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Summary 
In the paper a hybrid model of a geared multirotor system has been developed. The model is 

obtained by application of both the modal decomposition methodology and the spatial 
discretization method. Reduced modal model was constructed for the system without gyroscopic 
and damping effects. The gyroscopic interaction, damping and other phenomena which are 
difficult to include in the modal approach were modeled by application of simply lumping 
technique. Such approach enables to obtain accurate, low order model of geared rotor system with 
coupled bending and torsional vibrations. In the model it is possible to include nonproportional or 
nonlinear damping. Obtained hybrid model has been compared with high order FEM model. 
Simulation results prove that proposed method of modeling is efficient and relatively easy to use. 

 
Keywords: mechanical system, modelling, vibration, modal analysis, model reduction. 

 
HYBRYDOWY MODEL UKŁADU WIRNIKÓW Z PRZEKŁADNIĄ 

 
Streszczenie 

W artykule przedstawiono hybrydowy model układu wielowirnikowego z przekładnią. 
Otrzymano go stosując dwie metody: dekompozycji modalnej oraz dyskretyzacji przestrzennej. 
Zredukowany model modalny zbudowano dla układu bez efektu żyroskopowego i tłumienia. 
Oddziaływania żyroskopowe, tłumienie oraz inne zjawiska, które są trudne do uwzględnienia w 
modelu modalnym modelowano stosując metodę elementów skończonych. Takie podejście 
umożliwia otrzymanie dokładnego modelu niskiego rzędu uwzględniającego sprzężone drgania 
giętno-skrętne. W modelu można uwzględnić nieproporcjonalne lub nieliniowe tłumienie. 
Skonstruowany model hybrydowy został porównany z modelem referencyjnym wysokiego rzędu 
otrzymanym metodą sztywnych elementów skończonych. Wyniki symulacji potwierdzają 
skuteczność zastosowanej metody. 

 
Słowa kluczowe: układy mechaniczne, modelowanie, drgania, analiza modalna, redukcja modeli. 

 
 

1. INTRODUCTION 
 

Rotor systems are constructed from components, 
some of them are lumped parameter elements and 
others distributed ones. Such systems are composed 
of rigid disks mounted on a flexible shafts [3]. 
Avoiding the mathematical difficulties arising from 
the manipulation of sets of mixed ordinary and 
partial differential equations, different approximate 
lumped models of distributed-lumped systems are 
usually applied. By using the finite-element method 
it is possible to obtain an accurate model and final 
results. However, obtaining a sufficiently accurate 
result requires a very fine mesh size and therefore a 
high order model.  

For the response analysis of large systems, the 
use of a high order model requires considerable 
computer run time and memory. Additionally, in 
many cases a high order model is not very useful, 
e.g. in control systems analysis and design. In such 
cases designers greatly benefit from the availability 

of very small, low order models that capture the 
behaviour of a complex system with appropriate 
accuracy. However a simple but adequate model of a 
complex distributed-lumped parameter system  
should reflects the basic properties and provides 
good insight into the modelled process.  

In this paper the method of modelling a geared- 
rotor system is presented. The proposed approach 
enables to obtain an accurate, low-order, lumped 
parameter representation of the investigated system. 
The final model consists of: 1- reduced modal model 
of an undamped, linear beam subsystem without 
gyroscopic phenomena and 2 - spatially lumped 
model of the gyroscopic effect and non-proportional 
and/or nonlinear damping. The gear mesh is 
modelled using a spring (spring – damper) element 
along the pressure line [10]. A gear transmission 
error can be introduced as a displacement excitation. 
Nonlinearity of the gear mesh (backlash) can be also 
easily introduced in such model. 
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2. RFEM MODEL OF GEARED ROTOR 
SYSTEM 

 
Let us consider the rotor system presented in Fig. 1. 

 
Fig. 1. General view of the considered rotor system 

 
The considered geared rotor system consists of 

three shafts rotating with angular velocities: Ω1≠0, 
Ω2≠0, Ω3=0. Two of them 1 and 2 (Fig. 1) are 
coupled by a gear. Another pair of rotors 2 and 3 are 
coupled by bearing. 
In the case of a geared rotor system a coupled 
phenomenon of torsional and lateral vibrations can 
appear as the result of the gear meshing effect. There 
is a large number of modelling methods related to 
geared rotor system coupled vibrations [1,10]. The 
purpose of this paper is to present a simplified 
hybrid model of a geared rotor system obtained by 
application of both: modal decomposition and 
spatial discretization methods. 
Assuming that the axial motion of the shafts are 
negligible, each shaft can be considered as a simply 
supported beam vibrating in two perpendicular 
planes: xy, xz and as a torsional shaft vibrating 
around x axis. Torsional and transverse vibrations 
are coupled by the gear mesh spring (GMS-Fig. 1), 
which represents the gear mesh stiffness.  

The model of presented structure was built based 
on the Timoshenko beam model. It includes: rotary 
inertia, shear deformation, the gyroscopic effect as 
well as internal and/or external damping. 
By applying the rigid finite-element method 
(RFEM) [2,4] one can obtain the following 
equations for the rotor system: 
 
 fqGKqqBqM =+++ &&&& , (1) 
where: 
q – vector of generalized displacement, f – vector of 
generalized forces, M,B,K,G – matrices of inertia, 
damping, stiffness and gyroscopic respectively, 
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∗
1G , ∗

2G , ∗
3G  - diagonal, gyroscopic matrices of FE-s 
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xz – angular bending displacement in xz plane, 
yz – torsional displacement, 
subscripts 1, 2, 3 denote subsystems (rotors). 
 
Submatrices in: By, Bz, Byz, Bxz, Bxy, B0 and in Ky, Kz, 
Kyz, Kxz, Kxy, K0, G0 have dimensions related to 
number of finite elements applied in the RFEM 
model. 
All matrices were obtained from RFE model [3,4] by 
rearrangement according to general displacement q. 
 
In general, f can be a function of Ω1, Ω2 and Ω3 (e.g. 
centrifugal forces). 
By substituting: 
 qBf &=B , qGf &=G , (2) 
we can present equation (1) in the form 
 
 GB fffKqqM ++=+&&  (3) 
or 
 Σ=+ fKqqM && , (4) 
where 
 GB ffff ++=Σ . (5) 
 
3. MODAL DECOMPOSITION 
 

The model described by equation (4) can be 
written in modal representation as: 
 
 mmmmm fqKqM =+&& , (6) 
where: 

),,,,( 1 nr
T

m mmmdiag KK== MΦΦM ,
),,,,( 1 nr

T
m kkkdiag KK== KΦΦK , 

)( 1 mnmrmm qqqcol LL=q , ∑= fΦf T
m , 

),,,,( 1 nrcol φφφΦ LK= , 
in which: 
mi – modal coefficients of inertia, ki – modal 
coefficients of stiffness φi – eigenvectors of matrix 
M-1K. 
By solving (6) we can next obtain the solution of (1) 
in the following form: 
 mΦqq = , mqΦq && = . (7) 
 
4. REDUCED MODAL MODEL 
 

Modal model (6) can be reduced by removing 
those rows and columns in mM , mK  which are 
insignificant to the system’s dynamics. Thus, in such 
approach we obtain: 
 
 mrmrmrmrmr fqKqM =+&& , (8) 
where: 

),,( 1 rmr mmdiag K=M , ),,( 1 rmr kkdiag K=K , 
),,( 1 mrmmr qqcol K=q , ∑= fΦf T

rmr , (9) 
),,( 11 rr col φφΦ K= . 

An approximate solution of (1) by the application of 
reduced order model (8) can be obtained from the 
formulas: 
 mrrqΦq = , mrrqΦq && = . (10) 
 
However, in order to obtain better static accuracy of 
reduced model (see chapter 6) one can apply also 
modal stiffness coefficients of modes r+1, … , n 
(static correction). In such case instead of (9) we 
have: 
 

)0,,0,,,( 1 KK rmr mmdiag=M , mmr KK = , (11) 

mmr qq = , mrmr ff = , rr ΦΦ = . 
 
It should be mentioned that applying formulas (11) 
the order of the model is the same as by application 
(9). 
 
5. HYBRID REDUCED MODEL 
 
By taking into account (2) and (5) we can transform 
(8) into the following form: 
 

mrr
T
rmrr

T
r

T
rmrmrmrmr qGΦΦqBΦΦfΦqKqM &&&& −−=+  

 (12) 
Equations (12) and (10) present the final hybrid 
model, in which f is the input data and q is the 
response of the system. A block diagram describing 
the above hybrid model is presented in Fig. 2. This 
shows that in the hybrid model matrices mrM , mrK  
are taken from modal reduced models (8) and 
matrices B, G origin from the initial FEM model (1). 
 

 
 

Fig. 2. Block diagram of the hybrid model 
 
Proposed method of hybrid modelling of geared 
rotor system was previously applied by authors for 
successful modelling of other (non geared) rotor 
systems [5-9]. 
 
6. NUMERICAL CALCULATIONS AND 

RESULTS 
 
The continuous structure (Fig. 1) is divided into 203 
rigid finite elements (RFE) and 209 spring damping 
elements (SDE). Discrete model obtained by using 
the RFE method is shown in Fig. 3b. Each RFE has 
fife degrees of freedom, i.e. transverse displacement 

Modal reduced model of the system  
without damping and without gyroscopic effect 
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along axes y and z and angular displacement around 
all three axes. 

 
 

 
 

Fig. 3. Investigated continuous structure – a) and its 
discrete model – b) 

 
Parameters of RFEs are presented in Tabs. 1÷4. 
They are calculated for the following physical data: 
modulus of elasticity (Young) E=2·1011 [Pa], shear 
modulus (Kirchhoff) G=7.8·1010 [Pa], mass density 
ρ=8000 [kg/m3]. 
Denotation of the RFEs parameters one can find in 
[3,4]. 
 

Tab. 1. The inertia coefficients of RFE no. i 
i mi Jy,i Jz,i 
 [kg] [kgm2] [kgm2] 

1, 101, 153, 203 0.01256 3.4033·10-7 6.2831·10-7 
2÷15, 17÷100, 154-167,169-202 0.02513 8.3775·10-7 1.2566·10-6 

16 5.02654 0.0127339 0.0253840 
168 2.77716 0.0040673 0.0079496 

102, 152 0.11875 6.2503·10-5 1.2451·10-4 
103÷126, 128÷151 0.23750 1.2649·10-4 2.4902·10-4 

127 10.54519 0.06341441 0.12665307 

 
Tab. 2. The stiffness coefficients of SDE no. k  

i j k ck,z [Nm-1] ck,x=ck,y [Nm-1] ck,xz [Nm] 
1 2 1 

M  M  M  
100 101 100 

6283185307.179 2067560665.144 157079.633 

102 103 102 

M M  M  
151 152 151 

59376101152.847 19538448285.609 31127921.029 

153 154 153 

M  M  M  
202 203 202 

6283185307.179 2067560665.144 157079.633 

81 152 101 
0 1 0 

101 0 0 
0 102 0 
0 153 0 

203 0 0 

2·1015 2·1015 0 

 
The full RFEM model was used as the reference 
model for validation of simplified hybrid model of 

considered system. In this model the gyroscopic 
effect was included. Fig. 6 presents the influence of 
the gyroscopic effect on the frequency 
characteristics, in the case when the angular 
velocities Ω1=Ω2=1000 [rad/s] were assumed. 
 

Tab. 3. The damping coefficients of SDE no. k  
i j k bk,z [Nsm-1] bk,x= bk,y [Nsm-1] bk,xz [Nsm] 
1 2 1 

M  M  M  
100 101 100 

2617993.878 861483.61 65.45 

102 103 102 

M  M  M  
151 152 151 

24740042.147 8141020.119 12969.967 

153 154 153 

M  M  M  
202 203 202 

2617993.878 861483.61 65.45 

81 152 101 
0 1 0 

101 0 0 
0 102 0 
0 153 0 

203 0 0 

0 0 0 

 
Tab. 4. The connection coordinates of SDE no. k to 

RFE no. i 
i j k sr,k,z [m] sr,k,x [m] sp,k,z [m] sr,k,x [m] 
1 2 1 0.0025 0 -0.005 0 

M  M  M  
0.005 0 -0.005 0 

100 101 100 0.005 0 -0.0025 0 
102 103 102 0.0025 0 -0.005 0 

M  M  M  
0.005 0 -0.005 0 

151 152 151 0.005 0 -0.0025 0 
153 154 153 0.0025 0 -0.005 0 

M  M  M  
0.005 0 -0.005 0 

202 203 202 0.005 0 -0.0025 0 
81 152 101 0.0025 0 0 0 
0 1 0 0 0 -0.0025 0 

101 0 0 0.0025 0 0 0 
0 102 0 0 0 -0.0025 0 

 
Taking into account the RFEM model without 
damping and gyroscopic effect the modal reduced 
model was built. Fig. 4 presents eigenfunctions 
corresponding to too selected eigenvalues: 
ω1=122.62, ω3=322.81 of the system (without 
damping and gyroscopic interactions). 
Modal reduced model (9, 11) was built for 8 retained 
modes. Comparison of frequency characteristics 
related to full undamped model and reduced model 
are presented in Fig. 5. 
The modal reduced model was next combined with 
discrete model of gyroscopic interaction and 
damping. In this way a hybrid model of considered 
system was obtained. 
To verify the obtained reduced hybrid model, its 
frequency response was compared to that of the full 
FEM model (reference model). The results are 
presented in Fig. 7 and 8. 
 
The simulation results prove that obtained hybrid, 
reduced model presents very nice accuracy in the 
frequency range related to the number of retained 
modes. 
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Fig. 4. Examples of eigenfunctions of investigated 
rotor system 

 

 

 
Fig. 5. Modal models validation in frequency 

domain: a) input –force acting along z axis and 
applied at the 16 RFE, output – transverse 

displacement at the same point and along the same 
axis; b) input – kinematic excitation (displacement) 
along gear pressure line, output – the same as in the 

case a) 

 

 

 
Fig. 6. Influence of the gyroscopic effect on 

frequency characteristics. Inputs and outputs 
in a) and b) are the same as in Fig. 5 

 

Fig. 7. The frequency characteristics of models with 
gyroscopic effect and without damping: 

 a) force excitation, b) kinematic excitation. Inputs 
and outputs are the same as in Fig. 5 

 

 

 
Fig. 8. The frequency characteristics of models 

with gyroscopic effect and non proportional 
damping: a) force excitation. Inputs and outputs 
are the same as in Fig. 5, b) kinematic excitation 
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7. CONCLUSIONS 
 
In this paper the method of modelling a geared rotor 
system is presented. The proposed approach enables 
to obtain an accurate low-order lumped parameter 
representation of the investigated system. The final 
model consists of reduced modal models of 
undamped beam/shaft systems and spatially lumped 
model of the gyroscopic effect and a non-
proportional damping model. The gear mesh was 
modelled using a spring element along the gear 
pressure line. The transmission error can be 
introduced as a displacement excitation. The 
obtained simulation results, in the form of 
corresponding frequency characteristics, prove that 
the proposed method is efficient and can be applied 
in the case of more complex geared rotor systems. 
For example, nonlinear damping or nonlinearity of 
gear mesh can be included. Also unbalanced and 
speed varying rotors can be considered. In such 
cases the time domain investigations must be 
performed. It will be the authors future work in the 
rotor dynamics modelling area. 
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