∣∣ �

√
2

( t+ 1
2∫

t− 1

(∣∣q̇0(s)
∣∣2 + ∣∣q̈0(s)

∣∣2)
ds

) 1
2

2

http://mostwiedzy.pl
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for every t ∈ R. From (14), we have

t+ 1
2∫

t− 1
2

∣∣q̇0(s)
∣∣2

ds → 0,

as t → ±∞. Therefore, it suffices to observe that

t+ 1
2∫

t− 1
2

∣∣q̈0(s)
∣∣2

ds → 0,

as t → ±∞. Since q0 is a solution of (HS), we have

t+ 1
2∫

t− 1
2

∣∣q̈0(s)
∣∣2

ds =
t+ 1

2∫
t− 1

2

∣∣Vq

(
s, q0(s)

)∣∣2
ds +

t+ 1
2∫

t− 1
2

∣∣f (s)
∣∣2

ds

+ 2

t+ 1
2∫

t− 1
2

(
Vq

(
s, q0(s)

)
, f (s)

)
ds,

and so

t+ 1
2∫

t− 1
2

∣∣q̈0(s)
∣∣2

ds �
t+ 1

2∫
t− 1

2

∣∣Vq

(
s, q0(s)

)∣∣2
ds +

t+ 1
2∫

t− 1
2

∣∣f (s)
∣∣2

ds

+ 2

( t+ 1
2∫

t− 1
2

∣∣Vq

(
s, q0(s)

)∣∣2
ds

) 1
2
( t+ 1

2∫
t− 1

2

∣∣f (s)
∣∣2

ds

) 1
2

.

(A4) implies that

t+ 1
2∫

t− 1
2

∣∣f (s)
∣∣2

ds → 0,

as t → ±∞.
Take ε > 0. By (A2), Vq(t,0) = 0 for each t ∈ R. From (A1), there is δ > 0 such that for

t ∈ R and |q| < δ, |Vq(t, q)| < ε. Moreover, there is r > 0 such that if |t | � r , then |q0(t)| < δ.
Hence, if |t | � r + 1

2 ,

t+ 1
2∫

t− 1
2

∣∣Vq

(
s, q0(s)

)∣∣2
ds < ε2

which completes the proof. �
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