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Abstract. LEGO bricks are highly popular due to the ability to build
almost any type of creation. This is possible thanks to availability of
multiple shapes and colors of the bricks. For the smooth build process
the bricks need to properly sorted and arranged. In our work we aim
at creating an automated LEGO bricks sorter. With over 3700 differ-
ent LEGO parts bricks classification has to be done with deep neural
networks. The question arises which model of the available should we
use? In this paper we try to answer this question. The paper presents a
comparison of 28 models used for image classification trained to classify
objects to high number of classes with potentially high level of similar-
ity. For that purpose a dataset consisting of 447 classes was prepared.
The paper presents brief description of analyzed models, the training
and comparison process and discusses the results obtained. Finally the
paper proposes an answer what network architecture should be used for
the problem of LEGO bricks classification and other similar problems.

Keywords: Image classification · LEGO · Neural Networks.

1 Introduction

LEGO bricks are highly popular among kids and adults. They can be used to
build vast array of, both very simple and very complex, constructions. This is
achieved by availability of multiple, sometimes very different, yet compatible
brick shapes. For the smooth build process the bricks need to properly sorted
and arranged - constant searching for proper bricks in a big pile of LEGO is
discouraging and limits creativity. Usually the sorting is done by shape. The
colors and decals can be easily distinguished even in a big pail of bricks [2].
Still, with over 3700 different LEGO parts [24] (and the number is constantly
growing) even disregarding the color makes the problem complex.

No solution for this problem was proposed so far. LEGO Group provides only
a simple sorting mechanism, based on the brick size, in form of the 2011 released,
now discontinued, LEGO Sort and Store item. Fan offered solutions usually rely
on optimization of the manual sorting process (e.g. [1]). Some fans tried to build
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2 T. Boiński et al.

AI powered sorting machines [10,38] with some success. Independently from the
way of building the sorting machine, it requires a well-trained neural network
able to distinguish between different, often very similar bricks. The solution
should at least divide them into smaller number of categories aggregating bricks
similar in shape and usage, allowing further manual selection of proper bricks.
Thus LEGO oriented object classification solution is needed.

Problems like object detection, image segmentation, content-based image re-
trieval, or most commonly, object classification lie in domain of computer vision.
In the last case the given, previously detected object, is assigned a one or more
labels. The objects can have either one label assigned (multi-class classification)
or many labels assigned (multi-label classification).

Computer vision is an actively research sub-domain of machine learning. It
originated as far as in late 60ties of the 20-th century [27]. What was at the
beginning portrayed as a simple task, assigned to students in summer school,
currently remains a complex and not yet fully solved problem.

Across the recent years multiple deep neural network architectures emerged.
For their comparison a standardised approach was established - ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) competition [29]. During the com-
petition the models should classify objects to one of the 1000 classes based on
1.2 million of training images. The model accuracy is tested on 150000 images.
Two metrics are calculated – Top1 (the percentage of directly correctly clas-
sified images) and Top5 (the percentage of images that were classified among
the 5 with the highest probability). There are other commonly used datasets
like CIFAR-10 and CIFAR-100 [20], SIFT10M [8], Open Images Dataset [19,21],
Microsoft Common Objects in Context (COCO) [23]. As each dataset contains
photos from different categories, with different size etc., good standing with one
of the datasets does not guarantee the same results with the other. Furthermore
the datasets try to be very general whereas in some cases the images contain
similar objects. That is why further evaluation is still required.

In our research we undertook construction of AI-powered sorting machine [6]
treating LEGO recognition as multi-class classification. To search for the best
architecture that matches our scenario we decided to base our dataset in that
prepared for ILSVRC. This way we could speed up training process thanks to
transfer learning approach. As candidate architectures we selected the ones that
achieved the best results in the aforementioned competition.

The structure of this paper is as follows. In Section 2 a description of com-
pared network topologies is given. Later on, in Section 3, the used dataset is
presented. Further in Section 4 details how the training was done and the test-
ing methodology are presented. Section 5 discusses results obtained during the
tests. Finally, some conclusions are given.

2 Network topologies

In this paper we tested 28 network topologies from 7 families:
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How to sort them? A network for LEGO bricks classification 3

– EfficientNet – EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3,
EfficientNetB4, EfficientNetB5, EfficientNetB6 and EfficientNetB7 variants,

– NASNet – NASNetMobile and NASNetLarge variants,
– ResNet – ResNet50, ResNet50V2, ResNet101, ResNet101V2, ResNet152 and

ResNet152V2 variants,
– MobileNet – MobileNet, MobileNetV2, MobileNetV3Large and MobileNetV3-

Small variants,
– Inception – InceptionV3, InceptionResNetV2 and Xception variants,
– DenseNet – DenseNet121, DenseNet169 and DenseNet201 variants,
– VGG – VGG16 and VGG19 variants.

In this section a brief introduction to each family and variant is given, por-
traying its strengths and rationale behind the used architecture.

EfficientNet architecture was defined in 2019 [37]. The model aims at efficient
scaling of convolutional deep neural networks. The authors distinguished three
dimensions of scaling: depth scaling, width scaling and resolution scaling. Depth
scaling is the most commonly used approach, as it allows increase in number
and complexity of detected features by increasing the number of convolutions.
However, with increasing network depth, the training process gets longer and a
problem of vanishing gradient can be observed [13]. Width scaling relies on in-
crease of number of channels in each convolution. It is commonly used in shallow
networks, where width scaling increased both training speed and classification
quality [39]. Resolution scaling allows potential extraction of additional features.
With all three scaling approaches there is a point of diminishing returns, beyond
which additional computational overhead is not being compensated by better ac-
curacy. EfficientNet uses so-called compound scaling, where all three parameters
are equally scaled using φ parameter.

The base model here is similar to MnasNet [36] and MobileNetV2 [30]. Each
model in this family differs by the φ parameter value (starting with φ = 0).

Care needs to be taken when using the model in TensorFlow framework [31],
as zero-padding is used for convolutions with resolutions that cannot be divided
by 8. The number of channels also needs to be divisible by 8. The real compound
scaling parameters applied when using TensorFlow are thus different.

ResNet50 was proposed in 2015 [11], as a solution to vanishing and exploding
gradient problems. Thanks to so-called residual connections, it allows training
of very deep networks (over 1000 convolutional layers). Residual connections
perform elementwise addition of identity function between convolution blocks.
This improves gradient flow, by skipping non-linear activation functions usually
placed in convolutional blocks.

In 2016 a revision of the original model was proposed (called ResNet V2) [12].
The whole family of this model (in both ResNet and ResNet V2 revisions)
achieves very high results in ILSVR competition reaching 74.9%-78% accuracy
in Top1 and 92.1%-94.2% accuracy in Top5 categories.

DenseNet was defined in 2016 [16]. Similarly as in ResNet, the aim is to solve
the vanishing gradient by shortening its flow path. DenseNet uses so-called dense
blocks to achieve it. The dense block consists of 1x1 and 3x3 blocks and output
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4 T. Boiński et al.

of every block within it is connected with input of every next block. Each layer
within a dense block has thus direct access to its output which limits the flow
path. DenseNet has also low width of the convolutional layers. Each variant of
DenseNet architecture differs in terms of size of the last two dense blocks.

In 2018 DenseNet achieved the highest score in ILSVR competition Top1
category reaching accuracy of 75% for DenseNet-121, 76.2% for DenseNet-169,
77.42% for DenseNet-201 and 77.85% for DenseNet-264 77.85%.

Inception architecture was defined in 2014 [34] with Inception v1/GoogLeNet.
The aim was to reduce the risk of overfitting and eliminate the problems with
gradient flow. A special Inception block was proposed - it is composed of three
layers with different filters (1x1, 3x3 and 5x5). This led to high calculation com-
plexity so a reduction was introduced that limited the number of entry channels.
9 Inception v1 blocks were combined as GoogLeNet architecture.

Inception v2 and v3 were defined in 2015 [35]. They increased performance,
limiting information loss and computational complexity. Inception v3 achieves
77.9% accuracy in ILSVR competition Top1 category and 93.7% in Top5.

In 2016 Inception v4, InceptionResNetV1 and InceptionResNetV2 architec-
tures were proposed [33]. The main goal was simplification and unification of the
Inception models. ResNet residual connections were also included in the model.
The best results were obtained by InceptionResNetV2 model. In Top1 category
of the ILSVRC competition it achieved accuracy of 80.3% and in Top5 95.3%.

In 2017 an extension to Inception V3, by replacing the inception block with
so-called extreme inception, was defined [7]. The original block was modified
so that for each 1x1 convolution output corresponds one 3x3 convolution. This
architecture, called Xception, proved to be easier to define and modify in software
frameworks than the original Inception model.

Xception achieved better results in ILSVR competition than the original
Inception v3 model. For Top1 category the accuracy was 79% and for Top5
94.5%. It also had less parameters (22.86 million vs 23.63 million).

NASNet model was defined in 2017 [41]. It was created thanks to Google
AI’s AutoML [28] and Neural Architecture Search [40]. The creation of optimal
network architecture is treated here as reinforcement learning problem, with the
final network accuracy as a reward. This induced a very high computational cost,
so the search space had to be narrowed considerably. Based on the analysis of
other models the authors first defined a general architecture, which composed of
only 2 blocks - normal cell and reduction cell.

This significantly reduced the time needed to find the optimal model. Still,
the training time remained very long. However, the model achieved good results.
For ILSVRC Top 1 category it reached accuracy of 74.4% and 82.5% for smaller
NASNetMobile variant, and larger NASNetLarge variant respectively.

MobileNet model was defined in 2017 [15]. It was designed to allow fast
inference on mobile and embedded devices. The authors of this solution point
out that after a certain level of network complexity, the increase in inference
time is much bigger than the increase in accuracy, making the potential gain
computationally unprofitable. To further increase the performance of inference,
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How to sort them? A network for LEGO bricks classification 5

authors defined a special convolution, called depthwise separable convolution.
It separates the operation into two phases - filtering and combination. This
approach allowed up to 9 times lower computational complexity with only a 1%
lower accuracy [15] (for ILSVRC Top 1 category).

Few versions of MobileNet architecture were proposed, each introducing us-
age of different approaches (like residual connections) or different numbers of
channels. The original MobileNet model achieved for Top1 category of ILSVRC
competition the accuracy equal to 70.6%. MobileNetV2 [30] achieved 72.0% with
around 20% lower number of parameters and 47% lower computational cost. Mo-
bileNetV3 [14] introduced 2 versions - Small with 2.5 million parameters and
Large with 5.4 million parameters. The accuracy for Top 1 category of ILSVRC
competition was 75.2% for MobileNetV3Large and 67.4% for MobileNetV3Small.

VGG is one of the oldest architectures, was defined in 2014 [32]. Different
variants of this model vary by the number of trainable layers. For Top 1 category
of ILSVRC competition, VGG16 and VGG19 reach accuracy of 71.3%. For Top5
category, VGG16 reaches accuracy of 90.1%, whereas VGG19 of 90%.

As we can see, all of the aforementioned models achieved very good result
in the ILSVRC competition. At the time of their publication they gained the
highest score and usually became the state of the art. As mentioned in Section 1
it doesn’t always translate to the same results for other datasets.

3 The dataset

During the training we used custom dataset containing both real photos and
renders of LEGO bricks, belonging to 447 classes. The bricks were taken from
authors personal collection of over 150 LEGO sets and represents the most com-
monly available brick shapes. The whole dataset consists of 620082 images, where
52601 were real photos and 567481 were life-like renders. The renders were cre-
ated using Blender tool [9] based on 3D models from LDraw library [17].

The renders were used to speed up data gathering. We created a script that
randomly selected a brick type, color and alignment simulating its move on
a conveyor belt below a fixed positioned camera. Thanks to Blender and its
extension called ImportLDraw [26] we managed to generate realistic images of
LEGO bricks. Sample renders, after being cropped, can be seen in Fig. 1.

Real photos were created to increase the representativeness of the training
set. For that we created a dedicated Android app allowing quick tagging and au-
tomatic cropping of LEGO bricks on pictures taken with phone camera. Sample
real photos can be seen in Figure 2.

The full set of rendered images (before cropping) and real photos are publicly
available – [5] and [3] respectively. The complete dataset is also available [4].

Before the training the dataset was prepared so that all networks would be
trained on the same images. The images need to be standardised in terms of size
and proportions. As some of the bricks are long and narrow (e.g. brick 3002),
we decided to scale the longer edge to the desired size, and the shorter edge
proportionally (otherwise we could loose some information). Then, the image
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6 T. Boiński et al.

Fig. 1. Sample renders for brick number 3003

Fig. 2. Sample real photos of brick number 3003

canvas was extended to form a square and was filled with white background.
Next, all images were augmented using imgaug library [18]. The transformation
included the following operations applied with 50% probability:

– scaling to randomly selected size (80%-120% of the original size),
– random rotation between −45◦ and 45◦,
– random shift by up to 20%,
– random transformation into a trapezoid with an angle of up to 16◦.

Next, 5 randomly selected operations were applied, from the following list:

– Gaussian, median or averaged blur with a random intensity,
– sharpening filter with random blending factor and brightness,
– emboss filter with random blend factor and brightness,
– superimpose the contours detected by the edge detection filter, with a prob-

ability of 50%,
– Gaussian noise of random intensity,
– dropout of random pixels or a group of pixels,
– inversion of every image channel, with probability of 5%
– addition of a random value to each pixel,
– random brightness change of the image,
– random contrast change of the image,
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How to sort them? A network for LEGO bricks classification 7

– generation of a grayscale image and overlaying it with random transparency
over the original photo.

The augmentations were done once, so that the results will be comparable.
During the training process, to reduce the risk of overfitting, we performed ad-
ditional augmentation before each epoch - the images were rotated by random
angle up to 15◦ and the contrast was changed by random value (up to 10%).

The data gathered were divided into training and validation sets. The training
set contains 447000 images (1000 images each class, 650 renders and 350 real
photos). The validation set contained 44700 images (100 images each class, 50
renders, 50 real photos). The numbers were obtained experimentally.

The test set consisted of real photos created independently. It contains 4000
images of bricks belonging to 20 classes (200 images each). The set was created in
separate session using bricks from other set (Lego Creative Box Classic – 10698).
We used 2 variants of the set - easy and hard. Both have the same number of
photos, however the hard set contained images that are hard or even impossible
to distinguish but belongs to different classes (e.g. bricks 3001 and 3010).

4 Training process

All models presented in Section 2 were trained using transfer learning approach.
It consisted of 2 phases:

– pre-training – done with the base model locked, only the newly added top
layers are trained,

– fine tuning – the base model was partially or completely unlocked, all un-
locked layers could be trained.

Pre-training is characterised by a high learning rate (we’ve used 0.01) with
relatively low computation cost, as the backward pass needs to be calculated only
for the newly added layers. After this stage, we could observe Top1 accuracy for
the 447 LEGO classes at around 50-70%. During the fine-tuning stage, some of
the layers are unlocked and the training is repeated for those layers. The problem
here is how many layers should be unlocked. If the number will be low, then the
training process will be faster, but we might not get to the desired accuracy. The
number of unlocked layers also depends on the initial size of the base model.

We aimed at comparing different architectures so we designed adaptive fine
tuning algorithm. It goes as follows:

1. N := 0

2. N := N + unfreeze interval

3. top1 history := []

4. Unlock N top layers and recompile the model
5. Perform 1 training epoch
6. Perform 1 validation epoch
7. Add the Top1 accuracy on the validation set to top1 history list
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8 T. Boiński et al.

8. If top1 history contains no less than patience elements and the Top1
accuracy on validation set did not increase by at least min delta during last
patience epochs, go to step 2

9. If top1 history contains max epochs per fit elements, go to step 2.
10. Go to step 5.

where:

– unfreeze interval (15 by default) – the number of layers to be unlocked
within on fine-tuning iteration,

– max epochs per fit (50 by default) – max number of training epochs in one
fine-tuning iteration,

– patience (5 by default) – the number of epochs in one iteration, after which
the model quality is evaluated,

– min delta (0.01 by default) – minimal requested Top1 accuracy improve-
ment reached in patience epochs .

The aforementioned algorithm was run to train each model for limited time.
To increase the training speed and limit memory footprint we used so called
mixed precision training [25] and XLA [22] compiler. Both approaches allowed
us to train the networks with larger batch sizes.

For fine tuning we’ve used learning rate = 0.0001. Both phases were trained
using categorical cross-entropy loss function and Adam optimizer. All networks
were trained with batch size = 128, except for EfficientNetB5, EfficientNetB6
and EfficientNetB7, which used 64, 32 and 32 respectively.

5 The results

In total 28 network topologies were tested. The comparison process was divided
into two stages. First, all models were trained for four hours using adaptive fine
tuning approach described in Section 4. The second stage lasted twelve hours.
It was done with the same approach as stage 1, but only 5 best models and the
best out of each family was trained. All tests were done on dual Intel Xeon Gold
6130 server with 256 GiB RAM and dual NVIDIA GeForce RTX 2080 (8 GiB
GDDR6 RAM each) GPU cards. Each training was done on single GPU (two
models were trained at once). The default batch size was 128. Due to the memory
constraints some models used smaller batch size, namely: EfficientNetB5 (64),
EfficientNetB6 (32) and EfficientNetB7 (32). In both stages we used transfer
learning, where for the first stage we used a model trained on ImageNet data.

5.1 Stage I - the four-hour training

Summary of obtained results (ranked from best to worst) are presented in Ta-
ble 1. The best model in each family is marked with bold font.

EfficientNet models achieved varied results. The best variant was Efficient-
NetB1. It reached 84.4% Top1 accuracy and 95.85% Top5 accuracy, giving it the
8th place. EfficientNetB3 and EfficientNetB0 got slightly worse results, whereas
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How to sort them? A network for LEGO bricks classification 9

Table 1. Results after the first stage (measured on the validation set)

Model
Top1
accuracy

Top5
accuracy

Epochs
run

Training
time

VGG16 92.99% 99.00% 11 04:01:07

VGG19 91.70% 98.64% 11 04:05:07

ResNet50 87.40% 96.96% 14 04:04:07

ResNet101V2 87.20% 96.94% 14 04:10:42

ResNet152V2 86.92% 96.74% 15 04:11:10

ResNet50V2 86.57% 96.72% 14 04:05:15

ResNet152 86.00% 96.28% 13 04:09:27

EfficientNetB1 84.40% 95.85% 15 04:12:06

ResNet101 84.09% 95.44% 14 04:16:57

EfficientNetB3 83.58% 95.63% 10 04:14:06

EfficientNetB0 82.87% 95.03% 15 04:15:20

MobileNetV3Large 82.32% 94.80% 17 04:09:28

Xception 82.31% 94.95% 9 04:27:31

EfficientNetB2 81.33% 94.50% 11 04:04:16

InceptionResNetV2 79.43% 93.90% 7 04:01:10

MobileNet 78.56% 94.04% 14 04:09:26

DenseNet201 77.41% 92.18% 14 04:01:57

MobileNetV2 75.75% 92.29% 16 04:06:31

DenseNet169 75.44% 91.38% 13 04:14:47

DenseNet121 74.01% 90.49% 14 04:06:56

MobileNetV3Small 73.07% 89.97% 17 04:13:45

InceptionV3 71.19% 89.22% 10 04:16:48

EfficientNetB5 66.72% 87.58% 3 04:14:28

EfficientNetB4 65.60% 86.67% 6 04:25:51

NASNetMobile 59.60% 82.08% 16 04:11:54

EfficientNetB6 58.34% 82.15% 2 04:35:13

EfficientNetB7 54.38% 78.60% 1 04:03:32

NASNetLarge 53.39% 77.89% 4 04:26:13

EfficientNetB7 and EfficientNetB6 were one of the worst models. The reason for
such outcome was the compound scaling which caused small number of frames
(images) processed in the give time frame. This led to relatively small number
of epochs and thus lower accuracy. The differences between EfficientNet variant
are sustainable. For the next stage only EfficientNetB1 variant was selected.

ResNet models achieved very good results. The best variant was ResNet50
reaching 87.40% Top1 and 96.96% Top5 accuracy. The other variants achieved
similar results. 3 models were selected: ResNet50, ResNet101V2 and ResNet152V2.

Inception models reached mediocre results. The best one was Xception reach-
ing 82.31% Top1 and 94.95% Top5 accuracy. All models finished pre-training
stage and reached the fine-tuning phase. However, we observed very low per-
formance in terms of processed images per second, which might have been the
cause of mediocre accuracy. Thus only the Xception model was selected.
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10 T. Boiński et al.

DenseNet models did not perform too well. The best results were obtained
by DenseNet201 variant (77.41% Top1 and 92.18% Top5 accuracy). Contrary
to other models, the poor quality did not come from performance problems.
DenseNet training showed one of the highest images per second rate. The prob-
lem lies in low increase of accuracy between epochs. We suspect it is caused by
the design of DenseNet, specifically the concatenation operation. Unlike other
tested architectures, in DenseNet, last convolutional layers are just a small part
of the final feature map. By tuning a small amount of top convolutional layers,
we’re potentially leaving a big part of the feature map intact. This could be fixed
by changing the training methodology and training all convolutional layers, but
it has not been attempted in this phase.

NASNet models also got poor results. The best one, NASNetMobile, reached
59.60% Top1 and 82.08% Top5 accuracy placing 25 out of 28 tested models.
Once again performance was the reason for the results. For the second stage
only NASNetMobile was selected.

MobileNet scored averagely, the best variant being MobileNetV3Large reach-
ing 82.32% Top1 and 94.8% Top5 accuracy. This variant, despite being targeted
for mobile devices, outperforms deeper models like Xception or DenseNet201
thanks to the highest images per second rate and thus the highest training per-
formance. For the second stage MobileNetV3Large was selected.

The best results were obtained by the VGG network variants - VGG16 placed
first (with 92.99% Top1 and 99% Top5 accuracy) and VGG19 placed second
(with 91.70% Top1 and 98.64% Top5 accuracy). The results came unexpected,
as this is the oldest tested architecture. During the ILSVRC competition it was
outperformed over the years by all other tested models, with exception of some
MobileNet variants. The VGG are relatively shallow, but very wide. This allows
fast unlocking of many layers in the fine-tuning approach and thus leads to very
fast learning times. For the second stage both VGG16 and VGG19 were selected.

5.2 Stage II - the twelve-hour training

During this stage 10 models were further trained. The aggregated results (ranked
from best to worst) can be seen in Table 2.

All models managed to get better results. In most cases (except NASNetMo-
bile and DenseNet201) twelve-hour limit was sufficient to achieve convergence.

During this stage, we observed the similar results as in the previous one.
Once again, VGG16 and ResNet50 proved to be the best. However, the quality
difference, both in Top1 and Top5 accuracy, between models that reached con-
vergence is not big - the biggest difference is only 2.18 percentage points. This
is true even for mobile models, like MobileNetV3Large. This network required
however more epochs to reach convergence.

What came as a surprise is that, once again, VGG16 model achieved the
best results. In ILSVRC competition this model is outperformed by every other
non-mobile approach presented in this paper. In the problem presented here
(distinguishing LEGO bricks), VGG16 model trains very fast and reaches superb
accuracy. This model is, however, characterised by high number of parameters
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Table 2. Result after the second stage (measured on the validation set)

Model
Top1
accuracy

Top5
accuracy

Epochs
run

Training
time

Para-
meters

VGG16 94.56% 99.21% 31 12:13:49 138.3M

ResNet50 93.81% 99.10% 41 12:13:23 25.6M

ResNet101V2 93.19% 98.77% 45 12:08:03 44.6M

MobileNetV3Large 92.65% 98.68% 48 12:02:37 5.4M

VGG19 92.62% 98.79% 29 12:26:21 143.6M

Xception 92.49% 98.69% 27 12:06:12 22.9M

ResNet152V2 92.45% 98.54% 40 12:02:22 60.3M

EfficientNetB1 92.38% 98.51% 37 12:19:43 7.8M

DenseNet201 85.26% 95.85% 41 12:07:23 20.2M

NASNetMobile 78.59% 93.46% 41 12:09:57 5.3M

and thus costly in terms of calculation time both at the time of training and
inference. For practical application, the second model, ResNet50, might be thus a
better choice, as it has Top1 accuracy lower only by 0.75 percentage point, while
5.4 times lower the number of parameters. This model might also be a better
choice after extending the training set with images representing other LEGO
bricks, that currently are not taken into consideration (and thus extending the
number of classes almost tenfold).

Very good results were also obtained by a mobile-oriented models, especially
MobileNetV3Large, which had only 1.91 percentage point lower Top1 accuracy
than VGG16 model. Furthermore, it contains only 5.4 million parameters (in
contrast to 138.3 million for VGG16). Thus in applications where computing
performance is scarce, MobileNetV3Large should be used over any more compli-
cated model. Despite its size, it outperforms in terms of accuracy other, more
complicated models (VGG19, Xception, ResNet152V2 and EfficientNetB1).

DenseNet201 and NASNetMobile did not reach convergence in the twelve-
hour time limit and thus did not achieve good results. DenseNet201 suffered
from overfitting and NASNetMobile had very slow accuracy increase and would
require much longer training time.

5.3 Final tests

We performed some final tests on the two best models. The results for the easy
and hard sets are presented in Table 3. As can be seen, both models reach similar
accuracy.

To test the models in real life application we implemented a mobile app which
took photos of LEGO bricks laying on a white background and combined it with
the pre-trained models. VGG16 correctly recognized 39 out of 40 bricks. Wrongly
labeled 822931 brick was classified as 3003 due to their similarity from the camera
perspective. ResNet50 correctly classified all bricks. The networks were tested
in different conditions. We used an intensive pink light to illuminate the test
environment. This made the background pink and most of the bricks appeared
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Table 3. VGG16 and ResNet50 accuracy for easy and hard tests

Easy set Hard set
Top1 accuracy Top5 accuracy Top1 accuracy Top5 accuracy

VGG16 92.37% 99.02% 86.08% 98.22%

ResNet50 90.40% 99.05% 86.30% 98.60%

as having different, not seen before, colors. VGG16 correctly recognized 37 bricks
out of 40. ResNet50 model once again correctly classified all of the bricks.

6 Conclusions

The paper presents extensive analysis of deep neural network architectures in
order to verify their suitability for classification of LEGO bricks. The problem is
characterized with the need to distinguish objects between multiple, often similar
classes, as there are over 3700 different LEGO brick shapes. For this purpose, a
new dataset was created containing 447 classes and a set of tools automating the
analysis process were implemented. In total, 28 network architectures, belonging
to 7 families, were analyzed and compared. For the comparison, we used our
proposed training algorithm with adaptive fine-tuning approach.

Results showed that VGG16 model proved to be the best with its Top1 accu-
racy of 94.56% and Top5 accuracy of 99.21%). Surprisingly, in ILSVRC competi-
tion this model was outperformed by other solutions. The model is characterized,
however, with very big number of parameters (138.3 million) and high number of
floating point operations during training and inference process (15.3 GFLOPs).
Not falling far behind was ResNet50 model (Top1 93.81%, Top5 99.10%) which
had lower parameter count (25.6 million) and required far lower system perfor-
mance (3.87 GFLOPs). In many cases, this might be the best choice for similar
problems, where there are a lot of similar objects to classify. Surprisingly, also
the smaller, mobile models proved to be worthwhile. MobileNetV3Large achieved
very good accuracy (Top1 92.65%, Top5 98.68%), with very low parameter count
(5.4 million) and low performance requirements (0.21 GFLOPs).

The two best models also were tested in real life application. They proved to
be very accurate in both synthetic test on predefined test sets and during live
classification of LEGO bricks.

In the near future we plan on extending the dataset with additional classes
to cover as much LEGO brick shapes as possible to provide a deep neural net-
work able to classify any type of LEGO bricks. Such network could be used
in LEGO sorting machines, software recommending constructions based on the
bricks available, automatic brick database creation and many more.
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