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Abstract
We will be concerned with the existence of homoclinics for Lagrangian systems in R

N

(N ≥ 3) of the form d
dt (∇�(u̇(t))) + ∇u V (t, u(t)) = 0, where t ∈ R, � : R

N → [0,∞)

is a G-function in the sense of Trudinger, V : R × (
R

N \{ξ}) → R is a C2-smooth potential
with a single well of infinite depth at a point ξ ∈ R

N \{0} and a unique strict global maximum
0 at the origin. Under a strong force type condition around the singular point ξ , we prove the
existence of a homoclinic solution u : R → R

N \{ξ} via minimization of an action integral.

Mathematics Subject Classification Primary 37J45 · 46E30; Secondary 34C37 · 70H05

1 Introduction

Tanaka showed in [28] the existence of homoclinic solutions for singular Lagrangian systems
in R

N , N ≥ 3, of the type
ü(t) + ∇u V (u(t)) = 0, (1)

where V : RN \{ξ} → R for some ξ �= 0 has a unique global maximum at 0 ∈ R
N and

|V (x)| → ∞ as x → ξ . Roughly speaking, these homoclinic orbits were obtained by
considering an approximate problem on a finite interval whose solutions are the critical
points of a functional. Under suitable assumptions on the potential V , critical points of this
functional can be obtained by aminimax argument, and they, as well as their minimax values,
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can be estimated uniformly in the length of the finite interval. This finally allows to construct
a sequence converging weakly to a homoclinic orbit of (1). More precisely, his theorem reads
as follows.

Theorem 1.1 Assume that

(Va) V : R
N \{ξ} → R, where ξ ∈ R

N \{0}, is a C2-smooth potential such that

lim
x→ξ

V (x) = −∞,

(Vb) for all x ∈ R
N \{0}, V (x) ≤ 0 and V (x) = 0 iff x = 0,

(Vc) there is a negative constant V0 such that

lim sup
|x |→∞

V (x) ≤ V0,

(Vd) there is a constant δ ∈ (
0, 1

2 |ξ |) such that V (x) + 1
2 (V ′(x), x) ≤ 0 for all x ∈ Bδ(0),

where Bδ(0) = {x ∈ R
N ; |x | < δ},

(Ve) there are a neighbourhood N ⊂ R
N of the singular point ξ and a function U ∈

C1(N\{ξ}, R) such that |U (x)| → ∞ as x → ξ , and for all x ∈ N\{ξ},
|∇U (x)|2 ≤ −V (x).

Then (1) possessess at least one (nontrivial) solution such that

u(t), u̇(t) → 0 as t → ±∞.

In this work we will be concerned with the more general problem of existence of solutions
for the nonautonomous Lagrangian systems

{
d
dt (∇�(u̇(t))) + ∇u V (t, u(t)) = 0,

lim
t→±∞ u(t) = lim

t→±∞ u̇(t) = 0,
(L S)

where t ∈ R, � : R
N → [0,∞) is a G-function in the sense of Trudinger, and V : R ×(

R
N \{ξ}) → R is a C2-smooth potential which is 1-periodic in t and has as in Tanaka’s

Theorem 1.1 a well of infinite depth at a point ξ ∈ R
N \{0} and a strict global maximum 0 at

the origin. Moreover, we extend several preliminary results in [17] to the case N ≥ 3, which
is of independent interest.

Let us first introduce the notation that is needed to state our main theorem. We assume
that the C1-function � : R

N → R satisfies the following conditions:

(G1) �(0) = 0,
(G2) � is coercive, i.e. lim|x |→∞ �(x)

|x | = ∞,
(G3) � is convex, i.e. �(ax + (1− a)y) ≤ a�(x) + (1− a)�(y) for each a ∈ [0, 1] and

all x, y ∈ R
N ,

(G4) � is symmetric, i.e. �(x) = �(−x) for all x ∈ R
N ,

(G5) ∇� ∈ C1(RN \{0}, R
N ).

Note that every� that satisfies (G1)–(G5) is aG-function in the sense of Trudinger (compare
[29]), and moreover �(x) ≥ 0 for all x ∈ R

N .
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The Fenchel transform �∗ : R
N → R of � is defined by

�∗(y) = sup
x∈RN

((x, y) − �(x)) , (2)

where (·, ·) : R
N × R

N → R is the standard inner product in R
N (cf. [21,27]). It is well-

known that �∗ is continuous and satisfies (G1)–(G4) (cf. [20]), as well as �∗∗ = � (cf.
[3]).

Throughout the paper we assume that � and �∗ are globally �2-regular [19], i.e. there is
a constant L > 0 such that for each x ∈ R

N

�(2x) ≤ L�(x) ≤ 1

2
�(Lx). (�2)

Applying the Mean Value Theorem to the convex function �, we obtain the inequality

�(x) − �(x − y) ≤ (∇�(x), y) ≤ �(x + y) − �(x), (3)

which is satisfied for every x and y in R
N . Setting y = x and using the (�2) property, this

yields

(∇�(x), x) ≤ �(2x) ≤ L �(x), x ∈ R
N . (4)

If a convex map is C1, then its Fenchel transform is just the classical Legendre transform
[21, §2]. Consequently,

(∇�(x), x) = �(x) + �∗(∇�(x)), x ∈ R
N ,

and we obtain from (4)

�∗(∇�(x)) = (∇�(x), x) − �(x) ≤ (∇�(x), x) ≤ L �(x), x ∈ R
N . (5)

We next want to derive from � a function ϕ that is needed in the assumptions on the
potential V in our main theorem. Consider the function φ : R → R defined by

φ(r) = min{�(x) : |x | = r}
and φ(−r) = φ(r), where | · | : R

N → [0,∞) is the standard norm. Let us recall that the
epigraph of a function f : R

N → R is the set

epi ( f ) = {(x, t) ∈ R
N × R : f (x) ≤ t}

(cf. [21]). As in [17], we define the supporting function ϕ : R → R for � by the formula

ϕ = conv (φ),

which means that epi ϕ = conv (epi φ). Obviously,

�(x) ≥ ϕ(|x |) for x ∈ R
N , (6)

and one can easily check that

• ϕ is continuous and satisfies (G1)–(G4);
• ϕ satisfies the (�2)-condition, i.e. ϕ and ϕ∗ are globally �2-regular, where ϕ∗ is defined

as in (2).

Finally, let us consider the potential V in (L S), for which we will assume that
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(V1) V : R × (RN \{ξ}) → R, where ξ ∈ R
N \{0}, is a C2-function which is 1-periodic in

t ∈ R and such that

lim
x→ξ

V (t, x) = −∞

uniformly in the time variable t ,
(V2) for all t ∈ R, x ∈ R

N \{0}, V (t, x) < V (t, 0) = 0 and V ′′(t, 0) is negative definite,
(V3) there is a negative constant V0 such that for all t ∈ R,

lim sup
|x |→∞

V (t, x) ≤ V0,

(V4) there are a neighbourhoodN ⊂ R
N of the point ξ and a function U ∈ C1(N\{ξ}, R)

such that |U (x)| → ∞ as x → ξ , and for all x ∈ N\{ξ} and t ∈ R,

ϕ∗(|∇U (x)|) ≤ −V (t, x).

Let us note that it follows from (V1) and (V2) that

(V∗) there is a constant δ ∈ (
0, 1

2 |ξ |) such that V (t, λx) ≥ λV (t, x) for all t ∈ R, 0 ≤ λ ≤ 1
and x ∈ Bδ(0).

We are now ready to state the announced strengthening of Theorem 1.1.

Theorem 1.2 Let � : R
N → [0,∞) satisfy (G1)–(G5) and (�2), and assume that the

potential V : R×(RN \{ξ}) → R satisfies (V1)–(V4). Then there exists at least one nontrivial
homoclinic solution of the problem (L S) that begins and ends at 0.

Let us emphasize that we mean by solution an absolutely continuous function in
L2(R, R

N ) that satisfies (L S) weakly and such that the function as well as its first derivative
converge to 0 as t → ±∞. Thus the reader might be tempted to believe that our result is
weaker than Tanaka’s Theorem 1.1. This, however, is not the case as the regularity of the
obtained solution in Theorem 1.2 improves if � satisfies common additional assumptions.
If we require in (G3) that � is not only convex but strictly convex, then the solution has a
classical first derivative. Moreover, in the latter case we even obtain a classical solution of
(L S) if �∗ ∈ C2(RN , R). We shall explain these facts in our final remarks in Sect. 4.

There are various important examples of functions � which satisfy (G1)-(G5). Firstly, if
we substitute �(x) = 1

2 |x |2, x ∈ R
N , into (L S), then we get (1). Moreover, we obtain the

p-Laplacian for �(x) = 1
p |x |p , x ∈ R

N , p > 1, as

d

dt
(∇�(u̇(t))) = d

dt

(|u̇(t)|p−2u̇(t)
)
.

Note that it follows from the above comments that we obtain from Theorem 1.2 classical
solutions in these cases as long as 1 < p ≤ 2. Finally, for�(x) = χ(|x |), where χ : R → R

is a so-called N -function (i.e. a G-function of one variable which satisfies additional growth
conditions, cf. [4]), we obtain a χ-Laplacian.

If we compare our assumptions on the potential V in Theorem 1.2 to those in Theorem 1.1,
we firstly see that (Va) and (Vc) are special cases of (V1) and (V3). Moreover, in case that
�(x) = 1

2 |x |2, x ∈ R
N , i.e. if (1) is just (L S) with an autonomous potential, it is readily

seen that (Ve) follows from (V4). Note that (Ve) was introduced by Gordon [12] and in the
literature it is known as the strong force condition or Gordon’s condition. Finally, Tanaka
states in [28] that (Vd) is a kind of concavity condition near 0. We have instead (V∗), which
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follows from our assumptions (V1) and (V2). Note that (V2) is slightly more restrictive than
(Vb) as Tanaka allows an inconclusive second derivative test at the strict global maximum 0.

In the last three decades, a lot of progress has been made in the use of variational methods
for investigating homoclinic solutions for Lagrangian systems. Some basic material on vari-
ational methods can be found, e.g., in [2,9–11,15,21,22]. As homoclinics are global in time,
global methods seem to be the natural approach to study their existence. Both minimization
and minimax arguments have been used to obtain them (see [5,7,8,14,16,18,23]).

The variational formulation for Lagrangian systems usually leads to action functionals.
However, even though there may be a natural class of curves or functions as domain of the
functional, there is not always a canonical choice of an associated norm or metric. Conse-
quently, it is often challenging to find a good setting in which to formulate the variational
problem. To study homoclinic solutions of the problem (L S), a technical framework will be
introduced in Sect. 2 to treat the action functional in an appropriate Orlicz–Sobolev space.
Section 3 contains the proof of our main result. Let us emphasize that the idea of the proof of
Theorem 1.2 differs from [28] as we do not obtain the homoclinic solution as limit of periodic
solutions on a finite time interval. Instead we find a candidate for a solution as weak limit of
a minimizing sequence and show directly that it is a critical point of the action functional. In
Sect. 4 we make final remarks on possible generalisations and future research.

2 Preliminaries

Section 2 introduces an appropriate Orlicz–Sobolev space setting and presents some prelim-
inary results about an action functional. The Lemmas 2.4 and 2.5 are similar to Lemmas 2.3
and 2.7 of [17] for the case N = 2. For the convenience of the reader we include their proofs,
thus making our work self-contained.

In what follows, we assume that � : R
N → [0,∞) satisfies (G1)–(G5) and (�2).

We define for an open interval 
 ⊂ R

L�(
) =
{

u : 
 → R
N : u is Lebesgue measurable and

∫




�(u(t))dt < ∞
}

,

which is a Banach space with respect to the Luxemburg norm (cf. [29])

‖u‖� = inf

{
ν > 0 :

∫




�

(
u(t)

ν

)
dt ≤ 1

}
. (7)

Since � is �2-regular, L�(
) is separable and reflexive (cf. Rem. 8.22 and Thm. 8.20 in
[4]).

Set ψ = ϕ ◦ | · |, i.e. ψ(x) = ϕ(|x |) for each x ∈ R
N . It follows from (6) that the space

L�(
) is continuously embedded in Lψ(
) (cf. Thm. 8.12 in [4]),

L�(
) ⊂ Lψ(
).

Note that ‖u‖ψ = ‖|u|‖ϕ and let us recall that Hölder’s inequality (cf. [3], Par. 8.11) states
that

∫




|uv| dt ≤ 2‖u‖ψ‖v‖ψ∗ , u ∈ Lψ(
), v ∈ Lψ∗(
). (8)

Moreover, it is readily seen that

‖|u|‖ϕ ≤ 1 +
∫




ϕ(|u(t)|) dt, u ∈ Lψ(
). (9)
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For simplicity of notation, we abbreviate L�(R) by L�. Moreover, even though (7) depends
on the domain 
, we write ‖ · ‖� for the norms of L�(
) for different intervals 
 ⊂ R. The
domain 
 will always be clear from the context. In what follows, we will use without further
reference that on 
 = (a, b)

‖1‖ϕ∗ =
[
(ϕ∗)−1

(
1

b − a

)]−1

,

which follows directly from the definition.
Let L2(R, R

N ) be the standard Lebesgue space of square integrable functions and let E
denote the (mixed) Orlicz–Sobolev space

E =
{

u ∈ L2(R, R
N ) : u̇ ∈ L�(R, R

N )
}

,

where u̇ is the weak derivative of u, with the norm

‖u‖2 = ‖u‖22 + ‖u̇‖2�
We note for later reference that E is a separable reflexive Banach space (see [26]).

As usual L∞(R, R
N ) denotes the space of Lebesgue measurable essentially bounded

functions from R into R
N with the norm

‖u‖∞ = ess sup |u(t)|
and C(R, R

N ) is the space of continuous functions.
Let us note that if u ∈ E , then u is locally absolutely continuous.

Proposition 2.1 The inclusion map E → L∞(R, R
N ) ∩ C(R, R

N ) is continuous, i.e. there
is a constant C� > 0 such that for all u ∈ E

max
t∈R |u(t)| = ‖u‖∞ ≤ C�‖u‖.

Proof Since

|u(t)| ≤ |u(τ )| +
∣∣∣∣

∫ t

τ

u̇(s)ds

∣∣∣∣

the claimed inequality follows from

|u(t)| ≤
∫ t+ 1

2

t− 1
2

(
|u(τ )| +

∣∣∣∣

∫ t

τ

u̇(s)ds

∣∣∣∣

)
dτ

≤
[∫ t+ 1

2

t− 1
2

(
|u(τ )| +

∣∣∣∣

∫ t

τ

u̇(s)ds

∣∣∣∣

)2

dτ

] 1
2

≤
[

2
∫ t+ 1

2

t− 1
2

(

|u(τ )|2 +
∣∣∣∣

∫ t

τ

u̇(s)ds

∣∣∣∣

2
)

dτ

] 1
2

≤
[

2
∫ t+ 1

2

t− 1
2

(

|u(τ )|2 +
(∫ t

τ

|u̇(s)|ds

)2
)

dτ

] 1
2

≤
⎡

⎣2
∫ t+ 1

2

t− 1
2

⎛

⎝|u(τ )|2 +
(∫ t+ 1

2

t− 1
2

|u̇(s)|ds

)2
⎞

⎠ dτ

⎤

⎦

1
2
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≤
[

2
∫ t+ 1

2

t− 1
2

|u(τ )|2dτ + 2
(
2‖1‖ϕ∗‖|u̇|‖ϕ

)2
] 1

2

≤ [
2‖u‖22 + 8‖1‖2ϕ∗‖u̇‖2�

] 1
2 ≤ (

2 + 8‖1‖2ϕ∗
) 1
2 ‖u‖,

where we have used (8) for functions restricted to 
 = [t − 1
2 , t + 1

2 ]. Note that here ‖ · ‖ϕ

denotes the norm of Lϕ(
), but C� := (2 + 8‖1‖2ϕ∗)
1
2 is independent of t as ‖1‖ϕ∗ only

depends on the length of the interval 
. ��
The following proposition shows that functions in E have the right limiting behaviour for

studying homoclinics.

Proposition 2.2 If u ∈ E, then lim
t→±∞ u(t) = 0.

Proof As in the proof of Proposition 2.1, we obtain

|u(t)| ≤ 2

⎡

⎣
∫ t+ 1

2

t− 1
2

|u(τ )|2dτ +
(∫ t+ 1

2

t− 1
2

|u̇(s)|ds

)2
⎤

⎦

1
2

.

Since u ∈ L2(R, R
N ), one has

lim
t→±∞

∫ t+ 1
2

t− 1
2

|u(τ )|2dτ = 0.

Furthermore, if u̇ ∈ L� then |u̇| ∈ Lϕ and so
∫
R

ϕ(|u̇|) < ∞. Consequently, as ϕ is convex,
we obtain by Jensen’s inequality [26, Prop. III.5]

lim
t→±∞ ϕ

(∫ t+ 1
2

t− 1
2

|u̇(s)|ds

)

≤ lim
t→±∞

∫ t+ 1
2

t− 1
2

ϕ(|u̇(s)|)ds = 0,

which finally implies that

lim
t→±∞

∫ t+ 1
2

t− 1
2

|u̇(s)|ds = 0.

��
The following proposition once again considers the embedding of E into L∞(R, R

N ).

Proposition 2.3 Every weakly convergent sequence in E contains a subsequence converging
in L∞

loc(R, R
N ).

Proof Let {uk}k∈N converge weakly to u0 in E . By Proposition 2.1, {uk}k∈N also converges
to u0 weakly in L∞(R, R

N ). Moreover, ‖uk‖ ≤ M for some M > 0 and every k ∈ N.
Let now a ≤ s ≤ t ≤ b for some a < b. Then

|uk(t) − uk(s)| =
∣∣∣∣

∫ t

s
u̇k(τ )dτ

∣∣∣∣ ≤
∫ t

s
|u̇k(τ )|dτ

≤ 2‖1‖ϕ∗


‖|u̇k |‖ϕ
 ≤ 2‖1‖ϕ∗



‖uk‖

≤ 2M

(
(ϕ∗)−1

(
1

t − s

))−1

,

and thus {uk}k∈N is a sequence of equicontinuous functions.
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By the Arzelà–Ascoli Theorem, {uk}k∈N contains a subsequence converging to some û in
C([a, b], R

N ). It follows from the uniqueness of the weak limit that û = u0, which completes
the proof. ��

In what follows, let � : R
N → R and V : R × (RN \{ξ}) → R satisfy the assumptions

of Theorem 1.2.
We define for u ∈ E

I (u) =
∫ ∞

−∞
(�(u̇(t)) − V (t, u(t))) dt . (10)

Let
αε = inf{−V (t, x) : x /∈ Bε(0)}, (11)

where 0 < ε ≤ 1
2 |ξ | and Bε(0) is the ball of radius ε centered at the origin. Note that αε > 0

by (V1) − (V3).

Proposition 2.4 If u ∈ E and u(t) /∈ Bε(0) for t ∈ [a, b], then there is Cε > 0 such that

(I (u) + 1)2 ≥ Cε · length (u|[a,b]) ≥ Cε|u(b) − u(a)|. (12)

Proof As the second inequality clearly follows from

|u(b) − u(a)| =
∣∣∣∣

∫ b

a
u̇(t)dt

∣∣∣∣ ≤
∫ b

a
|u̇(t)|dt = length (u|[a,b]),

we only need to prove the first one. We note at first that by (8)

length (u|[a,b]) =
∫ b

a
|u̇(t)|dt ≤ 2‖|u̇|‖ϕ‖1‖ϕ∗ .

Hence, if we set δ = length (u|[a,b]) and τ = b − a, then

‖|u̇|‖ϕ ≥ 1

2
δ‖1‖−1

ϕ∗ = 1

2
δ · (ϕ∗)−1

(
1

τ

)
.

As � is nonnegative, we obtain from (9)

I (u) ≥
∫ b

a
(�(u̇(t)) − V (t, u(t))) dt =

∫ b

a
�(u̇(t))dt +

∫ b

a
−V (t, u(t))dt

≥
∫ b

a
ϕ(|u̇(t)|)dt + αετ ≥ ‖|u̇|‖ϕ − 1 + αετ

≥ 1

2
δ · (ϕ∗)−1

(
1

τ

)
− 1 + αετ. (13)

Thus

I (u) + 1 ≥ 1

2
δ · (ϕ∗)−1

(
1

τ

)
+ αετ ≥ 1

2

δ

τk
· (ϕ∗)−1(k) + αετ,

where the natural number k satisfies τk ≥ 1 and the last inequality follows from the fact that
(ϕ∗)−1 is concave. We now choose the smallest k with the property τk ≥ 1. In particular, we
set k = 1 if τ ≥ 1. In the latter case,

f (τ ) = 1

2

δ

τ
· (ϕ∗)−1(1) + αετ
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has its minimum at the point

τmin =
(

δ · (ϕ∗)−1(1)

2αε

) 1
2

,

which is equal to fmin = (2δαε(ϕ
∗)−1(1))

1
2 . If τ < 1 then

1

2

δ

τk
· (ϕ∗)−1(k) + αετ ≥ 1

4
δ · (ϕ∗)−1(k) + αετ ≥ 1

4
δ · (ϕ∗)−1(1).

Now the claim follows by setting

Cε = min

{
2αε(ϕ

∗)−1(1),
1

4
(ϕ∗)−1(1)

}
.

��
In the next proposition, we make use of the Gordon type condition (V4).

Proposition 2.5 If [a, b] is an interval such that u([a, b]) ⊂ N\{ξ} then

|U (u(b))| − |U (u(a))| ≤ 2(I (u) + 1)2. (14)

Proof We first note that by (8),

|U (u(b))| ≤ |U (u(a))| +
∣∣∣∣

∫ b

a

d

dt
U (u(t))dt

∣∣∣∣

≤ |U (u(a))| +
∣∣∣∣

∫ b

a
(∇U (u(t)), u̇(t)) dt

∣∣∣∣

≤ |U (u(a))| +
∫ b

a
|∇U (u(t))||u̇(t)|dt

≤ |U (u(a))| + 2‖|∇U (u)|‖ϕ∗‖|u̇|‖ϕ.

Since by (V4),

‖|∇U (u)|‖ϕ∗ ≤ 1 +
∫ b

a
ϕ∗(|∇U (u(t))|)dt ≤ 1 +

∫ b

a
−V (t, u(t))dt,

it is now readily seen from (6) and (9) that

|U (u(b))| ≤ |U (u(a))| + 2(I (u) + 1)2.

��
It is clear from (14) that u(t) �= ξ for t ∈ R provided that I (u) < ∞ (cf. [23], Eq. (2.21)).

In fact, we obtain the following corollary.

Corollary 2.6 (cf. [16]) If the action functional I is bounded on a certain set W ⊂ E, say
I (W ) ⊂ [0, β], then there is ρ > 0 depending on β such that for every u ∈ W and t ∈ R

one has |u(t) − ξ | ≥ ρ.

Our next aim is to show that preimages of bounded sets under I are bounded, which is
crucial for our proof of Theorem 1.2.

Proposition 2.7 For every β > 0 the set I −1([0, β]) is bounded in E.
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Proof If I (u) ≤ β, then
∫

R

�(u̇(t))dt ≤ β and
∫

R

−V (t, u(t))dt ≤ β.

Hence, in particular ‖u̇‖� ≤ β + 1, and it remains to find a bound for ‖u‖2. By (V1) and
(V2) there is γ > 0 such that

−V ′′(t, 0)(v, v) ≥ 2γ |v|2

for t ∈ R and v ∈ R
N . Since V ′′ is continuous there exists δ > 0 such that

−V (t, v) ≥ γ |v|2

whenever |v| ≤ δ and t ∈ R. Set

Pδ = {t ∈ R : |u(t)| > δ} and Qδ = {t ∈ R : |u(t)| ≤ δ} .

From the inequality

β ≥
∫

Pδ

−V (t, u(t))dt +
∫

Qδ

−V (t, u(t))dt

≥ αδ · μ(Pδ) + γ

∫

Qδ

|u(t)|2dt,

we conclude that

μ(Pδ) ≤ β

αδ

and
∫

Qδ

|u(t)|2dt ≤ β

γ
.

Here αδ is defined by (11) and μ denotes the Lebesgue measure. By Proposition 2.4

(I (u) + 1)2 ≥ Cδ(2‖u‖∞ − 2δ),

and thus

‖u‖∞ ≤ (I (u) + 1)2

2Cδ

+ δ ≤ (β + 1)2

2Cδ

+ δ.

Hence we finally obtain

‖u‖22 =
∫

R

|u(t)|2dt =
∫

Pδ

|u(t)|2dt +
∫

Qδ

|u(t)|2dt ≤
(

(β + 1)2

2Cδ

+ δ

)
β

αδ

+ β

γ
.

��
We now consider the open set

� =
{

u ∈ E : u(R) ⊂ R
N \{ξ}

}
⊂ E,

and note that u ∈ � iff I (u) < ∞ by Corollary 2.6.
We claim that the restricted functional I : � → R is continuously differentiable. We

begin with some auxiliary results.

Lemma 2.8 Let {un}∞n=1 ⊂ L� and u ∈ L�. Suppose that un → u a.e. and
∫
R

�(un)dt →∫
R

�(u)dt. Then un → u in L�.
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Proof Since � is convex and symmetric, one has

1

2
(�(un(t)) + �(u(t))) − �

(
un(t) − u(t)

2

)
≥ 0.

By our assumptions, the right hand side of the above inequality converges to �(u) a.e.
Applying Fatou’s Lemma we obtain,

∫

R

�(u(t))dt ≤ lim inf
n→∞

∫

R

[
1

2
(�(un(t)) + �(u(t))) − �

(
un(t) − u(t)

2

)]
dt

= lim
n→∞

∫

R

1

2
(�(un(t)) + �(u(t)))dt + lim inf

n→∞

∫

R

−�

(
un(t) − u(t)

2

)
dt

=
∫

R

�(u(t))dt − lim sup
n→∞

∫

R

�

(
un(t) − u(t)

2

)
dt .

This implies that
∫

R

�

(
un(t) − u(t)

2

)
dt → 0

and ‖un − u‖� → 0 since � satisfies �2-property. ��
Let us note that if u ∈ L� then ∇�(u) ∈ L�∗ , which is a consequence of the inequality

(5).

Lemma 2.9 The map L� � u → ∇�(u) ∈ L�∗ is continuous.

Proof If a sequence {un}∞n=1 converges to some u in L�, then
∫

R

�(un(t) − u(t))dt → 0.

Furthermore, {un}∞n=1 contains a subsequence converging to u a.e. on R. We keep denoting
this subsequence by {un}∞n=1. Consequently �∗(∇�(un)) → �∗(∇�(u)) a.e. on R. By the
�2-property and the convexity of �,

�(2un) = �(2u + 2un − 2u) ≤ L

2
�(2u) + L

2
�(2un − 2u) ≤ L2

2
�(u) + L2

2
�(un − u)

and therefore

|�∗(∇�(un)) − �∗(∇�(u))| ≤ �(2un) + �(2u) ≤
(

L2

2
+ L

)
�(u) + L2

2
�(un − u)

≤ L ′(�(u) + �(un − u)),

where L ′ = L2

2 + L. Applying Fatou’s Lemma to the sequence

L ′(�(u) + �(un − u)) − |�∗(∇�(un)) − �∗(∇�(u))|,
we obtain

∫

R

L ′�(u)dt

≤ lim inf
n→∞

∫

R

[
L ′(�(u) + �(un − u)) − |�∗(∇�(un)) − �∗(∇�(u))|] dt
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= lim
n→∞

∫

R

L ′(�(u) + �(un − u))dt + lim inf
n→∞

∫

R

−|�∗(∇�(un)) − �∗(∇�(u))|dt

=
∫

R

L ′�(u)dt − lim sup
n→∞

∫

R

|�∗(∇�(un)) − �∗(∇�(u))|dt .

Consequently,

lim
n→∞

∫

R

|�∗(∇�(un)) − �∗(∇�(u))|dt = 0.

We finally get the assertion if we apply Lemma 2.8 to the sequence {∇�(un)}∞n=1 ��
Let us now denote

I(u) =
∫

R

�(u̇(t))dt and J (u) =
∫

R

−V (t, u(t))dt,

so that I (u) = I(u) + J (u).

Proposition 2.10 I ∈ C1(E, R), and

I ′(u)ψ =
∫

R

∇�(u̇(t))ψ̇(t)dt . (15)

Proof Obviously, if u ∈ E , then I(u) < ∞. It is enough to show that I has at every point
u ∈ E a directional derivative I ′(u) ∈ E∗ given by (15) and that the map I ′ : E → E∗
is continuous. Since |(∇�(x), y)| ≤ �(x + y) + �(x) for every x, y ∈ R

N , which is a
consequence of (3), one has

∫

R

|∇�(u̇(t) + sψ̇(t))ψ̇(t)|dt ≤
∫

R

�(u̇(t) + (s + 1)ψ̇(t))dt

+
∫

R

�(u̇(t) + sψ̇(t))dt < ∞.

Thus I has a directional derivative and

I ′(u)ψ = d

ds
I(u + sψ)

∣∣∣∣
s=0

=
∫

R

∇�(u̇(t))ψ̇(t)dt .

It follows from Hölder’s inequality (8) that

|I ′(u)ψ | =
∣∣∣∣

∫

R

∇�(u̇(t))ψ̇(t)dt

∣∣∣∣ ≤ 2‖∇�(u̇)‖L�∗ ‖ψ̇‖L� ≤ C‖ψ‖.

Now it is enough to show that if un → u in E , then I ′(un) → I ′(u) in E∗. This is a
consequence of the estimate

|I ′(un)ψ − I ′(u)ψ | =
∣∣∣∣

∫

R

(∇�(u̇n(t)) − ∇�(u̇(t)))ψ̇(t)dt

∣∣∣∣

≤ 2‖∇�(u̇n(t)) − ∇�(u̇(t))‖L�∗ ‖ψ̇(t)‖L� → 0,

which follows from Lemma 2.9 and Hölder’s inequality. ��
To obtain the differentiability of J , we need to restrict the domain to the open subset �

of E . We skip the proof of the following proposition as it is a standard argument.
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Proposition 2.11 J ∈ C1(�, R), and

J ′(u)ψ =
∫

R

∇V (t, u(t))ψ(t)dt . (16)

We summarize for later reference the statements of the previous two propositions.

Corollary 2.12 The functional I : � → R is continuously differentiable.

Each function u ∈ � describes a closed curve in R
N \{ξ} that starts and ends at 0. We will

consider (�,ω0) as a pointed space with the constant map ω0 = 0 as distinguished point.
Let κ : (−1, 1) → R be the homeomorphism defined by the formula

κ(t) = t√
1 − t2

.

If σ ∈ � then σ̂ : [−1, 1] → R
N \{ξ}

σ̂ (t) =
{

σ(κ(t)) if − 1 < t < 1,

0 if t ∈ {−1, 1},
is a loop at the origin. Let us view the pointed (N − 1)-sphere (SN−1, �) as the quotient
space

π : SN−2 × [−1, 1] → SN−2 × [−1, 1]/(SN−2 × {−1, 1} ∪ {�} × [−1, 1])
where π is the corresponding quotient map.

Given a continuous map h : (SN−2, �) → (�,ω0) we define ĥ : (SN−1, �) →
(RN \{ξ}, {0}) to be

ĥ(π(x, t)) = ĥ(x)(t).

This correspondence preserves homotopy classes and induces an isomorphism of homotopy
groups

H : �N−2(�,ω0) → �N−1(R
N \{ξ}, {0}).

Consequently, �N−2(�,ω0) ∼= �N−1(R
N \{ξ}, {0}) ∼= Z. Let � be an element of

�N−2(�,ω0). We will write h ∈ � if h : (SN−2, �) → (�,ω0) represents the homotopy
class �.

Define
c = inf

h∈� �=0
max

x∈SN−2
I (h(x)), (17)

which is a nonnegative number.

Definition 2.1 A sequence {un}∞n=1 ⊂ E is called a Palais-Smale sequence at level c ((P S)c

for short) if

lim
n→∞ I (un) = c and lim

n→∞ I ′(un) = 0.

The function I is said to satisfy (P S)c if all (P S)c sequences are compact.

It is a consequence of the General Minimax Principle (see Thm. 1.8 in [1]) that any
minimizing sequence for (17) is a (P S)c sequence.
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3 Proof of Theorem 1.2

Let {hn : (SN−2, �) → (�,ω0)} n = 1, 2, . . . be a sequence of maps representing nonzero
elements of �N−2(�,ω0) and let I ◦ hn : SN−2 → R achieves its maximum at xn . Set
un = hn(xn) and suppose that {un}∞n=1 is a minimizing sequence for (17). We now show
Theorem 1.2 in five steps.
Step 1 c > 0.

We can assume with no loss of generality that

c ≤ I (un) ≤ c + 1, n ∈ N. (18)

Since hn ∈ � �= 0, there are qn ∈ hn(SN−2) and numbers νn as well as θn > 1 such that
qn(νn) = θn · ξ . In particular,

‖qn‖∞ > |ξ |.
Moreover, there are σn, μn and τn ∈ [σn, μn] such that:
a. qn([σn, μn]) ⊂ R

N \B |ξ |
2
(0),

b. |qn(σn)| = |qn(μn)| = 1
2 |ξ |,

c. |qn(τn)| = ‖qn‖∞

As I (un) ≥ I (qn), we obtain from (13),

c + 2 ≥ I (qn) + 1 ≥ 1

2
δ · (ϕ∗)−1

(
1

τ

)
+ αετ

with ε = 1
2 |ξ | and δ ≥ |ξ |. Hence there are M > m > 0 such that m < τ < M .

In particular, μn − σn > m for each n ∈ N. Consequently,

c = inf{I (un); n ∈ N} ≥ inf{I (qn); n ∈ N} ≥ αεm > 0.

Step 2 A minimizing sequence for (17) is bounded in E .
This is an immediate consequence of (18) and Proposition 2.7.

Step 3 {un}∞n=1 admits a nonzero weak limit Q ∈ �.
Since E is reflexive, the sequence {un}∞n=1 has a subsequence that converges weakly to

some Q ∈ E . With no loss of generality we denote this subsequence by {un}∞n=1, and assume
by Proposition 2.3 that {un}∞n=1 converges strongly in L∞

loc(R, R
N ).

It follows from Fatou’s Lemma that I (Q) ≤ c. Thus Q ∈ � by Corollary 2.6.
We now want to prove that Q �= ω0. Let h : (SN−2, �) → (�,ω0) be homotopically

nontrivial and let max(I ◦ h) < s · c for some s > 1. Consider h0 : (SN−2, �) → (�,ω0),

h0(x) =
{ ‖h(x)‖∞

δ
h(x) if ‖h(x)‖∞ ≤ δ,

h(x) if ‖h(x)‖∞ > δ,
(19)

where δ is the constant from (V∗). Obviously, h0 is homotopic to h.

If h(x) = σ and ‖σ‖∞ = δ
s then by (V∗)

I (h0(x)) =
∫ ∞

−∞

(
�

(
1

s
σ̇ (t)

)
− V

(
t,
1

s
σ(t)

))
dt ≤ 1

s
· I (h(x)) < c.

Thus, I ◦ h0 achieves its maximum at some x0 ∈ SN−2 such that ‖h0(x0)‖∞ > δ
s . Let us

note that I (h0(x)) ≤ I (h(x)) for every x ∈ SN−2.
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Consequently, we can assume that the minimizing sequence {un}∞n=1 for (17), i.e. un =
hn(xn), I (hn(xn)) < sn · c, sn > 1 and limn→∞ sn = 1, satisfies ‖hn(xn)‖∞ > δ

sn
for every

n ∈ N.

For a later step of the proof, let us slightly modify the sequence {un}∞n=1. Let γk : � → �

denote the shift γkσ(t) = σ(t+k).Since the potential V is 1-periodic one has I (γkσ) = I (σ )

for k ∈ Z. Every σ ∈ � can be shifted in such a way that its sup-norm is achieved on the
interval [0, 1]. Therefore, we can suppose that every element of the minimizing sequence
{un}∞n=1 has this property.

Since Q is the weak limit of {un}∞n=1 in E , it is also the limit in L∞
loc(R, R

N ) and thus
‖Q‖∞ ≥ δ.

Step 4 I ′(Q) = 0.
It suffices to prove that for any v ∈ C∞

0 (R, R
N ),

I ′(Q)[v] =
∫ ∞

−∞
(∇�(Q̇(t))v̇(t) − ∇Vu(t, Q(t))v(t)

)
dt = 0.

Let T > 0 be such that supp(v) ⊂ [−T , T ]. Let us recall fromStep 3 that our (P S)c sequence
{un}∞n=1 has the nonzero weak limit Q ∈ �. As the modulus function increases essentially
slower than � near infinity, the sequence {u̇n}∞n=1 converges to Q̇ strongly in L1

loc(R, R
N ).

In particular, {u̇n}∞n=1 converges to Q̇ strongly in L1([−T , T ], R
N ) and thus contains a

subsequence converging to Q̇ almost everywhere on [−T , T ]. With no loss of generality we
keep denoting this subsequence by {un}∞n=1.As∇� is continuous, the sequence {∇�(u̇n)}∞n=1
converges to ∇�(Q̇) almost everywhere on [−T , T ]. By (5), it follows that

∫

R

�∗(∇�(u̇n(t)))dt ≤ L
∫

R

�(u̇n(t))dt ≤ L I (un) ≤ L (c + 1),

where we have used (18) in the last inequality. Consequently, the sequence {∇�(u̇n)}∞n=1 is
bounded in L�∗ , and so it contains a subsequence that converges weakly to some u0 ∈ L�∗ .
By [6, Thm. 2.3], the modulus function increases essentially slower than �∗ near infinity,
and so we see that the latter sequence actually converges strongly to u0 in L1

loc(R, R
N ).

Thus it contains a subsequence converging to u0 almost everywhere on [−T , T ]. As before,
we do not change the indices of our sequence for the sake of simplicity of notation. In
summary, the sequence {∇�(u̇n)}∞n=1 converges to ∇�(Q̇) almost everywhere on [−T , T ]
and it also converges to u0 almost everywhere on [−T , T ]. Consequently, ∇�(Q̇) = u0

almost everywhere on [−T , T ]. As u0 is the weak limit of {∇�(u̇n)}∞n=1 in L�∗ , we obtain
∫

R

v̇(t)∇�(u̇n(t)) dt
n→∞−−−→

∫

R

v̇(t)u0(t) dt =
∫ T

−T
v̇(t)u0(t) dt

=
∫ T

−T
v̇(t)∇�(Q̇(t)) dt =

∫

R

v̇(t)∇�(Q̇(t)) dt, (20)

where we have used that supp(v̇) ⊂ supp(v) ⊂ [−T , T ]. Moreover, as {un}∞n=1 converges to
Q strongly in L∞

loc(R, R
N ) (see beginning of Step 3), we have

∫

R

v(t)∇Vu(t, un(t)) dt

=
∫ T

−T
v(t)∇Vu(t, un(t)) dt

n→∞−−−→
∫ T

−T
v(t)∇Vu(t, Q(t)) dt

=
∫

R

v(t)∇Vu(t, Q(t)) dt . (21)
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Finally, we obtain from (20) and (21)

I ′(Q)[v] =
∫

R

(∇�(Q̇(t))v̇(t) − ∇Vu(t, Q(t))v(t)) dt

= lim
n→∞

∫

R

(∇�(u̇n(t))v̇(t) − ∇Vu(t, un(t))v(t)) dt

= lim
n→∞ I ′(un)[v] = 0,

where we have used in the last equality that {un}∞n=1 is a (P S)c sequence.
Step 5 Q̇(t) → 0, t → ±∞.
In this final step of our proof we show that Q is homoclinic to 0, i.e. Q̇(t) → 0 as t → ±∞.
Note that we have already shown that Q(t) → 0 as t → ±∞ since Q ∈ � by Step 3. To see
that the derivatives have the right limiting behaviour as well, we set for t ∈ R

x(t) := ∇�(Q̇(t)).

Note that x is continuously differentiable, as its weak derivative is the continuous map
−∇u V (t, Q(t)), and

ẋ(t) = d

dt
(∇�(Q̇(t))) = −∇u V (t, Q(t)) → 0, t → ±∞. (22)

In what follows we only consider the case t → ∞ as the necessary modifications for the
other limit are obvious. Let ε > 0 be given and let δ1 > 0 be such that if �∗(v) < δ1 for
v ∈ R

N , then |v| < ε. Let us note that the existence of δ1 follows from the convexity of �∗
and is a simple exercise in analysis. By (22), there is R1 > 0 such that

|ẋ(t)| < ε, t ≥ R1. (23)

As x = ∇�(Q̇) ∈ L�∗ (see Step 4),
∫

R

�∗(x(t)) dt < ∞

and so there is R2 > 0 such that
∫ +∞

R2

�∗(x(t)) dt < δ1. (24)

We now set R := max{R1, R2} and let t > R. For R > R such that t ∈ [R, R + 1] we have
by (24)

∫ R+1

R
�∗(x(s)) ds < δ1.

Consequently, by the Mean Value Theorem there is some t0 ∈ [R, R + 1] such that
�∗(x(t0)) < δ1 and so |x(t0)| < ε by our choice of δ1. We obtain from (23)

|x(t) − x(t0)| =
∣∣∣∣

∫ t

t0
ẋ(s) ds

∣∣∣∣ ≤
∫ R+1

R
|ẋ(s)| ds < ε

and so

|x(t)| < |x(t0)| + ε < 2ε.
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In summary, we have shown that for every ε > 0 there is some R > 0 such that |x(t)| < 2ε
for t ≥ R. Consequently, x(t) → 0 as t → +∞, which in turn implies that Q̇(t) → 0 as
t → +∞ since 0 is the only critical point of � and limx→∞ |∇�(x)| = 0.

4 Final remarks

The Gordon type condition (V4) in Theorem 1.2 excludes gravitational potentials. Unfor-
tunately, it is crucial for our argument as it gives a sufficient condition for the existence of
nontrivial homotopy groups of the loop space � ⊂ E . Analogously to the winding number
considered by Rabinowitz for N = 2 (see e.g. [23]), elements of nontrivial homotopy groups
are essential for definingminimax values of the action integral I for N ≥ 3. It is an interesting
open problem if other methods might yield Theorem 1.2 under a weaker assumption than
(V4) to include gravitational potentials.

A further interesting problem related to our work is the existence of multibump solu-
tions for (L S). These are solutions near sums of sufficiently separated translates of a basic
homoclinic solution, which exists for (L S) by our Theorem 1.2. The only results for singular
Hamiltonians we are aware of concern the case N = 2 (see [24,25] and references therein).
It is an interesting question whether a similar approach also works in higher dimensions and
Orlicz-Sobolev spaces, which we shall address in a future publication.

We conclude our work by explaining the regularity of solutions of (L S) in case that � is
strictly convex. Let us first recall that the map x(t) = ∇�(Q̇(t)) in Step 5 is continuously
differentiable. It follows fromCorollary 4.1.3 and the formula (0.2) in Section E of [13] that, if
� is strictly convex, then ∇� : R

N → R
N is invertible and its inverse map (∇�)−1 = ∇�∗

is continuous. Thus Q̇(t) = ∇�∗(x(t)) is continuous and so our solution Q is continuously
differentiable. Moreover, if in addition ∇�∗ is C1, then Q̇ is a composition of C1 maps and
consequently Q is C2, i.e., a classical solution. Finally, let us point out that these additional
assumptions are in particular satisfied for �(x) = |x |p

p , 1 < p ≤ 2, as in this case �∗(x) =
|x |q

q for 1
p + 1

q = 1, so that q ≥ 2.
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