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ABSTRACT Illegal, Unreported, and Unregulated fishing is a major threat to human food supply and
marine ecosystem health. Not only is it a cause of significant economic loss but also its effects have
serious long-term environmental implications, such as overfishing and ocean pollution. The beginning of
the fight against this problem dates since the early 2000s. From that time, a number of approaches and
methods have been developed and reported. A key role in this topic is played by machine learning algorithms
which exploit data provided by classical and high-tech sensors, devices and systems such as for example:
CCTV, on-board cameras placed on autonomous vehicles, Global Positioning Systems, radars, Automatic
Identification Systems, Vessel Monitoring Systems, or Coastal Surveillance Systems. The main objective of
this paper is to provide the reader with knowledge about the scale of this phenomenon, methods to tackle the
issue, and the current state of research on the subject. This has been achieved through a review of existing
approaches that deal with these harmful phenomena by using dedicated artificial intelligence and machine
learning tools, as well as the accompanying equipment and devices. In addition, flaws and gaps in current
methods, and future directions are disscussed.

INDEX TERMS Artificial intelligence, autonomous systems, boat tracking, ghost fishing, intelligent
vehicles, IUU, machine learning.

ACRONYMS
AAV – Autonomous Aerial Vehicle.
AI – Artificial Intelligence.
AIS – Automatic Identification System.
ALDFG – Abandoned, Lost or otherwise Discarded Fishing
Gear.
ANN – Artificial Neural Network.
ASV – Autonomous Surface Vehicle.
AUV – Autonomous Unmanned Vehicle.
Buscamos – The proper name of an autonomous boat devel-
oped by the DAyRA (División de Automatizacióny Robótica
Autónoma) group at the Technical University of Cartagena
(UPCT).
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CCTV – Closed Circuit TeleVision.
CE – Centroid Encoder.
CNN – Convolutional Neural Network.
COCO – Common Objects in COntext, benchmark dataset
for deep learning.
CSR – Coastal Surveillance Radar.
CSS – Coastal Surveillance System.
DBSCAN – Density-Based Spatial Clustering of Applica-
tions with Noise.
DL – Deep Learning.
DNN – Deep Neural Network.
DR – Dimensional Reduction.
DTW – Dynamic Time Warping.
FAST – Features from Accelerated Segment Test.
FCN – Fully Convolutional Network.
FLS – Forward Looking Sonar.
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FMC – Fisheries Monitoring Center.
GAN – Generative Adversarial Network.
GMM – Gaussian Mixture Model.
GNN – Global Nearest Neighbour.
GPS – Global Positioning System.
GvMMM – Gaussian-Von Mises Mixture Model.
IUU – Illegal, Unreported and Unregulated.
K-NN – K-Nearest Neighbours.
mAP – Mean Average Precision.
ML – Machine Learning.
MLP – Multilayer Perceptron.
MRF – Multiple Receptive Field.
MSER – Maximally Stable External Regions.
OCR – Optical Character Recognition.
R-CNN – Region Based Convolutional Neural Network.
ResNet – Residual Neural Network.
RF – Random Forest.
ROI – Region of Interest.
RUSBoost – Random Undersampling Boosting.
SAR – Synthetic Aperture Radar.
SIFT – Scale-Invariant Feature Transform.
SSD – Single Shot MultiBox Detector.
SVM – Support Vector Machine.
UAV – Unmanned Aerial Vehicle.
U-Net – CNN architecture that was developed for biomedical
image segmentation.
USV – Unmanned Surface Vehicle.
UUV – Unmanned Underwater Vehicle.
VMS – Vessel Monitoring System.
YOLO – You Only Look Once, convolutional neural network
architecture.

I. INTRODUCTION
Because of investment and logistical difficulties, fishing is
a business of slow technological progress. Managing fish-
eries to achieve the expected profits on the one hand, and
to ensure long-term and sustainable development of fisheries
while caring for the surrounding environment on the other
is a complex, difficult, and challenging task. Due to signif-
icant global population growth, the demand for fish protein
continues to increase, but the current number of global fish
stocks is running low and is unable to provide the maximum
sustainable yield [1], [2], [3], [4]. In the future, ensuring food
security could be a major problem [5], [6], [7]. Fishing should
not be treated as an ‘‘ordinary’’ business, because, if not man-
aged properly and without adequate oversight by dedicated
government and intergovernmental bodies, depletion of fish
stocks can become irreversible. The sources of the problems
go beyond the pure management layer, as they include, for
instance, the treatment of fishing communities, who are often
disenfranchised, poorly organized and lacking a voice in the
policy process [8]. This leads to the search for alternative
ways of earning money, often illegal and not complying with
the accepted rules, but cheaper and quicker to profit. Non-
compliant activities increase long-term environmental and
economic risks.

FIGURE 1. IUU fishing examples (based on [10]). 1. Vessel with dual or
false flags; 2. Unlicensed border hopping; 3. Fishing non-permitted
species; 4. Fishing out of season; 5. Fishing in prohibited area or without
license; 6. Fishing with illegal gear or above quota.

The above problems often lead to the so called Illegal,
Unreported and Unregulated fishing (IUU fishing). The prob-
lem was first described and presented in the report by the
Food and Agriculture Organization of the United Nations in
2001 [9]. Figure 1 shows typical examples of behaviour char-
acteristic for IUU fishing. They include, but are not limited
to, having a double or false flagged vessel, unlicensed border
crossing, fishing with illegal gear, fishing out of season,
fishing above quota, and fishing in prohibited areas or without
the license.

To fully understand what IUU fishing means, it is neces-
sary to look at its definition. Fishing is illegal when it takes
place in the territorial waters of a country without a permit,
or in a manner that violates laws, regulations, and restrictions
on environmental protection and regional fisheries policy.
Unreported means that it has not been duly reported to the
relevant legal authority in charge of fisheries regulation.
Whereas, unregulated is the term used to describe activi-
ties carried out in the area of the relevant regional fisheries
management organisation by vessels without an authorised
registration to fish or engaged in improper fishing activities.

IUU fishing is a major threat to human food supply [11],
marine ecosystem health, and geopolitical stability. It has a
major impact on the economy. These days, it is estimated
that IUU fishing accounts for approximately 14–33% of the
global catch. Annually, illegal fishing generates 15.5 billion
USD to 36.4 billion USD in illicit profits [12]. Moreover, it is
often connected to trans-national crimes, including human
rights abuse, bonded labour, tax evasion, piracy, drug, arms,
and human trafficking. IUU fishing also exacerbates the
effect of climate change on ocean resources. One of the
consequences of increased IUU levels is ghost fishing. Ghost
fishing is a term that refers to Abandoned, Lost or otherwise
Discarded Fishing Gear (ALDFG) that is still in the water and
is causing death of aquatic organisms without human control.

The accidental loss of some fishing gear is unavoidable, for
example due to extreme weather conditions during fishing.
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FIGURE 2. Examples of ghost nets. The first and second rows show
animals such as fish and turtles entangled in nets. The third and fourth
rows show an abandoned trap, nets entwining coral reefs, and the beach
being polluted with fishing nets.

Nevertheless, part of the gear is discarded on purpose and
part is abandoned when it is possible to recover it, due to
the pressure on fishermen to abandon gear as a form of
avoiding responsibility by disposing of evidence of illegal
activity (e.g. illegal fishing or illegal gear) [13]. Estimated
640,000 tonnes of fishing gear are left in oceans each year,
thus resulting in the so-called ghost gear [14]. The World
Conservation Organization estimates that entanglement in
fishing gear causes the deaths of at least 136,000 seals, sea
lions, and large whales each year. An inestimable number of
birds, turtles, fish, and other species are injured and killed
as well. Moreover, in parallel to causing animal deaths, nets
made of synthetic materials contribute to the pollution of the
oceans. In a business-as-usual scenario, the ocean is expected
to contain more plastics than fish (by weight) by 2050 [15].
Figure 2 shows examples of abandoned or lost fishing gear
that entangles wildlife, destroys coral reefs or pollutes the
water.

IUU fishing is not only a cause of significant economic
loss but its effects have serious long-term environmental
implications, such as overfishing and ocean pollution.

The regulations established by fisherymanagement author-
ities balance the exploitation with the natural process of stock
recovery [9], [16], [17]. The implementation of permanent
or seasonal fishing prohibitions is related to the presence of

various protected fish species or the need to restrict fishing
to ensure population growth during hunting seasons. Fortu-
nately, the disadvantage of these regulations is that they are
associated with lower financial income for fishers and fishing
companies. However, there is a solution to this drawback.
Many nations can recover their fisheries while avoiding sub-
stantial short-term reduction costs by sharply addressing IUU
fishing [18]. This can accelerate fishery recovery, often at
little or no cost to local economies or food provision.

The fight against IUUfishing has been an ongoing one. The
beginnings of taking the problem seriously can be traced back
to 2001, when the International Plan of Action (IPOA) on
IUU Fishing was established [9]. An important milestone in
this fight was the formation in 2016, of Global FishingWatch
(GFW) [19], [20] by Google in partnership with Oceana and
SkyTruth. With the progress of technology, more and more
effective tools are developed every year to fight IUU fishing.

Unfortunately, fishermen operating illegally are constantly
improving their ways of violating and circumventing laws
and restrictions. There is a never-ending race to see who
will be more effective, in the short and long term. That is
why in recent years an increasing use of Artificial Intelli-
gence (AI) and Machine Learning (ML) tools engaged in
the battle against IUU fishing has been witnessed. Many
researchers [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33] have shown that such tools, when com-
bined with classic and modern devices such as CCTV, drones,
autonomous vehicles, etc., can be extremely effective and
can make a significant contribution to reducing its scale and
consequences. The mentioned research works are described
in more detail later in Section 3 of this paper.

The main objective of this paper is to review the exist-
ing approaches to deal with these harmful phenomena using
dedicated AI and ML tools as well as the accompanying
equipment and devices. The paper will indicate different
approaches to the problem, describe the technologies used,
and provide a description of IUU fishing and its conse-
quences. All this, will allow the reader to gain an understand-
ing of the scale of this phenomenon, methods to tackle it, and
the current state of research on the subject. Finally, on the
basis of the collected knowledge, the most important direc-
tions of further developmentwill be presented, and the current
difficulties occurring in the technological fight against IUU
will be indicated.

Data was collected from the following academic digital
databases: ArXiv, IEEE, Google Scholar, Scopus. All studies
written in English, regardless of the publication status (peer-
reviewed or published articles), were included in this review.
Studies were identified by the keywords: IUU, ghost fish-
ing, boat tracking, machine learning, artificial intelligence,
autonomous systems. Then, each study was screened for
content relevance. A total of 17 articles were collected and
discussed.

The remainder of this paper is organized as follows.
In Section II the basics of equipment, systems and algorithms
used for detecting IUU fishing are described. Section III

VOLUME 10, 2022 112541

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


K. Zuzanna et al.: How High-Tech Solutions Support the Fight Against IUU and Ghost Fishing: A Review

presents selected applications using modern methods dealing
with the phenomenon and its consequences. The discussion
is presented in Section IV, while the last Section V concludes
the paper.

II. DESCRIPTION OF EQUIPMENT, SYSTEMS AND
ALGORITHMS USED FOR DETECTING IUU FISHING
To be able to achieve the desired goal, a skillful combi-
nation of sensors, devices, supporting systems, data, and
algorithms, and an appropriate analysis of their results is
essential. This section provides an overview of elements
used as a data source in systems described in Section 3.
The systems used to prevent IUU fishing are typically based
on satellite, visual (CCTV, or on-board cameras placed on
autonomous vehicles), and/or radar systems which provide
a great amount of data. At the same time, hundreds of
thousands of vessels are transmitting their positions, speeds,
and other information around the world. The video sys-
tems deliver thousands of hours of footage. The amount of
data delivered is almost uncountable, which is referred to
as the so-called Big Data problem. A real time analysis of
the data with acceptable speed is impossible for humans
without supporting systems. There are many advanced algo-
rithms of data processing and analysis for example AI based
algorithms that may be used to process data efficiently and
effectively. AI is ideally suited for finding patterns in the
maze of data. Such algorithms can be useful, for instance,
in detecting illegal activities based on satellite data. Combin-
ing them with autonomous systems provides a new capability
to detect IUU fishing vessels and ghost nets without human
intervention.

This section covers three issues. The first one describes
the basic types of autonomous units that provide installation
platforms for sensors. The second one is about surveillance
systems that provide data ranging from location time series to
images. The third one deals with algorithms that process large
amounts of data obtained with the aforementioned sensors
and systems.

A. EQUIPMENT
Unmanned Aerial Vehicles (UAVs) are small unmanned
aircrafts commonly known as drones (Figure 3), which
are capable of performing tasks under remote control or
autonomously. Highly advanced crafts which do not require
an operator are called Autonomous Aerial Vehicles (AAVs).
They have recently become advanced and affordable, making
a large-scale impact on various business and scientific activ-
ities. Drones are used for a variety of purposes, for example
in coastline patrolling tasks [34], [35] or detecting litter on
beaches [36], and their utility can be easily extended to IUU
fishing prevention, for example, they can help to quickly
reach the locations of IUU fishing or illegal or abandoned
fishing gear.
Unmanned Surface Vehicles (USVs) are generally small

surface vessels equipped with precision sensors, which are
able to make autonomous decisions and move without human

FIGURE 3. UAV example, Japanese P8 maritime patrol aircraft for security
and surveillance [37].

FIGURE 4. USV AutoNaut [38].

crew (Figures 4 and 5). Compared to conventional manned
vessels, they are able to carry out missions for longer peri-
ods of time without endangering personnel. USVs are often
equipped with solar panels to significantly increase their
operational range while also using renewable energy sources.
The development of autonomous systems of such vessels
makes them more and more used. USVs are used, for exam-
ple, for detecting and tracking the movement of ships within
a defined area, or on a designated patrol route. Current solu-
tions are rather in the experimental and testing phase. The
literature also recognises the notation Autonomous Surface
Vehicle (ASV) to highlight autonomous capabilities of the
vehicle.
Unmanned Underwater Vehicles (UUV) are typi-

cally small, manoeuvrable, unmanned underwater robots
(Figure 6). Fully autonomous vessels are sometimes referred
to as Autonomous Underwater Vehicles (AUVs) to underline
the absence of human operators. Sometimes UUVs are con-
trolled remotely or their activities are constantly supervised
by a human operator. Such vessels are most commonly used
for monitoring the seabed. They are equippedwith algorithms
for detecting and hence avoiding abandoned or lost fishing
gear. Such algorithms can be easily adopted for preventing
ghost fishing.
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FIGURE 5. USV Buscamos [39].

FIGURE 6. UUV example [28].

B. SUPPORTING SYSTEMS
Automatic Identification System (AIS) is a system that pro-
vides automatic communication and data transfer between
ships for collision avoidance and identification purposes.
Such systems were developed and implemented in the early
2000’s. The AIS enables continuous data transmission on a
vessel’s identity, position, speed and course, along with other
relevant information to all other AIS equipped vessels within
range. According to the International Maritime Organization
guidelines - Resolution A.917(22) [40], AIS should be active
whenever the ship is underway or at anchor. The detection of
a vessel with AIS off is the first indication of possible illegal
activity.
Vessel Monitoring System (VMS) is a system that monitors

the location and movement of fishing vessels. It operates
on the basis of satellite surveillance - the Global Position-
ing System (GPS) - and on-board transceivers. Unlike AIS,
VMS is restricted to government regulators or other fish-
eries authorities. VMS is integrated with land-based national
centres - Fisheries Monitoring Centres (FMCs). In addition,
VMS can be used for search, rescue, and maritime safety
purposes.

The data registered by these systems allows specialists to
use them in the prevention of IUU fishing. Readers interested
in a detailed comparison of the advantages and disadvantages
of AIS and VMS are referred to [43].
Coastal Surveillance System (CSS) consists of video

systems using CCTV and long range cameras in ports
and harbours, and maritime radar systems such as Costal

Surveillance Radar (CSR). These tools support the security
services by detecting vessels within their range in a real
time. These systems provide basic information on the move-
ments of vessels in territorial waters and exclusive economic
zones.

C. ALGORITHMS FOR DATA ANALYSIS
The sensors placed on autonomous units from Section II-A
and the systems described in Section II-B provide vast
amounts of different data, ranging from location time series to
images. The aim is to find a way to process this data in order
to, for example, find patterns or detect anomalies. Many dif-
ferent types of algorithms are used for this purpose, but since
this problem is a Big Data problem, ML especially Deep
Learning (DL) algorithms are the ones that perform most
effectively. ML is a field of artificial intelligence focused
on algorithms that improve themselves automatically through
data exposure. It draws from general computer science
methods such as data mining, statistics, pattern recognition,
neural networks, and cognitive science. Most commonly, the
subsequent steps of ML system operation include: data pre-
processing, data fusion, feature extraction, model selection,
model training, and prediction.

There are many methods of data preprocessing, and listing
them is beyond the scope of this article. Nevertheless, it is
one of the most important steps which determines the quality
and effectiveness of further algorithms. The most important
elements considered in preprocessing are: data cleaning, data
transformation, and data reduction.

As mentioned, the IUU fishing is detected based on
analysing data of different types (signals, images, tabular
data) received from many different sources (e.g. CCTV,
AIS, VMS, CSR). In this case, it is often necessary to
use data fusion methods. There are number of definitions
of data fusion, one of the most accepted by scientists
is that provided by the Joint Directors of Laboratories
(JDL), which says that data fusion is a multi-level pro-
cess dealing with the association, correlation, combination
of data and information from single and multiple sources
to achieve refined position, identify estimates and com-
plete and timely assessments of situations, threats and their
significance [45].

After proper processing and skillful combination of data
from different sources, the data can be analysed to find the
searched relationships. The most common tasks are: cluster-
ing, classification, detection, and segmentation.
Data clustering is the task of grouping a set of samples in

such a way that those in the same group (called a cluster) are
more similar (in some sense) to each other than to samples in
other groups (clusters). Examples of clustering methods are
k-means [43], hierarchical [44] or DBSCAN [45].
Classification is the process by which input samples are

assigned a specific category (class). There are many methods
of classification. The basic ones are K-NN [46] and SVM
[47], as well as those based on neural networks, either classi-
cal [48] or deep neural networks [49], [50], [51].
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Object detection is defined as localization of an
Axis-Aligned Bounding Box (AABB) and classification -
assignment of a label. Nowadays, the most state-of-the-art
algorithms used in this field are those based on deep neural
networks [52] due the fact that they significantly outper-
form the classical ones. The most common architectures
among them are SSD [53], YOLO [54], [55], [56], R-CNN
[57], and its successors such as Fast R-CNN [58] or Faster
R-CNN [59].
Segmentation is the process of assigning a label to every

pixel in an image in such a way that the pixels with the
same label share certain characteristics. Again, the field has
been dominated by algorithms based on deep learning. Here,
Mask R-CNN [60], being an extension of Faster R-CNN, or
U-NET architecture [61], were introduced. Optical Character
Recognition (OCR) is an example of the use of segmentation.

The differences between these tasks are depicted in
Figure 7, using the analysis of the image showing a fishing
gear as an example.

These algorithms can find patterns in the data (clustering
and classification), detect anomalies (clustering and classifi-
cation), perform image processing (all 4 algorithms), track
objects (detection and segmentation), group objects (cluster-
ing), and more. Due to the variety of ML approaches, tools,
and algorithms that can be used in this topic, a thorough
characterization of them is beyond the scope of this review.
The readers interested in the details of machine learning
solutions are referred to review papers from dedicated areas
[62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72],
[73].

III. OVERVIEW OF MOST RELEVANT APPROACHES
AGAINST IUU FISHING AND ITS IMPLICATIONS
Effective prevention of IUU requires the surveillance and
tracking of fishing boats. This can be achieved mainly by
analysing historical data related to vessel trajectory and
timing of operations, and by monitoring entry and exit
from harbours and ports. The systems that monitor fishing
activities can catch incorrect behaviour, anomalies, and/or
inconsistencies in the data recorded by tracking systems,
which will imply suspicious activity or intentional deception
of the system. The overview was divided into three sections:
(III-A) boat tracking approaches related to the analysis and
verification of data containing the information on vessel trips
and fishing activities; (III-B) ghost fishing approaches related
to the removal of nets and their prevention through damage
detection; and (III-C) autonomous systems on which the
algorithms presented in the following subsections may be
implemented.

A. BOAT TRACKING
One of the ways to detect illegal fishing is to utilize AIS
data and compare it with radar or satellite data. All legally
moving vessels conducting fishing should be visible in the
AIS. Recognising whether the fishing is carried out according
to regulated, authorised methods is a more difficult task.

FIGURE 7. Classification, detection and segmentation of fishing gear.

In this section, the reader is introduced to the issues of port
monitoring and AIS/VMS data in cooperation with advanced
intelligent systems. The surface vehicle surveillance equip-
ment is shown in 8. The satellite and radar data (1, 2, and
3) provide historical and real-time positions of vessels fish-
ing and moving in the area specified; satellite imagery (4)
provides images to verify the position of the fishing vessels;
the vision systems (5) provide information on vessel plate
numbers, as well as the start and end times of trips. Illegal
activity can be detected through appropriate data fusion, pre-
processing, tracking data analysis, pattern recognition, etc.
Many ideas and approaches to these problems can be found
in the literature [21], [22], [23], [24], [25].

The papers described in this section refer to different types
of fishing gear. Figure 9 presents conceptually selected exam-
ples of different types of fishing gear, while the rest of the
article discusses different approaches of the researchers to
this topic.

An interesting approach to analysing IAS data to identify
the type of fishing by surface vessels is provided in [21]. The
aim of the authors was to recognize four types of fishing gear
(Purse seine, Trawl, Longline and Fixed gear). To achieve
this, they proposed a system based on the Supervised Autoen-
coder Dimensional Reduction (SA-DR) algorithm and the
IAS data set called the ’’Anonymized AIS training data’’
obtained from the Global Fishing Watch platform. The paper
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FIGURE 8. Examples of boat tracking systems. 1. Fisheries monitoring
centres; 2. Coastal radars; 3. AIS/VMS satellites; 4. SAR satellites; 5. CCTV
harbour monitoring.

FIGURE 9. Fishing gear types. 1. Bottom trawl; 2. Purse seine; 3. Gillnet; 4.
Longline.

describes the application of known DR methods called IVIS
and CE to obtain data in two-dimensional space. The authors
then present the results of fishing gear recognition using
four classification methods: K-Nearest Neighbors (K-NNs),
Naive Bayes (NB), Linear Support VectorMachine (L-SVM),
and Radial Basis Function SVM (RBF-SVM). By using
classification for reduced dimensional data, an accuracy of
about 95% was obtained for all classification methods used.
In addition, the authors make all the data and code used
in the paper publicly available. In the future, the proposed
approach is expected to use such data on trajectory, posi-
tion, and travel times of fishing boats recorded using AIS
and VMS, and then to recognize the fishing gear, thus
facilitating the identification of the fishing method. The
authors point out the need for future research into automat-
ing the preprocessing data stage of the presented solution,
so that it can be used for real-time analysis of AIS or VMS
data.

Another approach to the analysis of fishing vessels’ routes
was presented in [22]. The authors analysed the fishing

FIGURE 10. Recognition of a single route [22].

vessels’ routes presented as GPS data obtained through VMS
and AIS systems. In their solution, they utilized the Knowl-
edge Discovery in Databases (KDD) method to extract single
routes and points of interest (i.e. points where fishing was
potentially carried out). The analysis took into account the
trajectory, time, and speed of vehicles. Four types of fishing
activities were recognised (Purse seine, Trawl, Longline and
Reefer). The authors managed to collect data of 771 fishing
trips for Thai fishing vessels using four types of fishing gear.
The recognition of a single route (Figure 10) was achieved
through the DBSCAN algorithm [45]. Then, using K-NN
with Dynamic Time Warping (DTW), route fragments were
obtained and labelled as fishing, non-fishing, and transship-
ment activities. Next, the data was used as additional input
nodeswhich, together with the statistical characteristics of the
individual route, were processed by a Multilayer Perceptron
(MLP). By using an additional processing layer that recog-
nised activity areas, the authorswere able to achieve over 97%
efficiency for Trawl, Longline, and Reefer, and 90% for Purse
seine.

Another solution for tracking fishing vessels is presented in
[74]. The authors focus on identifying fishing activity using
theGaussianMixtureModel (GMM) combinedwith Random
Forest (RF) and SVM methods. The analyses presented are
based on vehicle speeds and courses provided by the VMS.
The authors propose a two-stage approach, which in the first
phase uses unsupervised learning (GMM) to identify com-
mon features of groups of data. Then the classification of one
of the four types of fishing gear (Purse seine, Trawl, Longline,
Pole and line) is applied with the advantage of supervised
learning using RF and SVM. The method proposed by the
authors of [74] allowed to obtain about 95% efficiency for
Trawl, Pole and line, and Purse-seine recognition, and about
89% for Longline. Further research and comparison of the
solution proposed in 2015 with the Gaussian-VonMisesMix-
ture Model (GvMMM) method are presented in [75].

Analysing vessel trajectories through GPS data is not the
only way to track fishing activity. The authors of [23] pre-
sented the use of video systems including CCTV cameras
located in ports to recognise and record numbers and names
identifying vessels. In addition to presenting a solution for
detecting and recognising the plates, the authors draw atten-
tion to the problem resulting from missing standards on
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plate number labels (skewness, different font size and use
of non-contrasting colours). The solution described by the
authors consists of three steps: vessel detection, highlighting
the Region of Interest (ROI), and OCR plate recognition and
extraction. The authors use well-known tools available in
OpenCV and MATLAB.

The analysis of motion trajectories and the behaviour of
fishing vessels from North American coastal waters is pre-
sented in [24]. The authors use AIS data from five years,
2010 to 2014. In total, 250,000 trips of almost 800 vessels
were extracted. The data analysis was performed by cluster-
ing using the DBSCANmethod. The aim of the researchwork
was to detect anomalies in the pattern of ship motion, repre-
sented as a trajectory with specific start and end points, such
as ports and/or known anchorages. In their work, the authors
also introduced a ranking system, allowing for long-term
analysis of suspicious behaviour of selected vessels. This
made it possible to track the frequency of potentially illegal
activities, not just detect them. The authors point out that fish-
ing activity is usually carried out as a trip, so appropriate data
clustering should identify strong patterns within similar trips.
The analysis distinguishes between two types of anomalies:
global and local, so that the detection of suspicious behaviour
takes into account the deviation from the pattern as well as
anomalies within a given trip. The authors indicate that the
aim of their further work on the algorithm and data analysis
is to use VMS data.

A different way of suspicious vessel activity detection is
presented in [25], where the authors use data from AIS and
satellite (Sentinel-1A and ICEYE-X2), in particular from
English Channel and Solent. The key feature of the presented
solution is the use of correlation and matching of the data
available in AIS with that recorded by the spaceborne Syn-
thetic Aperture Radar (SAR). In addition, it allows detection
of ships carrying out trips with completely or periodically
turned off AIS, which increases the traceability compared to
previously described works that relied mostly on anomaly
detection of AIS data. The pipeline of the system is very
complex. To gather adequate quantity and quality of data,
the authors used the idea of data fusion. Then, they applied
transfer learning to initialize the model parameters. Finally,
the vessels captured in the SAR images were identified. The
results of classification were compared with the AIS traffic
records to check the consistency of positions between data
from two independent sources.

Additionally, the Random Undersampling Boosting
(RUSBoost) [76] algorithm was employed to classify the six
vessel types. Themodel was first trained onAIS data and then
transferred to make predictions on SAR ship detections. The
authors mention the use of such methods as Global Nearest
Neighbour (GNN) and the Jonker-Volgenant algorithm [77].
Presented results show a high level of compliance and there-
fore confirm the usefulness of the model in detecting surface
vessels performing suspicious activities.

Another solution for fishing activity surveillance is the
detection and location of vessels carrying out fishing, with

FIGURE 11. Ghost fishing cycle. 1. Loss or abandonment of fishing gear;
2. Reef degradation and fish kills; 3. Wildlife killed by nets drifting into
open water; 4. Nets sinking to the seabed weighted down with dead
wildlife; 5. Nets rising to the surface due to weight loss; 6. Breaking the
cycle by human intervention.

subsequent classification of the hull plate, presented in [26].
The solution uses computer vision systems placed on a
remote-controlled UAV patrolling the area. The tasks of
detection and localization is performed using deep convo-
lutional neural networks. This method assumes the use of a
database containing hull plates of legal surface vessels. The
text recognition is realised by means of OCR, similarly as in
[23]. The text recognised on the side of the analysed vessel
is compared with the database, looking for a match. The lack
of hull plate in the database suggests illegal fishing. Image
feature extraction is performed using the Scale-Invariant Fea-
ture Transform (SIFT), and matching is performed using
K-NN. The system presented by the authors is designed
for real-time operation, as opposed to the aforementioned
solutions.

B. GHOST FISHING
The increased level of IUU fishing correlates with the higher
level of ghost fishing within the area. Figure 11 shows
a deadly ghost fishing cycle that can be broken only by
human intervention. Ghost fishing has detrimental impacts on
fish stocks and potential unfavourable effects on endangered
species and benthic environments. ALDFG may entangle
and lead to the deaths of larger marine animals and sea
birds, transport invasive alien species, and disturb spawning
grounds and smother habitats, thereby serving as major haz-
ards and a long-term threat in marine environments. Further-
more, synthetic nets are transformed into microplastics as a
result of degradation. ALDFG also results in both economic
and social costs that can be significant. For this reason,
ALDFG, which is a growing global problem, is drawing
significant attention [12], [78].

Various ways have been invented to deal with the ghost
fishing problem and break the mentioned cycle. These
include using biodegradable nets, ensuring that the equipment
contains features such as lights, beacons, or owner tags that
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reduce the chance of being lost, designing gear to minimise
fishing effectiveness after a short period of no maintenance,
and creating a map of lost gear [79], [80], [81].

Another effective way to deal with ghost fishing is using
artificial intelligence-based solutions in order to prevent gear
loss by early defect detection [27], or to recognize ALDFGs
by UAVs [82], underwater cameras and UUVs [28], [29],
[30], sonars [31], [32] or laser scanning systems [33].

In [27], an automatic gillnet monitoring system was devel-
oped using an ANN-basedmachine learning systemwith data
generated from simulations under different environmental
conditions. The purpose of that study was to detect the initial
failure of the gillnet so that the fishermen could collect it
before progressive failure occurs. To learn and validate the
system, the authors employed the training data consisting of
nine sea states with three significant wave heights and three
peak periods, as well as the test data consisting of two sea
states, different from those used in the training data. The
experiments included 23 gillnet states, i.e., the intact state
and 22 damaged states. In order to detect net damage, the
authors proposed a model based on artificial neural network.
The ANN consisting of 2 hidden layers was trained in a
supervised manner. To update weights and biases, the scaled
conjugate gradient method was used. A total of 17 inputs
were selected, namely, wave heights, peak periods, x-y-z
accelerations at four locations, and x-y-z displacements of the
location-buoy centre. There were 23 outputs nodes, one for
each gillnet state. Output 1 marked a damaged net, whereas
output 0 indicated an intact net. The node number with the
largest prediction value among these 23 nodes became the
predicted damage indicator. The number of hidden neurons
that gave the best results was 180 in each layer. The best
prediction accuracy was 99.5% and 91.1% for training and
test cases, respectively. Additionally, after attaching a median
filter, the prediction accuracy increased to 99.7% and 96.0%.
The results presented in [27] have shown that such a sys-
tem may be successfully applied. By early detecting fishing
gear damage, it is possible to counteract net loss and the
resulting ALDFG.

In [82], the authors focus on drone-based prevention of
crab trapping in an estuary in New South Wales (Australia).
The experiment utilized a quadcopter drone with inbuilt cam-
era sensor. A series of flights were performed to gather the
training data. During each flight, the pilot manually searched
for and identified traps. The human effort and the amount of
financial cost necessary to process the video-derived ghost
net data are significant. Therefore, there is a need for devel-
oping automated and more cost-effective methods to reduce
them. IUU often targets crab species found in estuarine habi-
tats due to a financially profitable sale, the species being an
easily accessible resource, and because of little investment
in fishing gear needed in harvest. To the best of the authors’
of this paper knowledge, there are no solutions in use that
automate detection of crab traps or ghost nets by drones. The
automation of the drone-based process to counter ghost fish-
ing should be pursued. There aremany studies (e.g. [83], [84],

[85], [86], [87]) confirming the effectiveness of small object
detection usingUAV-based imagery andDeep Learning (DL).

In [28], the authors designed an underwater agent vehicle
system that combines small agent AUVs and a large main
AUV. The ghost net recovery algorithm that can automatically
detect, grip, and lift ghost nets was implemented. In order
to detect ghost nets, the DNN called tiny-YOLOv3 [55] was
applied. The network was trained with 800 net images. After
the training, the vehicle was able to detect ghost nets in real
time. Unfortunately, more details related to the model were
not provided by the authors.

Another system that uses underwater images to detect
ghost nets was proposed in [29]. The authors focused on a
sea debris detection. Their model identifies three types of
marine litter: artificial, natural, and plastic which consists of
e.g. plastic bottles, plastic bags, bamboo and fishing nets.
The system is based on DNN called Inception [88]. As a
backbone net, the system utilizes ResNetV2 with weights
pre-trained on the ImageNet dataset. The fully connected
layer head was removed and replaced with a newmulti-output
prediction layer head. The output of the networkwas flattened
and given as an input to two new branches, the first of
which was responsible for bounding-box prediction, while
the second one predicted the class label of the observed
object. In these branches, the mean square error and the cat-
egorical cross-entropy were used as the objective functions,
respectively. The system described in [29] predicted the class
label with 96% accuracy and the bounding box with 82%
accuracy.

In [30], another system focused on detecting marine debris
including ghost nets was described. The authors present
an object detection approach based on DNN with the aim
to automatically detect seafloor marine litter in real-world
environment. The DNN was based on Mask R-CNN [60].
MobileNetV1 [89] with weights pretrained on COCO dataset
(a commonly used benchmark dataset used in DL) was
used as a backbone. Seafloor imagery was acquired through
a towed underwater camera. The training and testing data
included 635 video frame images of 1920 × 1080 pixels.
Eleven categories of trash were distinguished, including fish-
ing nets. In total, 1166 litter items were manually identified
and labeled with bounding boxes. The dataset was augmented
with horizontal and vertical flip, brightness change, and noise
addition. Additionally, the images were resized to 832 ×
448 pixels. After data augmentation, the size of the new
dataset increased to 3910 images. Trained by [30], the net-
work achievedmAP50 of 62% over all litter classes. In several
litter types (plastic bags, fishing nets, tires, plastic caps),
the network was even more effective, reaching an average
precision of over 79%.

In [31], a newmethod to detect underwater regions of inter-
est in real-time using side scan sonar imagery was described.
The proposed system was trained in an unsupervised manner,
which made it applicable to domains such as underwater
archaeology or oceanwaste management, where direct recog-
nition is not always possible or reasonable, either because
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FIGURE 12. Unsupervised extraction of underwater ROI [31].

of the difficulty in collecting enough data or because of
the overwhelming diversity of possible targets. The method
consists of three stages. The first stage is image synthesis
from sonar data, which results in a geometrically and radio-
metrically corrected output image suitable for automated
analysis. In this stage, slant-range correction and histogram
equalization were applied. The second stage involves feature
point generation. It is inconsistent with the fact that objects
in images can be expressed as a large set of smaller visual
features. The algorithm rests on the premise that the den-
sity of visual features increases inside regions of interest.
Two feature detectors: Features from Accelerated Segment
Test (FAST) [90] and Maximally Stable External Regions
(MSER) [91], [92], were used to generate feature cloud. The
third stage is based on clustering the point cloud by the
DBSCAN algorithm, which simultaneously provides denois-
ing. As soon as the point cloud is clustered, the centroid can
be used to define a bounding box for ROI. The feature cloud
generated by FAST and MSER algorithms can be observed
in Figure 12, where the features are marked with circles.
After that, the clustering algorithm DBSCAN groups them or
rejects as noise (green and red colours, respectively). Next,
the bounding boxes (white) for each ROI are generated. The
dataset consisting of lost/abandoned fishing gear (n= 6) was
manually investigated by a human operator who identified
ROIs and their centres. Automatic gear detection resulted in
the accuracy of 72.7%.

In [32], the authors presented an interesting approach using
sonar-derived imagery. The main goal of the proposed system
was to identify underwater fishing nets and thus to avoid
irreparable damage caused by them to AUVs. In the opin-
ion of the authors of this paper, the described approach has
shown that sonar-based imaginary also has a great potential
to prevent ghost fishing. Since the proposed application was
to run in real time, a trade-off between accuracy and speed had
to be achieved. For this reason, the Multiple Receptive Field
network (MRF-Net) was used. It is a network inspired by the
CenterNet [93], that bases on an anchor-free approach. The

input images are fed into the Fully Convolutional Neural Net-
work (FCN) [94] that generates a centre-point heatmap which
is then used to predict object centres. The structure of the
MRF-Net net can be divided into two parts: the feature extrac-
tion network, which is mainly responsible for fusing different
levels of features from Forward Looking Sonar (FLS) images,
and the prediction module, which is responsible for locating
the boundary box of the object. A novel backbone network
was proposed, that has depth-wise convolution with reduced
number of parameters and a multi-branch block using dilated
convolution to provide the multi-scale of receptive fields.
Furthermore, a combination layer of the instance and batch
normalisations was used to improve the generalization perfor-
mance of the proposed network with no additional computa-
tion. The dataset consisting of 18332 images was collected
with a multi-beam forward-looking sonar. More technical
parameters of the sonar are available in [32]. In order to
obtain an image from the forward-looking sonar, the inter-
polation algorithm based on bilinear interpolation was used.
The dataset included three kinds of obstacles at different
distances (0–5 and 5–10 m): fishing net, cloth, and plastic
bag. The proportion of each category in the dataset was
equal.

In this approach, automatic detection reached 90.3% of
mAP50 for all categories. For fishnets, it was 91.8%. For real-
time applications, the speed of performance is also important.
This approach achieved a rate of 11.13 frames per second.

A similar approach to avoiding ghost nets to prevent
damage to AUVs, which can be directly applied to ghost
fishing prevention, was presented in [33]. This approach used
imaging based on laser scanning. Furthermore, the authors
recognized the problem of insufficient amount of data for
training a DLmodel and therefore used Generative Adversar-
ial Networks (GANs) to generate the artificial data. The pro-
posed system consisted of data collection, data amplification,
and target detection. The laser scanning system is insensitive
to temperature and salinity of water. Moreover, it provides
high brightness and effectively eliminates background noise.
All this enabled fast detection, along with high precision and
a large detection area. Because of light-transparent window
of the sea, green laser light was chosen. The laser was used
together with an underwater camera to obtain dynamic videos
of fishing nets for subsequent detections. The deep convo-
lutional generative adversarial network was used to generate
artificial data.

C. AUTONOMOUS SYSTEMS
Autonomous vehicles are directly related to detection, iden-
tification, and classification of IUU fishing without human
intervention. The algorithms discussed in other sections are
implemented on board of autonomous units (Figure 13). This
subsection does not present the problem of autonomous vehi-
cles in detail, but simply points out solutions that are already
in use in the fight against IUU.

Autonomous patrols capable of identifying threats are a
significant support to coastal inspection services. Fishing
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FIGURE 13. Autonomous systems. 1. USV; 2. UAV; 3. UUV.

zones or restricted sea zones are vast areas that would require
significant human and equipment resources to be patrolled
continuously. The introduction of autonomous patrolling
units in the form of UAVs and USVs equipped with AI-based
detection and recognition algorithms could increase the effec-
tiveness of IUU fishing detection. According to [38], the
operational costs of USVs and UAVs are approximately
0.025 $US per square kilometre of patrolled space, which
is an order of magnitude lower than for traditional manned
units, which cost 0.27 $ US per square kilometre. The use of
satellite imagery to track and analyse the trajectory of fishing
vessels is also significantly cheaper at around 0.036 $ US
per square kilometre of coverage. Interesting applications of
USVs in the fight against IUU fishing are presented in [38],
[39], [95], and [96].

In [97], the authors present the Buscamos solar-powered
autonomous surface vessel that allows patrolling large marine
areas. The ASV has been equipped with multiple sensors to
collect data about the environment, i.e. sonar (underwater
and side scan), laser and vision systems, and depth or wind
sensors. Adequate ASV equipment is necessary for proper
collision-free navigation, and the number of sensors used
allows the data to be used in other systems, such as those
detecting suspicious vessels. The presented unit performs the
function of both atomic vehicle and oceanographic obser-
vatory. The authors of that paper present a system using
fuzzy logic to make decisions ensuring energy and navigation
autonomy. The paper describes both the technical details and
the software architecture of the presented approach, focus-
ing on providing an efficient energy system, for long-term
autonomous missions. The performance of the system was
verified during a 10-day mission in which the ASV covered
a distance of 92.28 km. Additional work related to the use
of the Buscamos USV in connection with countering IUU
fishing is presented in [39], where the authors describe the
use of AI Recognition to detect and classify marine vehicles
conducting suspicious activities.

Another project presenting a solar-powered surface vessel
is described in [97]. The authors have developed a concept for

TABLE 1. Categorization of papers by equipment, systems and algorithms
for boat tracking and ghost fishing detection.

an autonomous vehicle designed toworkwith UAVs. The pre-
sented surface vessel is supposed to allow the UAV to take off,
land, and recharge, thus increasing the range and operational
capabilities of the drone. In their work, the authors focus
on hardware and software design and technological aspects
of the heterogeneous system. Among other things, the paper
describes themandatory hardware for autonomous behaviour,
the hardware architecture of the system, and the UAVdocking
platform. The presented solution could be an effective tool in
the fight against IUU.

IV. DISCUSSION
In order to facilitate the review of the papers discussed, they
are summarized in Table 1. It categorizes the described papers
by equipment, systems, and algorithms. In addition, we pro-
posed three scenarios in Section IV-A using the described
equipment indicating their strengths and weaknesses.

IUU fishing is not only a problem for local communities
but a global problem affecting various parts of the world
(e.g. Thailand [22], Indonesia [26], [75], North America [24],
United Kingdom [25], Portugal [23]). Not only does it affect
the economy but also the environment. Although this phe-
nomenon was defined over 20 years ago, the fight against it
is still not finished.

In recent years, modern algorithms have been increasingly
used to effectively counter IUU fishing and its consequences.
To the best of the authors’ knowledge, this paper is the
first to provide comprehensive knowledge of the approaches
used to tackle this phenomenon. In the paper, we focused
on engineering solutions, instead of regulatory ones. How-
ever, the authors would like to point out that this paper is
not a systematic review of the various techniques presented.
Authors’ intention was to familiarise the readers with the
most up-to-date and promising solutions and to indicate a
good starting point to initiate research into a holistic system,
which would be an fusion and extension of the indicated
solutions. The analysed approaches were divided into those
related to boat tracking and those related to ghost fishing
detection. The former is the best explored issue of counter-
acting IUU fishing. Usually, it is based on historical records
of fishing boat trajectories obtained from AIS/VMS, and on
that basis detects potentially illegal behaviour. The analysis
of these trajectories typically consists of classification based
on the location of vessel, and characteristic behaviour of the
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vessel with relation to the fishing gear used. Being aware of
where the fishing is taking place may provide a conclusion
about the its legality. Furthermore, additional identification of
the type of fishing gear used may indicate whether the fishing
has been properly reported, and whether it was carried out in
accordance with the regulations of the area at the time. The
results from the works [22], [74], [75] indicate that there is
difficulty in separating longline and purse seine. Based on
the presented data, it can be estimated that about 5% of the
catches identified as longline are in fact made using the purse-
seine method. However, the analysis of vessels trajectories
based on AIS/VMS data also has its drawbacks. The primary
one is that these systems use mostly historical data. For
instance, the detection of an individual who carried out illegal
fishing several years ago only gives the information about
such an event, but it does not allow to draw legal conse-
quences against the individual. There is a lack of systems
analysing data in real time, which would make it possible
to catch an individual in the act. The secondary drawback is
that there is the possibility of periodic disabling or complete
absence of the AIS/VMS system on a vessel, and therefore
the lack of data to analyse its behaviour. This problem can
be solved by using complementary approaches. One of them
is the verification of data coming from AIS/VMS with image
data coming from SAR satellites or CCTV systems. However,
for ship identification systems based on cameras in ports
and harbours, the biggest problem is the lack of uniform
standards concerning ship plate numbers, which would facil-
itate the use of intelligent vision systems for real-time ship
identification.

The papers [31], [32], [33] described technologies com-
monly known for autonomous vehicle solutions, so-called
ranging systems. Ranging systems include radar, sonar and
lidar; however, long-range radars, due to their energy con-
sumption and size, are not components of small unmanned
vehicles and therefore are rarely used in detecting ghost nets.
They are, however, used as part of CSS. Ranging systems
are well researched and widely used tools, so the authors
of the paper decided not to focus on their technological
aspects, but only point out the features of these devices in the
context of countering IUUfishing, as well as its consequences
(ghost fishing). Radars have the advantage of range as well
as low susceptibility to poor weather conditions such as fog.
However, they can be interfered with by other signals and are
unable to identify the type of object. Radars in the context
of IUU are used to detect vessels in water areas. Lidars are
a common technology in robotics, and are the basic sensors
for autonomous vehicles enabling accurate navigation. When
they are used on water surfaces or where the surface is not
uniform, they may not return accurate data since high water
depth will affect the reflection of the pulses. This makes lidar
not a desirable technology in surface vessels, however, the
authors of [33] point to the potential of using laser technology
in detecting ghost nets. Sonars, on the other hand, are a tech-
nology dedicated tomaritime solutions. They allow the detec-
tion of undersea objects such as ghost nets, but the increasing

number of sonars in use is contributing to an increase in
noise pollution in the oceans, which confuses marine animals
that use acoustic waves to navigate and communicate with
each other. Some sonars are even capable of permanently
damaging animals’ hearing.

The fight against IUU fishing is crucial, as it results in
the ability to effectively manage fisheries, reduce overfish-
ing, reduce destructive exploitation, restore the balance of
ecosystems, support the conservation of endangered species,
and reduce the informal economy. However, preventing IUU
fishing unfortunately results in increased rate of ghost fish-
ing, as fishermen abandon their gear in fear of punishment.
Therefore, fighting IUU fishing alone is insufficient given the
fact that ghost fishing must be countered as well. It is usually
performed by ghost net detection, which allows picking the
nets out thus breaking the ghost fishing cycle. Such detection
systems are usually based on both vision and ranging (radar,
sonar, lidar) systems. To automate this process, these systems
should be placed on autonomous platforms. Drones allow
inspection of shallow waters, whereas UUVs aid detection of
fishing gear in deeper areas. When compared with the detec-
tion by UUV and UAV on-board systems, the systems placed
on USVs are ineffective. USVs cannot conduct detection of
fishing gear in deepwaters, whereas in shallowwaters, drones
have a much higher mobility and a broader visual field.
Current systems are used to avoid collisions between UUVs
and fishing gear; however, they can be applied directly to
detect ghost nets, return the information about their location,
and assist in pulling them out. To the best of the authors’
of this paper knowledge, there are no systems that employ
AAVs in ghost net detection. The real-time detection of ghost
nets allowing for emergency response is the area in need of
extensive development.

In addition to the directions of further development men-
tioned above, the authors believe that the most significant
is development of practically effective holistic systems that
clearly indicate IUU fishing. Currently, each system ele-
ments, such as algorithms using CCTV or AIS/VMS data, can
only be evaluated individually and used independently, hence
their potential is not fully exploited. They often perform the
same tasks (e.g., fishing gear type detection) but use different
data, or they perform tasks that do not directly relate to coun-
teracting IUU fishing directly but only have a predisposition
for such use (e.g., ghost net avoidance). In order to develop a
holistic system in greater depth, it is necessary to explore the
individual issues on their own. However, this paper provides
a good starting point for further exploration of the topic and
provides references to many valuable sources.

Some of the reviewed papers reported precise values show-
ing the efficiency of the algorithms used. These include, for
example, accuracy or mean averaged precision. However,
these results were obtained on very different datasets, as well
as by operating for a different purpose (e.g. ship detection,
detection of various types of fishing equipment), therefore
it is not methodologically correct to compare performance
between these algorithms.
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In summary, modern methods do support the countering of
IUU fishing and its consequences. USVs and the AIS/VMS
data are typically used to track boats. The most common
task performed in this field is classification. Preventing ghost
fishing typically uses UUVs equipped with vision or ranging
systems to perform detection tasks. In the future, a holistic
system consisting of the components described in this paper
is expected to be developed to effectively counter IUU in real-
time. Another proposed future research direction is to conduct
a review of current solutions in the context of global and local
policies regarding countering IUU fishing in order to find
weaknesses and opportunities for improvement.

A. APPLICATION SCENARIOS
Scenario I: Detecting suspicious boat behavior suggesting
illegal fishing in coastal waters, detecting ghost nets in shal-
low waters.
Equipment: Aerial Vehicle with camera, Surface Vehicle

with camera, plate recognition by CCTV.
Discussion: Aerial and surface vehicles are suitable for

patrolling shallowwaters. They should patrol mentioned area,
if suspicious behavior or ghost nets are spotted, they should
verify it and call for relevant law enforcement authorities if
confirmed. However, aerial vehicles have a short operating
range due to their battery capacity and are vulnerable to
bird attacks. Surface vehicles can be equipped with their
own power source, such as solar panels and can therefore
patrol the waterfront continuously. Both types of vehicles
are sensitive to weather conditions. Despite these drawbacks,
these vehicles are, as shown according to the mentioned
earlier literature, used for patrolling coastal waters and can
be used successfully in this scenario. In addition, we suggest
that vehicles should be supported by coastal monitoring,
which would help detect suspicious boats as described in the
section III-A about hull plate recognition. However, it should
be emphasized that at the moment, unfortunately there is
no standard for the appearance of hull plates and therefore
recognizing them is a challenging task.
Scenario II: Detecting IUU fishing in offshore areas.
Equipment: Surface Vehicle with camera, AIS/VMS
Discussion: We suggest using satellite tools to detect

suspicious behavior of boats, and then sending a surface
vehicle to confirm, which will conduct observation and then
call for relevant law enforcement authorities if necessary.
Currently, AIS/VMS use historical data, but as a result of fur-
ther development of dedicated algorithms and a sufficiently
comprehensive database, it will be possible to use them in
real time. Section III-A described in more detail the use of
AIS/VMS in the context of detecting suspicious boat behav-
ior. The disadvantage of using a surface vehicle is its limited
field of view through waves and sea conditions, as well as
the inefficiency of this technology in the context of detecting
ghost nets.
Scenario III: Detection of ghost nets in an area with an

increased risk of their occurrence
Equipment: Underwater Vehicle with sonar, AIS/VMS

Discussion: We suggest using satellite tools to identify
an area with an increased risk of ghost nets, as a result of
increased levels of IUU fishing there. An underwater vehicle
should then be deployed to the area to locate and catch ghost
nets. The ghost nets could then be handed over to manned
patrols. The disadvantage of such a solution is that a manned
patrol has to transport the underwater vehicle to a given
location, but after that the search of the area is carried out
autonomously. Detection of ghost nets was discussed in more
detail in Section III-B. The advantages of using sonar are its
relatively low cost, independence from surface conditions,
and that it works well in underwater environments. However,
it should be remembered that it creates a noise pollution in
the water and is not indifferent to wildlife.

V. CONCLUSION
This paper provides fundamental information and definitions
related to illegal, unreported, and unregistered fishing and its
consequences in the form of ghost fishing. The genesis of the
problem is outlined, as well as its short and long-term effects.
Attention is paid to the legislative aspect of the problem. The
main objective of the paper was to present recent approaches
of combating this phenomenon using modern, innovative
methods. It presents achievements in this field over the last
few years.

The equipment and systems that provide the data, as well as
the algorithms that process it, have been presented. Further-
more, current application developments were highlighted.
Two main problems were identified, the first one related to
tracking boats to detect anomalous behaviour that may sug-
gest illegal activity, and the second one related to countering
the consequences of IUU fishing in terms of increased levels
of fishing occurring outside of human control. Additionally,
the potential for the use of autonomous units and the lack
of current systems were pointed out. It should be stressed
that the problems identified in the paper and their causes are
very complex, so their effective solution will only be possible
with a comprehensive approach taking into account legal and
technological background.

The authors believe that the paper has highlighted the
relevance, complexity, and magnitude of the problem that is
IUUfishing, thus creating a starting point for further research.

REFERENCES
[1] W. Moomaw, I. Berzin, and A. Tzachor, ‘‘Cutting out the middle fish:

Marine microalgae as the next sustainable omega-3 fatty acids and protein
source,’’ Ind. Biotechnol., vol. 13, no. 5, pp. 234–243, 2017.

[2] The State of World Fisheries and Aquaculture 2018: Meeting the Sustain-
able Development Goals, FAO, Rome, Italy, 2018.

[3] S. Gebremedhin, S. Bruneel, A. Getahun, W. Anteneh, and P. Goethals,
‘‘Scientific methods to understand fish population dynamics and support
sustainable fisheries management,’’Water, vol. 13, no. 4, p. 574, 2021.

[4] G. L. Britten, C. M. Duarte, and B. Worm, ‘‘Recovery of assessed global
fish stocks remains uncertain,’’ Proc. Nat. Acad. Sci. USA, vol. 118, no. 31,
2021, Art. no. e2108532118.

[5] G. A. Petrossian, ‘‘Preventing illegal, unreported and unregulated (IUU)
fishing: A situational approach,’’ Biol. Conservation, vol. 189, pp. 39–48,
Sep. 2015.

[6] C. Costello, L. Cao, S. Gelcich,M.Á. Cisneros-Mata, andC.M. Free, ‘‘The
future of food from the sea,’’ Nature, vol. 588, pp. 95–100, Aug. 2020.

VOLUME 10, 2022 112551

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


K. Zuzanna et al.: How High-Tech Solutions Support the Fight Against IUU and Ghost Fishing: A Review

[7] A.Molotoks, P. Smith, and T. P. Dawson, ‘‘Impacts of land use, population,
and climate change on global food security,’’ Food Energy Secur., vol. 10,
p. e261, Feb. 2021.

[8] C. Cusack, O. Manglani, S. Jud, K. Westfall, R. Fujita, N. Sarto,
P. Brittingham, and H. McGonigal, ‘‘New and emerging technologies
for sustainable fisheries: A comprehensive landscape analysis,’’ Environ.
Defense Fund, Apr. 2021, p. 62.

[9] International Plan of Action to Prevent, Deter and Eliminate Illegal,
Unreported and Unregulated Fishing, FAO, Rome, Italy, 2001.

[10] Combating Illegal Fishing Clear Authority Could Enhance U.S. Efforts
to Partner With Other Nations at Sea, U.S. Government Accountability
Office, Washington, DC, USA, Oct. 2021.

[11] D. J. Agnew, J. Pearce, G. Pramod, T. Peatman, R. Watson,
J. R. Beddington, and T. J. Pitcher, ‘‘Estimating the worldwide extent of
illegal fishing,’’ PLoS ONE, vol. 4, no. 2, p. e4570, 2009.

[12] C. Mavrellis. (2017). Transnational Crime and the Developing World.
Global Financial Integrity. [Online]. Available: https://gfintegrity.org/
report/transnational-crime-and-the-developing-world/

[13] G. Macfadyen, T. Huntington, and R. Cappel, ‘‘Abandoned, lost or oth-
erwise discarded fishing gear,’’ UNEP Regional Seas Rep. Stud., FAO
Fisheries Aquaculture, FAO, Rome, Italy, Tech. Paper, 2009, vol. 185.

[14] (2014).Fishing’s PhantomMenace: HowGhost FishingGear is Endanger-
ing Our Sea Life. World Society for the Protection of Animals. Accessed:
Jan. 28, 2022. [Online]. Available: https://www.worldanimalprotection.org

[15] I. Agenda, ‘‘The new plastics economy rethinking the future of plastics,’’
inWorld Economic Forum. U.K.: Ellen MacArthur Foundation, McKinsey
& Company, MAVA Foundation, Jan. 2016.

[16] M. Nordquist, United Nations Convention on the Law of the Sea 1982: A
Commentary, vol. 7. Leiden, The Netherlands: Brill, 2011.

[17] J. S. Barkin and E. R. DeSombre, ‘‘Do we need a global fisheries manage-
ment organization?’’ J. Environ. Stud. Sci., vol. 3, pp. 232–242, Feb. 2013.

[18] R. B. Cabral, J. Mayorga, M. Clemence, J. Lynham, S. Koeshendrajana,
and U. Muawanah, ‘‘Rapid and lasting gains from solving illegal fishing,’’
Nature Ecol. Evol., vol. 2, pp. 650–658, Mar. 2018.

[19] J. Nugent, ‘‘Global fishing watch,’’ Sci. Scope, vol. 42, no. 5, pp. 22–25,
2019.

[20] W. Merten, A. Reyer, J. Savitz, J. Amos, P. Woods, and B. Sullivan,
‘‘Global fishing watch: Bringing transparency to global commercial fish-
eries,’’ 2016, arXiv:1609.08756.

[21] H. Carlos, R. Aranda, M. R.-D. Velasco, A. Y. Rodriguez-Gonzalez, and
M. E. Mendez-Lopez, ‘‘Fishing gear pattern recognition by including
supervised autoencoder dimensional reduction,’’ IEEE Geosci. Remote
Sens. Lett., vol. 19, pp. 1–5, 2022.

[22] B. Chuaysi and S. Kiattisin, ‘‘Fishing vessels behavior identification for
combating IUU fishing: Enable traceability at sea,’’ Wireless Pers. Com-
mun., vol. 115, pp. 2971–2993, Feb. 2020.

[23] J. C. Ferreira, J. Branquinho, P. C. Ferreira, and F. Piedade, ‘‘Computer
vision algorithms fishing vessel monitoring—Identification of vessel plate
number,’’ inProc. Ambient Intell.–Softw. Appl.–8th Int. Symposiuma Ambi-
ent Intell. (Advances in Intelligent Systems and Computing), vol. 615.
Cham, Switzerland: Springer, 2017, pp. 9–17.

[24] A. Y. Shahir, M. A. Tayebi, U. Glasser, T. Charalampous, Z. Zohrevand,
and H. Wehn, ‘‘Mining vessel trajectories for illegal fishing detection,’’ in
Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2019, pp. 1917–1927.

[25] M. Rodger and R. Guida, ‘‘Classification-aided SAR and AIS data fusion
for space-based maritime surveillance,’’ Remote Sens., vol. 13, no. 1,
p. 104, 2020.

[26] A. Prayudi, I. A. Sulistijono, A. Risnumawan, and Z. Darojah, ‘‘Surveil-
lance system for illegal fishing prevention onUAV imagery using computer
vision,’’ in Proc. Int. Electron. Symp. (IES), Sep. 2020, pp. 385–391.

[27] H. S. Kim, C. Jin, M. H. Kim, and K. Kim, ‘‘Damage detection of bottom-
set gillnet using artificial neural network,’’Ocean Eng., vol. 208, Jul. 2020,
Art. no. 107423.

[28] J. Kim, T. Kiml, J. Kim, S.-C. Yu, and T. Kim, ‘‘Manipulation pur-
pose underwater agent vehicle for ghost net recovery mission,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 3905–3910.

[29] R. Bajaj, S. Garg, N. Kulkarni, and R. Raut, ‘‘Sea debris detection using
deep learning: Diving deep into the sea,’’ in Proc. IEEE 4th Int. Conf.
Comput., Power Commun. Technol. (GUCON), Sep. 2021, pp. 1–6.

[30] D. V. Politikos, E. Fakiris, A. Davvetas, I. A. Klampanos, and
G. Papatheodorou, ‘‘Automatic detection of seafloor marine litter using
towed camera images and deep learning,’’ Mar. Pollut. Bull., vol. 164,
Mar. 2021, Art. no. 111974.

[31] G. Labbe-Morissette and S. Gauthier, ‘‘Unsupervised extraction of under-
water regions of interest in side scan sonar imagery,’’ J. Ocean Technol.,
vol. 15, no. 1, pp. 95–108, 2020.

[32] R. Qin, X. Zhao, W. Zhu, Q. Yang, B. He, G. Li, and T. Yan, ‘‘Multi-
ple receptive field network (MRF-Net) for autonomous underwater vehi-
cle fishing net detection using forward-looking sonar images,’’ Sensors,
vol. 21, no. 6, p. 1933, 2021.

[33] X. Ye and X. Wang, ‘‘Deep generative network and regression network
for fishing nets detection in real-time,’’ in Proc. 37th Chin. Control Conf.
(CCC), Jul. 2018, pp. 9466–9471.

[34] S. Kandrot, S. Hayes, and P. Holloway, ‘‘Applications of uncrewed aerial
vehicles (UAV) technology to support integrated coastal zone management
and the UN sustainable development goals at the coast,’’ Estuaries Coasts,
vol. 45, no. 5, pp. 1230–1249, Jul. 2022.

[35] A. Octavian and W. Jatmiko, ‘‘Designing intelligent coastal surveillance
based on big maritime data,’’ in Proc. Int. Workshop Big Data Inf. Secur.
(IWBIS), Oct. 2020, pp. 1–8.

[36] C.Martin, S. Parkes, Q. Zhang, X. Zhang,M. F.McCabe, andC.M.Duarte,
‘‘Use of unmanned aerial vehicles for efficient beach litter monitoring,’’
Mar. Pollut. Bull., vol. 131, pp. 662–673, Jun. 2018.

[37] Japanese P8 Maritime Patrol Aircraft for Security and Surveillance.
Oct. 9, 2022. [Online]. Available: https://agriculture-drone.en.made-in-
china.com/productimage/yOTafsSKnGYV-2f1j00cbWrzivIVUuE/
China-Japanese-P8-Maritime-Patrol-Aircraft-for-Security-and-
Surveillance.html

[38] P. Johnston andM. Poole, ‘‘Marine surveillance capabilities of the autonaut
wave-propelled unmanned surface vessel (USV),’’ in Proc. OCEANS-
Aberdeen, Jun. 2017, pp. 1–46.

[39] J. C. Molina-Molina, M. Salhaoui, A. Guerrero-González, and M. Arioua,
‘‘Autonomousmarine robot based onAI recognition for permanent surveil-
lance in marine protected areas,’’ Sensors, vol. 21, no. 8, p. 2664, 2021.

[40] E. H. Tasseda, K. Ohtsu, and R. Shoji, ‘‘Resolution A. 917 (22) guidelines
for the onboard operational use of shipborne automatic identification
systems (AIS),’’ Int. Maritime Org. (IMO), London, U.K., Tech. Rep.,
Nov. 2019.

[41] J. L. Shepperson, N. T. Hintzen, C. L. Szostek, E. Bell, L. G. Murray, and
M. J. Kaiser, ‘‘A comparison of VMS and AIS data: The effect of data
coverage and vessel position recording frequency on estimates of fishing
footprints,’’ ICES J. Mar. Sci., vol. 75, no. 3, pp. 988–998, 2018.

[42] F. White, ‘‘Data fusion lexicon,’’ Joint Directors Labs, Washington, DC,
USA, Tech. Rep., 1991.

[43] J. A. Hartigan andM. A.Wong, ‘‘AlgorithmAS 136: AK-means clustering
algorithm,’’ J. Roy. Stat. Soc. c (Appl. Statist.), vol. 28, no. 1, pp. 100–108,
1979.

[44] Y. Rani and D. H. Rohil, ‘‘A study of hierarchical clustering algorithm,’’
Int. J. Inf. Comput. Technol., vol. 3, no. 11, pp. 1115–1122, 2013.

[45] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc. 2nd
Int. Conf. Knowl. Discovery Data Mining, 1996, pp. 226–231.

[46] P. Cunningham and S. J. Delany, ‘‘K-nearest neighbour classifiers—A
tutorial,’’ ACM Comput. Surv., vol. 54, no. 6, pp. 1–25, 2021.

[47] T. Evgeniou and M. Pontil, ‘‘Support vector machines: Theory and appli-
cations,’’ in Machine Learning and Its Applications: Advanced Lectures,
vol. 2049, G. Paliouras, V. Karkaletsis, and C. D. Spyropoulos, Eds. Berlin,
Germany: Springer, 2001, pp. 249–257, doi: 10.1007/3-540-44673-7_12.

[48] E. Grossi and M. Buscema, ‘‘Introduction to artificial neural networks,’’
Eur. J. Gastroenterol. Hepatol., vol. 19, no. 12, pp. 1046–1054, 2007.

[49] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[50] S. Albawi, T. A. Mohammed, and S. Al-Zawi, ‘‘Understanding of a
convolutional neural network,’’ in Proc. Int. Conf. Eng. Technol. (ICET),
Aug. 2017, pp. 1–6.

[51] J. Wu, ‘‘Introduction to convolutional neural networks,’’ Nat. Key Lab
Novel Softw. Technol. Nanjing Univ. China, vol. 5, no. 23, p. 495, 2017.

[52] C. Szegedy, A. Toshev, and D. Erhan, ‘‘Deep neural networks for object
detection,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 1–9.

[53] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis., vol. 9905, 2016, pp. 21–37, doi: 10.1007/978-3-319-46448-
0_2.

[54] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

112552 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1007/3-540-44673-7_12
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://mostwiedzy.pl


K. Zuzanna et al.: How High-Tech Solutions Support the Fight Against IUU and Ghost Fishing: A Review

[55] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[56] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[57] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[58] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Dec. 2015, pp. 1440–1448.

[59] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1–9.

[60] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988, doi:
10.1109/ICCV.2017.322.

[61] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent., Munich, Germany. Cham, Switzer-
land: Springer, Oct. 2015, pp. 234–241.

[62] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, ‘‘Multisensor
data fusion: A review of the state-of-the-art,’’ Inf. Fusion, vol. 14, no. 1,
pp. 28–44, 2013.

[63] S. A. Kashinath, S. A. Mostafa, A. Mustapha, H. Mahdin, D. Lim,
M. A. Mahmoud, M. A. Mohammed, B. A. S. Al-Rimy, M. F. M. Fudzee,
and T. J. Yang, ‘‘Review of data fusion methods for real-time and multi-
sensor traffic flow analysis,’’ IEEE Access, vol. 9, pp. 51258–51276,
2021.

[64] H. Fourati, Multisensor Data Fusion: From Algorithms and Architectural
Design to Applications. Boca Raton, FL, USA: CRC Press, 2017.

[65] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, ‘‘Image segmentation using deep learning: A survey,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7, pp. 3523–3542,
Jul. 2022.

[66] I. G. Maglogiannis, ‘‘Supervised machine learning: A review of classifica-
tion techniques,’’ in Emerging Artificial Intelligence Applications in Com-
puter Engineering: Real Word AI Systems With Applications in EHealth,
HCI, Information Retrieval and Pervasive Technologies. Amsterdam,
The Netherlands: IOS Press, 2007, pp. 3–24.

[67] R. Saravanan and P. Sujatha, ‘‘A state of art techniques onmachine learning
algorithms: A perspective of supervised learning approaches in data clas-
sification,’’ in Proc. 2nd Int. Conf. Intell. Comput. Control Syst. (ICICCS),
Jun. 2018, pp. 945–949.

[68] A. Dhillon and G. K. Verma, ‘‘Convolutional neural network: A review of
models, methodologies and applications to object detection,’’ Prog. Artif.
Intell., vol. 9, pp. 85–112, Dec. 2019.

[69] M. V. Athira and D. M. Khan, ‘‘Recent trends on object detection and
image classification: A review,’’ in Proc. Int. Conf. Comput. Perform. Eval.
(ComPE), Jul. 2020, pp. 427–435.

[70] W. Zhiqiang and L. Jun, ‘‘A review of object detection based on convolu-
tional neural network,’’ inProc. 36th Chin. Control Conf. (CCC), Jul. 2017,
pp. 11104–11109.

[71] L. Alzubaidi, J. Zhang, A. J. Humaidi, and A. Al-Dujaili, ‘‘Review of deep
learning: Concepts, CNN architectures, challenges, applications, future
directions,’’ J. Big Data, vol. 8, p. 53, Mar. 2021.

[72] A. K.Mann andN. Kaur, ‘‘Review paper on clustering techniques,’’Global
J. Comput. Sci. Technol., vol. 13, no. 5, May 2013.

[73] Y. Qin, S. Ding, L. Wang, and Y. Wang, ‘‘Research progress on
semi-supervised clustering,’’ Cogn. Comput., vol. 11, pp. 599–612,
Jul. 2019.

[74] M. I. Marzuki, R. Garello, R. Fablet, V. Kerbaol, and P. Gaspar, ‘‘Fishing
gear recognition from VMS data to identify illegal fishing activities in
Indonesia,’’ in Proc. OCEANS-Genova, May 2015, pp. 1–5.

[75] M. I. Marzuki, P. Gaspar, R. Garello, V. Kerbaol, and R. Fablet,
‘‘Fishing gear identification from vessel-monitoring-system-based fishing
vessel trajectories,’’ IEEE J. Ocean. Eng., vol. 43, no. 3, pp. 689–699,
Jul. 2018.

[76] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
‘‘RUSBoost: Improving classification performance when training data is
skewed,’’ in 19th Int. Conf. Pattern Recognit., Dec. 2008, pp. 1–4.

[77] R. Jonker and A. Volgenant, ‘‘A shortest augmenting path algorithm
for dense and sparse linear assignment problems,’’ Computing, vol. 38,
pp. 325–340, Dec. 1987.

[78] T. Matsuoka, T. Nakashima, and N. Nagasawa, ‘‘A review of ghost fishing:
Scientific approaches to evaluation and solutions,’’ Fisheries Sci., vol. 71,
no. 4, pp. 691–702, Aug. 2005.

[79] S. Kim, P. Kim, J. Lim, H. An, and P. Suuronen, ‘‘Use of biodegrad-
able driftnets to prevent ghost fishing: Physical properties and fishing
performance for yellow croaker,’’ Animal Conservation, vol. 19, no. 4,
pp. 309–319, 2016.

[80] C. Wilcox and B. D. Hardesty, ‘‘Biodegradable nets are not a panacea, but
can contribute to addressing the ghost fishing problem,’’ Animal Conser-
vation, vol. 19, no. 4, pp. 322–323, Aug. 2016.

[81] E. Gilman, ‘‘Biodegradable fishing gear: Part of the solution to ghost
fishing and marine pollution,’’ Animal Conservation, vol. 19, no. 4,
pp. 320–321, Aug. 2016.

[82] D. Bloom, P. A. Butcher, A. P. Colefax, E. J. Provost, B. R. Cullis, and
B. P. Kelaher, ‘‘Drones detect illegal and derelict crab traps in a shallow
water estuary,’’ Fisheries Manage. Ecol., vol. 26, no. 4, pp. 311–318,
Aug. 2019.

[83] M. Liu, X.Wang, A. Zhou, X. Fu, Y.Ma, and C. Piao, ‘‘UAV-YOLO: Small
object detection on unmanned aerial vehicle perspective,’’ Sensors, vol. 20,
no. 8, p. 2238, 202.

[84] Y. Liu, F. Yang, and P. Hu, ‘‘Small-object detection in UAV-captured
images via multi-branch parallel feature pyramid networks,’’ IEEE Access,
vol. 8, pp. 145740–145750, 2020.

[85] X. Zhou, W. S. Lee, Y. Ampatzidis, Y. Chen, N. Peres, and C. Fraisse,
‘‘Strawberry maturity classification from UAV and near-ground imag-
ing using deep learning,’’ Smart Agricult. Technol., vol. 1, Dec. 2021,
Art. no. 100001.

[86] A. Kalantar, Y. Edan, A. Gur, and I. Klapp, ‘‘A deep learning system
for single and overall weight estimation of melons using unmanned
aerial vehicle images,’’ Comput. Electron. Agricult., vol. 178, Nov. 2020,
Art. no. 105748.

[87] L. W. Sommer, T. Schuchert, and J. Beyerer, ‘‘Fast deep vehicle detection
in aerial images,’’ in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Mar. 2017, pp. 311–319.

[88] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-ResNet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1–12.

[89] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[90] E. Rosten and T. Drummond, ‘‘Fusing points and lines for high perfor-
mance tracking,’’ in Proc. 10th IEEE Int. Conf. Comput. Vis., vol. 2,
Oct. 2005, pp. 1508–1515.

[91] D. Nistér and H. Stewénius, ‘‘Linear time maximally stable extremal
regions,’’ in Computer Vision–(ECCV) (Lecture Notes in Computer Sci-
ence). Berlin, Germany: Springer, 2008, pp. 183–196.

[92] J. Matas, O. Chum, M. Urban, and T. Pajdla, ‘‘Robust wide-baseline stereo
from maximally stable extremal regions,’’ Image Vis. Comput., vol. 22,
no. 10, pp. 761–767, 2004.

[93] X. Zhou, D. Wang, and P. Krähenbühl, ‘‘Objects as points,’’ 2019,
arXiv:1904.07850.

[94] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431–3440.

[95] V. Minke-Martin. (2020). A New Generation of Autonomous Vessels Is
Looking to Catch Illegal Fishers. Hakai Magazine. Section: Innova-
tion, Science, Wildlife, Our Planet, Technology. Accessed: Nov. 1, 2022.
[Online]. Available: https://www.smithsonianmag.com/innovation/new-
generation-autonomous-vessels-looking-catchillegal-fishers-180976336/

[96] Y. Ardiyanto, I. T. Sujoko, W. A. Wibowo, V. D. H. Nugraha, and
F. E. Saputra, ‘‘Prototype design of unmanned surface ship to detect illegal
fishing using solar power generation technology,’’ J. Elect. Technol. UMY,
vol. 3, no. 1, pp. 14–18, 2019.

[97] I. González-Reolid, J. C. Molina-Molina, A. Guerrero-González,
F. J. Ortiz, and D. Alonso, ‘‘An autonomous solar-powered marine robotic
observatory for permanent monitoring of large areas of shallow water,’’
Sensors, vol. 18, no. 10, p. 3497, 2018.

[98] M. Aissi, Y. Moumen, J. Berrich, T. Bouchentouf, M. Bourhaleb, and
M. Rahmoun, ‘‘Autonomous solar USV with an automated launch and
recovery system for UAV: State of the art and design,’’ in Proc. IEEE 2nd
Int. Conf. Electron., Control, Optim. Comput. Sci. (ICECOCS), Dec. 2020,
pp. 1–6.

VOLUME 10, 2022 112553

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1109/ICCV.2017.322
http://mostwiedzy.pl


K. Zuzanna et al.: How High-Tech Solutions Support the Fight Against IUU and Ghost Fishing: A Review

KLAWIKOWSKA ZUZANNA received the B.Sc.
and M.Sc. degrees in automation, robotics, and
control systems from the Faculty of Electrical and
Control Engineering, Gdańsk University of Tech-
nology (GUT), Gdańsk, Poland, in 2020 and 2021,
respectively, where they are currently pursuing the
Ph.D. degree.

Their research interests include artificial intel-
ligence, machine learning, computer vision, and
medical image analysis.

UJAZDOWSKI TOMASZ received the B.Sc. and
M.Sc. degrees in automation, robotics and control
systems from the Faculty of Electrical and Control
Engineering, Gdańsk University of Technology
(GUT), in 2020 and 2021, respectively, where he
is currently pursuing the Ph.D. degree.

His research interests include mathematical
modeling, evolutionary algorithms, fuzzy con-
trol systems, and technologies for autonomous
vehicles.

GROCHOWSKI MICHAŁ (Member, IEEE)
received the M.Sc. degree in control engineering,
the Ph.D. degree in automatic control and robotics,
and the Habilitation degree in automation, elec-
tronics and electrical engineering from the Faculty
of Electrical and Control Engineering, Gdańsk
University of Technology (GUT), in 2000, 2004,
and 2020, respectively.

He is a Professor and the Head of the Depart-
ment of Intelligent Control and Decision Support

Systems, GUT. He is a member of the Board of the Digital Technologies
Center of GUT. His current research interests include computational intelli-
gence andmachine learningmethods and their utilization in decision support,
data analysis, fault detection, and diagnosis systems.

PIOTROWSKI ROBERT received the M.Sc.,
Ph.D., and D.Sc., degrees (Hons.) in control engi-
neering from the Faculty of Electrical and Control
Engineering, Gdańsk University of Technology
(GUT), in 2001, 2005, and 2018, respectively.
He is currently an Associate Professor with the
Department of Intelligent Control and Decision
Support Systems, GUT. His research interests
include mathematical modeling, control design
of nonlinear dynamical systems, and design of
computer control systems.

112554 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

