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Abstract— A hybrid method for the scattering problems in
shielded and open structures is presented. The procedure
is based on the combination of body-of-revolution involving
finite-element methods with impedance matrix formulation and
the mode-matching technique, which can be utilized for the analy-
sis of structures with axially symmetrical scatterers. In order to
confirm the validity and efficiency of the proposed approach,
a few examples of electromagnetic field scattering in open and
waveguide structures are analyzed. The results cohere with those
obtained by commercial software.

Index Terms— Body of revolution (BOR), cylindri-
cal waveguides, finite-element method (FEM), generalized
impedance matrix (GIM), periodic structures, scattering,
waveguide discontinuities.

I. INTRODUCTION

SCATTERING and propagation problems are important
issues in the analysis and design of microwave, RF, and

optical devices (e.g., shaping of radiation patterns, filters,
phase shifters, or circulators). There are many different meth-
ods for solving such problems. They can be separated in
terms of geometrical complexity or divided into analytical and
discrete techniques. For simple structures, the analysis can
be performed using analytical methods. This provides great
accuracy and fast calculations; however, it is associated with an
exasperating lack of versatility. They are therefore only used
for some structures, such as cylinders, spheres, and ellipsoids.
In these cases, the field can be described with the use of the
Hankel or Mathieu functions (respectively, for cylindrical and
elliptical rods), and the mode-matching method can be utilized
[1]–[6]. For slightly more complex structures, a solution can be
found with the use of quasi-analytical techniques (for example,
the field-matching method), which are more general than the

previous ones and are still quite efficient [7], [8]. Never-
theless, they are limited to rods with convex cross sections
in 2.5-D problems. There are other techniques that are much
more versatile, for example, integral equation methods that
involve Green’s functions. However, the improvement of ver-
satility comes at a cost—some problems remain and new ones
appear. The first issue is the choice of basis functions (similar
to the mode- and field-matching methods), and the second
is singularities of Green’s functions [9]. The most versatile
techniques are discrete methods, such as the finite-element
or finite-difference (FD) method. In these techniques, there
are no geometrical restrictions imposed, and therefore, they
are commonly used in commercial software. Nonetheless,
they require fine discretization for complex geometries, which
affects calculation time and memory requirements. Another
issue for these kinds of methods is domain truncation for
unshielded structures. Improper truncation affects accuracy;
proper truncation may require a number of ambiguous para-
meters [as in perfectly matched layer (PML)] and expands
the computational domain. To combine the advantages of
analytical and discrete techniques, hybrid methods have been
developed. The analysis is made faster by a proper division of
the computational domain while remaining versatile; in some
cases, they also eliminate boundary condition issues.

There are many different hybrid methods [10]–[14], but
in this article, we will focus on one of the most effective:
a combination of the generalized impedance matrix (GIM)
and mode-matching method. In this approach, the domain is
divided into two regions: an inner and an outer one. In the
inner region, which is represented by GIM, a discrete method
can be employed, such as the finite-element method (FEM).
Utilization of any discrete method permits calculating GIM at
the boundary and, using this model, the entire inner part of
the domain. In this way, a very arduous discrete method needs
to be used only in a small part of the domain. In the outer
region, fields are described analytically by a series of fixed
basis functions (as in mode- or field-matching methods). For
structures with axial symmetry or with at least one element
with such symmetry, the discrete part of the analysis can
be further improved. This approach is well known in the
literature as body of revolution (BOR) and permits a significant
reduction of the problem [15]–[28]. There are many geomet-
rical structures that fulfill the condition of axial symmetry,
such as cylinders, cones, hourglass shapes, and many others.
In these instances, a calculation of GIM does not require
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Fig. 1. Schematic views of (a) object illuminated by a plane wave,
(b) computational domain, and (c) waveguide with a scatterer.

3-D FEM, but only 2.5-D, which makes the computation more
efficient.

In this article, a combination of the FEM with GIM and
the mode-matching technique is presented. A mixture of FEM
and BOR provides fast determination of GIM and, hence,
an effective analysis of the whole structure. A scatterer is
surrounded by a semicircular port, which permits an analysis
of structures with finite dimensions, as opposed to [29] where
infinite cylinders were considered (see Fig. 1). These scatterers
can be arbitrarily rotated and placed in waveguides, which
makes this method more versatile. The proposed approach is
a modification of the technique presented in [10] and [11]
where the FD method was used. The discrete part of the
proposed approach is based on [30], where axially symmetrical
waveguides were analyzed.

Moreover, utilization of FEM instead of FD eliminates the
problem of even discretization (used in FD) and permits the
use of a sparser mesh. In addition, contrary to FD [10], [11],
in FEM, there is no need to employ any effective permittivity
or mesh modifications on a metal surface.

This approach also carries great potential for the use
of model order reduction in the GIM [31]. In addition,
the mesh morphing technique can be utilized [32], which is
an undoubted advantage in the context of the design process.

II. FORMULATION OF THE PROBLEM

The aim of the analysis is to determine scattering fields in
open and closed structures consisting of axially symmetrical
objects (see Fig. 1).

In Section II-A, it is shown that the GIM can be used in
both closed and open structure analyses, i.e., to determine
the scattered field from an object at any known excitation.
Any scattering object can be replaced with an artificial object
(containing the scatterer) of simple geometry on the surface
of which the GIM is defined. In other words, the GIM can
be applied to simplify the analysis by changing the complex
geometric structure to a simple one. This approach allows
for the fields to be analytically described outside the object.
In Section II-B, the GIM for a spherical subdomain is defined.

Fig. 2. Idea of simplification involving GIM. (a) Scattering from sphere.
(b) Scattering from object with complex geometry. (c) Description of the
object by its generalized impedance matrix.

For scattering structures with axial symmetry, the GIM can be
determined using FEM with BOR, as shown in Section II-C.

A. Scattering of EM Waves in Open and Closed Structures

The analysis of electromagnetic field scattering from a
material object is based on the assumption of a known incident
field illuminating the object and searching for an unknown
scattered field from that object. In general, the problem can
be described by a set of equations (at the boundary of the
scatterer)

�E inc + �Escat = �Eabs (1)
�H inc + �H scat = �H abs (2)

where superscripts inc and scat refer, respectively, to the
incident and the scattered field by the object, and abs refers
to the absorbed field in the object. If the geometry of the
object is simple [see Fig. 2(a)], e.g., a cylinder, an ellipse,
or a sphere, the fields, both inside and outside the object, can
be described analytically by expansion in series of appropriate
functions (depending on the coordinate system used). In this
case, the mode-matching method is commonly utilized, which
allows for quickly obtainable, accurate results. When the
object is of complex geometry [see Fig. 2(b)], the analytical
description is difficult or often impossible; therefore, other
numerical techniques need to be employed, such as discrete
methods, which, while less efficient, are more versatile. How-
ever, if the electromagnetic field is calculated in the vicinity
of the object, e.g., on the surface of a cylinder or a sphere,
surrounding the object, then in further analysis, this artificial
surface can replace the object [see Fig. 2(c)]. It is then possible
to combine both methods where the discrete method is utilized
only within and in the close proximity of the object, while
outside the artificial surface, an analytical description can
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be used. Such combination is possible by relating electric
and magnetic fields on the artificial surface in the form of
impedance. In the algorithm, the electric and magnetic fields
are projected on the appropriate sets of orthogonal functions
and the impedance relation is described with respect to the
coefficients of both fields. In this approach, �Eabs and �H abs

from (1) and (2) relate to the field inside the artificial object on
the surface of which the following relation can be formulated:

CE = ZCH (3)

where CE,H denote vectors of coefficients of �Eabs and
�H abs fields. In order to minimize the computational effort,

the discrete domain should be as small as possible, i.e., the
surrounding surface should enclose the object in very close
proximity. However, due to the possibility of an occurrence
of the local singular fields at the sharp edges of the scatterer,
the surface cannot be in contact with the object.

Next, utilizing the calculated GIM, a T-matrix on the
artificial surface can be easily calculated [10]. The T-matrix
relates to the coefficients of incident and scattered fields and
with a known excitation allows for the scattered field to be
calculated. It is worth noting that such description of the
object depends on the geometry and material properties of
the object, but is independent of an excitation. Therefore,
the analyzed object, which is described by GIM or T-matrix,
can be placed in different scenarios, e.g., illuminated by a
plane wave while in free space, placed in a waveguide junction
and excited by a waveguide field or enclosed by a metallic
wall forming a cavity. Such an approach was previously
used for the analysis of structures containing inhomogeneous
dielectric cylinders [33], cylinders of arbitrary shapes [7], [34],
or rotationally symmetrical objects [10], [11] both in closed
and open structures.

The algorithm utilized in the described approach can be
presented in the form of a flowchart shown in Fig. 3. The first
step is to calculate the GIM of the analyzed object. A detailed
description of this step is presented in the following. From
the GIM, the T-matrix is calculated and object rotation can
be performed by a simple multiplication of this matrix by
rotation matrices [10] without the need for recalculation of
GIM or the T-matrix. Next, the type of analysis is chosen.
For open problems, the scattered field in near or far zones
is calculated. For closed problems, a scattering matrix of a
waveguide junction with the analyzed object is determined.
In the case of analysis of filtering structures with multiple
sections, cascading formulas for S-matrices are utilized to
calculate the scattering parameters of the entire structure.

B. GIM for a Spherical Subdomain

In the proposed method, a scatterer (or scatterers) is sur-
rounded by a virtual sphere with radius R, on the surface of
which the relation between an electric and magnetic field can
be defined. This approach permits an analysis of the structure
irrespective of excitation (in a limited or an infinite domain)
as well as rotation and duplication of the object without
repeating the analysis. Assuming basis functions describing
the electric {�eTE

nm, �eTM
nm } and magnetic {�hTE

nm , �hTM
nm } fields on

Fig. 3. Flowchart of the algorithm.

the aforementioned spherical surface, the relation between the
field expansion coefficients in these bases can be obtained [30].
This relation is well known as GIM (denoted as Z)

V = ZI (4)

where V = [VTE, VTM], I = [ITE, ITM], and

V(·) = [
V (·)

1,−1, V (·)
1,0, V (·)

1,1, V (·)
2,−2, . . . , V (·)

N,N−1, V (·)
N,N

]T (5)

I(·) = [
I (·)
1,−1, I (·)

1,0, I (·)
1,1, I (·)

2,−2, . . . , I (·)
N,N−1 , I (·)

N,N

]T (6)

are vectors containing coefficients of the corresponding
electric

�E(R, θ, ϕ) =
N∑

n=1

n∑
m=−n

(
V TE

nm �eTE
nm + V TM

nm �eTM
nm

)
(7)

and magnetic

�H(R, θ, ϕ) =
N∑

n=1

n∑
m=−n

(
I TE
nm

�hTE
nm + I TM

nm
�hTM

nm

)
(8)

Authorized licensed use limited to: Politechnika Gdanska. Downloaded on September 09,2020 at 12:15:43 UTC from IEEE Xplore.  Restrictions apply. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4

fields, where vector spherical harmonics have been adopted as
basis functions �eTM

nm = �hTE
nm = �Nt

nm and �hTM
nm = �eTE

nm = �Mt
nm

and defined as follows:
�Nt

nm = ejmϕ

(
∂ Pm

n (cos θ)

∂θ
�iθ + jm

sin θ
Pm

n (cos θ)�iϕ
)

�Mt
nm = ejmϕ

(
jm

sin θ
Pm

n (cos θ)�iθ − ∂ Pm
n (cos θ)

∂θ
�iϕ

)
.

C. Evaluation of GIM Using FEM Combined With BOR

This part of the proposed algorithm is similar to the pro-
cedure described in [30] where the waveguides with axial
symmetry were analyzed. The main difference is related to
the port definition. In [30], two circular ports were introduced
at the ends of the waveguide junction, whereas in the proposed
procedure, a single spherical port is utilized. The matrix Z is
similar and can be determined using the relation

Z = jωμ0�
−1BH G−1B (9)

where matrix G takes exactly the same form as in [30]. How-
ever, the matrices B and � need to be changed because they
are directly related to boundary conditions. By rewriting fields
as a component in the direction ϕ: �Eϕ(ρ, z) = Eϕ(ρ, z)�iϕ and
as a tangential component: �Et (ρ, z) = Eρ(ρ, z) �iρ+Ez(ρ, z)�iz ,
a weak form of the wave equation can be written for scalar
components as follows:

−
∫∫

S

jm

ρ
gradt (ρFϕ) · μ−1

r
�Et dρdz

− k2
0

∫∫
S
ρFϕεr Eϕ dρdz

+
∫∫

S

1

ρ
gradt (ρFϕ) · μ−1

r gradt (ρEϕ) dρdz

+ 2π R2 jωμ0

∫
L

Fϕ(�iϕ × �Ht) · �ir sin θdθ

= 0 (10)

and for vector components∫∫
S
ρ curlt �Ft · μ−1

r curlt �Et dρdz

− k2
0

∫∫
S
ρ �Ft · εr �Et dρdz

+
∫∫

S

jm

ρ
�Ft · μ−1

r gradt (ρEϕ) dρdz

+
∫∫

S

m2

ρ
�Ft · μ−1

r
�Et dρdz

+ 2π R2 jωμ0

∫
L
( �Ft × �Hϕ) · �ir sin θdθ

= 0 (11)

where

curlt �At = �iϕ
(

∂ Aρ

∂z
− ∂ Az

∂ρ

)

gradt f = �iρ ∂ f

∂ρ
+ �iz

∂ f

∂z
.

The relative permittivity and permeability of the structure are
represented by εr and μr , respectively, and k0 is a vacuum

wavenumber. Fϕ and �Ft are testing functions. The compu-
tational domain S is represented by a semicircle bounded
by L. The magnetic field on the boundary is decomposed
and expressed in spherical coordinates as a component in
the direction ϕ: �Hϕ(R, θ) = Hϕ(R, θ)�iϕ and the tangential
component: �Ht(R, θ) = Hr(R, θ)�ir + Hθ(R, θ)�iθ .

The local matrix B for each element q (i.e., the element of
finite element mesh) is defined as follows:

B[q] =
[

B[q]
t,TE B[q]

t,TM

B[q]
ϕ,TE B[q]

ϕ,TM

]
(12)

and its terms take form[
B[q]

t,TE

]
k,ν

= 2π R2
∫

L

�W [q]
(k) · (�ir × �hTE

ϕ,nm

)
sin θ dθ

[
B[q]

t,TM

]
k,ν

= 2π R2
∫

L

�W [q]
(k) · (�ir × �hTM

ϕ,nm

)
sin θ dθ

[
B[q]

ϕ,TE

]
k,ν

= 2π R2
∫

L
α

[q]
(k)

�iϕ · (�ir × �hTE
t,nm

)
sin θ dθ

[
B[q]

ϕ,TM

]
k,ν

= 2π R2
∫

L
α

[q]
(k)

�iϕ · (�ir × �hTM
t,nm

)
sin θ dθ

where ν = 1, 2, . . . , N(N +2) corresponds to a specific mode
nm by relation ν = n2+3n+m+1. In the analysis, the standard
hierarchical (scalar and vector) basis functions [35] α

[q]
(·) and

�W [q]
(·) of the second order were assumed. The matrix � is

defined as follows:
� = diag{�TE,�TM} (13)

where

[�TE]ν,ν = −2π R2
∫

L

�ir · (�eTE
t × �hTE∗

t

)
sin θ dθ (14)

[�TM]ν,ν = −2π R2
∫

L

�ir · (�eTM
t × �hTM∗

t

)
sin θ dθ. (15)

III. NUMERICAL RESULTS

In order to validate the proposed method, a few examples
were analyzed (both scattering and propagation problems)
and compared to commercial software or the literature. The
algorithm was implemented in the MATLAB environment, and
all of the tests were performed using an Intel Xenon X5690
3.47 GHz (two processors), 64-GB RAM computer.

The first structure investigated was a cylinder, whose dimen-
sions are presented in Fig. 4 and relative permittivity was
assumed to be εr = 3. It was located along the x-axis and
illuminated by a plane wave propagated along the z-axis and
polarized in the y-direction. All calculations were performed at
a frequency of 8 GHz, and the number of modes considered in
this analysis was N = 8. The results presented in Fig. 4 were
compared with the hybrid method (a combination of the FD
and mode-matching methods) [10] and found to be concordant.

The second considered scatterer was a dielectric cone
(see Fig. 5). In this case, the material’s parameters were the
same as in the aforementioned example and the number of
modes was set to N = 10. The dimensions of the structure
and the scattering characteristics are shown in Fig. 5. The
orientation of the scatterer and the plane wave illumination
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Fig. 4. Plane wave scattering on single dielectric cylinder at (a) plane wave
illumination, (b) schematic, and (c) dimensions: h = 20 mm, r = 6 mm, and
R = 12 mm; normalized scattered field at frequency 8 GHz in (d) xz plane
and (e) yz plane. Solid line: this method. Dashed line: FD/MM method.

angle was the same as in the first example. The results were
compared with the HFSS commercial software (red dashed
line) and a good agreement was achieved.

The third example was a dielectric post in the shape of a
dumbbell. As in the previous cases, the relative permittivity
was set to εr = 3, with the dimensions and results shown
in Fig. 6, and the number of modes required for the calcu-
lations increased to N = 15. The orientation of the scatterer
and the plane wave illumination angle was the same as in
the previous examples. The results were again compared with
HFSS, obtaining good agreement.

In all of the previously presented cases, the total compu-
tational time was less than 1 min (including mesh genera-
tion, mode matching, and FEM analysis). For comparison,
the calculation time of the analysis using the 3-D commercial
software (HFSS) was about 1 h (see Table III).

In order to present the application of the method for closed
structures, the investigated obstacles were placed in a circular
waveguide. The analyzed structure consisted of two metal
cylinders (R = 2.3 mm and h = 10 mm) placed in a
waveguide with radius R = 10 mm at distance l1 = 39 mm.
The scattering parameters were collected and shown in Fig. 7.

Fig. 5. Plane wave scattering on single dielectric cone at (a) plane wave
illumination, (b) schematic, and (c) dimensions: h = 20 mm, r = 6 mm, and
R = 12 mm; normalized scattered field at frequency 20 GHz in (d) xz plane
and (e) yz plane. Solid line: this method. Dashed line: HFSS.

Both polarizations with respect to the cylinder axis were
considered and are denoted by index) along the axis and per-
pendicular to the cylinder axis. For all obtained results, excel-
lent agreement with commercial software calculations was
achieved. The analysis was performed with spherical modes
determined by N = 8, and waveguide modes were determined
by parameter N f = 8 [11]. Such a choice was a consequence
of the convergence examination presented in Tables I and II
for different distances between the cylinders l1. The percentage
error was evaluated according to the following formula:

δS11 =
∥∥S11 − SHFSS

11

∥∥∥∥SHFSS
11

∥∥ (16)

where

‖S‖ =
√∫ fmax

fmin

|S( f )|2d f (17)

fmin and fmax define the frequency range, whereas the refer-
ences were obtained from HFSS simulations.

The next example considers the filtering structure presented
in Fig. 8 consisting of a waveguide with radius R = 10 mm
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Fig. 6. Plane wave scattering on single dielectric dumbbell at (a) plane
wave illumination, (b) schematic view, and (c) dimensions: r1 = 3 mm,
r2 = 1.5 mm, h = 14 mm, and R = 12 mm; normalized scattered field at
frequency 20 GHz in (d) xz plane and (e) yz plane. Solid line: this method.
Dashed line: HFSS.

TABLE I

PERCENTAGE ERROR δS11 OF SCATTERING PARAMETERS FOR
STRUCTURE FROM FIG. 7 WITH l1 = 19 mm

and three metal cylinders. The dimensions of the middle
cylinder were r = 0.51 mm and h = 13.1 mm and of the
two side cylinders, r = 0.51 mm and h = 10.3 mm. The

Fig. 7. Schematic of the structure (l1 = 39 mm) and scattering parameters
of two metal cylinders placed in a waveguide.

TABLE II

PERCENTAGE ERROR δS11 OF SCATTERING PARAMETERS

FOR STRUCTURE FROM FIG. 7 WITH l1 = 14 mm

distance between the cylinder centers was l1 = 36 mm. The
scattering parameters of the filter are presented in Fig. 8.
The obstacles used in the previous example affected both
polarizations as they were both long and thick. The reduction
of the obstacle dimensions in one direction allows its influence
to be decreased for a chosen wave. Therefore, in this example,
the cylindrical posts were very thin that resulted in the
complete transmission of perpendicular polarization through
the structure.

The computational time of the considered waveguide exam-
ples was about ten times shorter than the calculation performed
in the 3-D commercial software (see Table III).

As the last example, a periodic structure composed of
dielectric cylinders of radius r = 2.3 mm, height h = 10 mm,
and dielectric permittivity εr = 12 was calculated. Such

Authorized licensed use limited to: Politechnika Gdanska. Downloaded on September 09,2020 at 12:15:43 UTC from IEEE Xplore.  Restrictions apply. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

7

Fig. 8. Schematic of the two-pole filter (l1 = 36 mm) and scattering
parameters of the filter.

Fig. 9. Normalized propagation coefficients versus frequency for the periodic
structure composed of dielectric cylinders with εr = 12 of dimensions:
r = 2.3 mm and h = 10 mm. (a) Period p = 40 mm. (b) Period p = 60 mm.

TABLE III

APPROXIMATED COMPUTATIONAL TIMES

structures can be analyzed as a cascade connection of a number
of waveguide sections of length p (period of the structure)
including the investigated objects and described by a scattering
matrix. However, the result will describe only a pseudoperiodic
structure. Utilizing a formula described in [36], it is possible
to calculate propagation coefficients γ = α + jβ, with α and
β denoting the attenuation and phase coefficients, respectively.
The results for the structures with a different period p and for
both orthogonal polarizations of fundamental mode are shown

in Fig. 9. By changing either period, the dimension, or the
shape of the inclusion, it is possible to create a structure with
specific passbands and stopbands.

IV. CONCLUSION

A hybrid technique was utilized to investigate structures
containing axially symmetrical scatterers. The utilization of
BOR and GIM significantly improves the efficiency of the
discrete analysis, reducing the computational time by at least
an order of magnitude. BOR allows 2.5-D FEM to be utilized
for the analysis of a 3-D structure, and GIM is particularly
useful in optimization procedures when many identical objects
with arbitrary rotation are being investigated (as the rotated
and replicated objects do not need FEM recalculation). The
proposed approach can also be applied to study periodic/quasi-
periodic structures as well as whole devices composed of
different waveguide sections. The validity and efficiency of
the presented technique have been verified, which confirms its
usefulness for the design and optimization process.
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