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Summary 

In the work presented is a new approach to modelling the bubbly flow in the boundary layer. 

The approach is based on summation of dissipation energy coming from the shearing 

turbulent flow in the absence of bubbles and the dissipation contribution from the presence of 

bubbles. As a result we obtain the dissipation of equivalent single phase turbulent flow. The 

model has been solved using the method of asymptotic correction to provide an explicit 

differential equation describing the velocity profile. That can be solved with the assumption of 

constant void fraction distribution to yield the analytical velocity profile. Alternatively, author 

has developed his own model of lateral void migration, which is distinct from other models by 

virtue of presence of another rotational velocity. Velocity distributions calculated using the 

new model have been compared against the experimental data of turbulent bubble flows with 

small void fraction. A good consistency between calculations performed using a new model 

and available experimental data has been obtained. Additionally, a solution of the temperature 

field is also given. In the case of a constant void fraction distribution analytical distribution of 

the Nusselt number is given or the set of differential equations needs to be solved. 

NOMENCLATURE 

 - void fraction 

db - bubble diameter 

D - bubble diffusivity 
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 - layer thickness 

e - dissipation energy 

F - force acting on a bubble 

g - gravity 

 - von Karman constant 

n - number of bubbles 

N - dissipation power 

 - density 

 - turbulent viscosity 

 - shear stress 

T - temperature 

u, - longitudinal and transverse velocity 

V - volume 

y - transverse co-ordinate 

 

Subscripts 

 

b - bubble 

D - drag 

e - equivalent 

l - liquid, linear 

n - non-linear 

R - relative bubble to liquid 

t - turbulent 

TP - two-phase 

w - wall 
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1. INTRODUCTION 

 

Correct modelling of the gas phase distribution is of primary importance for pressure 

drop predictions as well as heat and mass transfer calculations. Bearing in mind, that two-

phase flow mechanisms are governed by multidimensional effects, which occur at specific 

flow regimes of bubbly flow it is so difficult to capture the physics of such behaviour. In 

the case of upward bubbly flow there can be found two distinct distributions of void 

fraction, one form which peaks in the core of the flow, i.e. the so called phenomenon of 

“core peaking”, and a case with a peak close to the wall, named the “wall peaking”. 

Influences of void fraction peaking on heat transfer cause significant modelling problems. 

Several multidimensional mechanisms have been proposed to explain such behaviour, 

however so far none of them has proved to be successful. 

A great deal of effort has been devoted to the development of models capable of 

describing two-phase flows, Drew and Wallis [1]. Calculations of velocity distributions 

and modelling of interfacial phenomena in the flows with dispersed phase show numerous 

constraints of such models, Lance and Lopez de Bertodano [2]. These constraints stem 

primarily from the fact that inappropriate closure equations have been assumed, which 

describe the momentum exchange at the interface and turbulence of each phase. The 

closure equations have either no correct physical meaning or the mechanisms describing 

the phenomena are not accurately captured. Complexity of problems concerned with two-

phase flows renders that the solutions are sought by all possible means, such as 

generalisation of the results of experimental investigations, theory of similarity and 

theoretical investigations. The most appropriate at the moment model is the four field two 

fluid model, Lahey and Drew [3], but even that model, despite its undisputed successes in 

simulations of vertical flows in ducts, free external flows or subcooled boiling, the four 

field two fluid model still requires research into the fundamental issues of physical 

phenomena governing the flow. Analysis of the phenomena occurring in the two-phase 

flow is a very difficult task due to the complexity of the phenomena under consideration. 

On the other hand, usage of the four field two fluid model requires calculations using 

modern CFD solvers such as for example PHOENICS, CFX or purpose written software. 

In the literature on two-phase flows there can be found a number of experimental data, 

which have been conducted in order to understand better the structure of a turbulent bubble 

flow. Serizawa et al. [4], Wang et al. [5], Nakoryakov et al. [6], Liu [7] analysed the bubbly 
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flow, where the main turbulence changes and void fraction distributions took place in the 

vicinity of the wall. These research has, however, been done for the case of flows in pipes, 

where due to rather small pipe diameters the measurements and their interpretation was 

quite difficult. Recently, there appeared a new study of the bubble flow in the boundary 

layer on a flat plate due to Moursali et al. [8], Marie et al. [9]. This detailed data is 

concerned with a much simpler configuration, namely that of a turbulent boundary layer 

developing on a vertical flat plate immersed in a uniform upward bubbly flow and this data 

has been chosen for validation of the presented model. 

As known, the solution to heat transfer in the fully developed single phase boundary 

layer flow is a universal velocity and temperature field. The aim of the present work is to 

present a similar solution for the case of fully developed bubbly flow in the boundary layer. 

This is by no means simple problem which requires prior knowledge of the velocity field, 

i.e. velocity profile and void fraction distribution in the boundary layer. The author has 

developed his own concept of modelling of two-phase flow in the boundary layer, 

Mikielewicz [10, 11], which in the case of a constant void fraction gives an analytical form 

of velocity distribution. Such model of the hydrodynamics of bubble flow can be 

subsequently used to obtain the temperature field. The temperature field can be obtained in 

a twofold manner. Firstly, it will be derived for the case of a constant void fraction in the 

boundary layer. Secondly, own model for a variable void fraction across the boundary 

layer, Mikielewicz [12], will be used in resolution of the temperature field. In this case it is 

necessary to solve three ordinary differential equations of the first order. Results of 

calculations have been compared against the limiting case of theoretical correlations 

describing the flow over the plate by the viscous single phase fluid. Obtained have been 

satisfactory results. 

 

2. MODEL OF A TURBULENT TWO PHASE FLOW 

 

Firstly presented will be the model of the bubbly flow. It is derived based on energetical 

considerations of the dissipation process in the two-phase bubbly flow. The following 

assumptions have been made: 

1. Turbulence exists only in the liquid phase. 

2. Dispersed phase (spherical bubbles) occupy some volume of the flow and influence the 

momentum and turbulence of liquid phase. 
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3. There  is no motion of the gaseous phase inside the bubbles. 

4. Fluid motion is fully developed. 

5. Surface void fraction is equal to volumetric void fraction. 

 

A general flow schematic is presented in Fig. 1. The problem is considered as one-

dimensional. We consider a control volume V containing a number of vapour bubbles n. The 

underlying hypothesis for derivation of the new model of bubbly flow is a postulate that the 

total dissipation energy in the flow is a sum of dissipation coming from the shearing liquid 

flow and dissipation from the bubbles generating the dissipation, which in the specific form 

yields: 

 bTPe eee +=  (1) 

Dissipation energy of the two-phase flow can be defined as a power lost due to friction by an 

arbitrary layer isolated from the velocity profile, of the thickness  and area S, with respect to 

the control volume (see Fig. 2). 

After some re-arrangements, the dissipation of the flow in the control volume is expressed as 

a ratio of the square of the shear stress in the continuous liquid phase to the turbulent 

viscosity: 

 
( )

t

l

t

TPTPTPTPTPTP

TP

u

S

uS

V

N
e















 222 1−
=====  (2) 

where TP describes the shear stress in two-phase flow and l=lul/y is the shear stress in 

liquid. As can be seen, the shearing flow influence is modelled by the quantities related to the 

liquid flow. 

The specific energy dissipation from the bubbles is defined as a ratio of power dissipated by 

the bubbles in the control volume. The dissipation power can be expressed as a product of the 

total force acting on the bubbles and the relative bubble velocity. The total force acting on the 

bubble in the present state of work will be expressed as an aerodynamic force. Using the 

above assumptions, the equation expressing the energy dissipation due to the presence of 

bubbles takes a form: 
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where 
42

22

bRl

Db

du
CF


= ; 

6

3
bd

V


=  and b is the stress resulting from the presence of 

bubbles.  

 

Finally, we assume the idea of the equivalent two-phase flow, which is regarded as a flow 

with single phase properties corresponding to the properties of two-phase flow. Dissipation of 

the equivalent flow in the control volume of arbitrary layer isolated from the flow can be 

written analogically to (3) as: 

 
t

e

ee


 2

=  (4) 

The turbulent viscosity appearing in the model is modelled using the Prandtl mixing length 

model. In our analysis we will also use the following quantities required in reduction of 

equations to the non-dimensional form: 
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Substituting (2), (3) and (4) into (1) we obtain a relation linking the shear stress in the two-

phase flow with turbulent stresses of continuous phase and energy of dissipation from the 

presence of bubbles, i.e. the model of two-phase flow. Substituting the Prandtl mixing length 

model for the turbulent viscosity and casting the whole expression into a non-dimensional 

form we get: 
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 (6a) 

where M is defined as: 

 
42

3

4

3


 u

v

d

uC
M

b

RD=  (6b) 

Equation (6a) is a highly non-linear equation of the first order, which can only be solved 

numerically. However, it obeys the asymptotic condition, i.e. when the void fraction, =0, we 

have a single phase flow of liquid alone. The above result can be cast into a more general 

form which describes another very important issue, i.e. that the stress in the two-phase flow is 
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a sum of the squares of stresses coming from the shear stress in liquid without the presence of 

bubbles and interaction of bubbles on the liquid. This is a geometrical summation rather than 

the algebraic one, often quoted in the literature: 

 222

bTPe  +=  (7) 

Relation (7) stems directly from (1) if substituted are expressions (2), (3) and (4). It forms 

therefore the extension of acknowledged so far assumptions made by other authors, who 

regarded that stresses are linearly dependent, Lance et al. [13]. The assumption of a linear 

relation between the shear stress coming from the shearing liquid flow and the bubbles is the 

simplest of all assumptions and in reality is always valid for infinitely small change of 

parameters. In a wider range of variation of parameters a non-linear behaviour appears. 

Postulated hypothesis (1) results with a geometric summation of stresses (7), hence shows the 

theoretical foundations of the model, which are quite different from the ones hitherto 

assumed. Asymptotic analysis of (7) gives the following: if the term e/b → then e→b, 

whereas in the case when e/b →0 then e→TP. Such relation exhibiting the non-linear 

behaviour of equivalent stress cannot be obtained with linear assumption of stress variation. 

 

3. UNIVERSAL VELOCITY PROFILE FOR BUBBLE FLOW 

 

It is generally acknowledged that the numerical methods cannot provide an analytical form of 

the solution, which is much more useful for discussion than tabulated data or graphs; same 

pertains to the generality of the solution obtained in this way. In this light an attempt has been 

made to provide an approximate solution of equation (6a) valid in the entire range of 

considered void fraction. The method of solution is based on the method of asymptotic 

correction, Polyanin and Dilman [14]. Asymptotic correction allows us to effectively improve 

various approximate formulas obtained earlier from both theoretical considerations and 

experimental data using the exact asymptotes of the original boundary problem. Applying this 

method to (6a) the following formulae describing the velocity gradient in a two-phase 

boundary layer can be obtained [11]: 
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Equation (8) is an ordinary differential equation. When we could assume a constant void 

fraction distribution then (8) has a following analytical solution: 

 
( )

( )
C

y

yM
u +

+−

−
−=

+

+
+

42/1

2/1

1
ln

1

1 


 (9) 

Equation (9) can be regarded as the law of the wall for two-phase bubble flows. In order to 

determine the integration constant C we need to assume some division of the two-phase flow 

into regimes. Due to the fact that the structure of the two-phase flow is yet to be satisfactorily 

understood, it has been assumed in the present work that the division of the flow similar to the 

single phase flow holds. In some literature there is assumed that the non-dimensional 

thickness of the laminar sublayer extends to y+=11.6, Troshko and Hassan [15]. In the present 

case, it has been assumed that in the laminar sublayer, of the assumed thickness y+=8, there 

are no bubbles and then the constant C is determined to be C=7.7 for =0.4. 

 

4. MECHANISM OF LATERAL MOTION OF BUBBLES 

 

The correct solution to equation (8) should contain the relation describing the void fraction 

distribution across the boundary layer. This task is by no means simple. So far several 

researchers have dealt with this problem, however without much success. It has been 

acknowledged that the mechanism of lateral migration of bubbles in the vicinity of the wall 

stems from the balance of lateral and drag forces, Moraga et al. [16]. 

 

Horizontal forces acting on the bubble have schematically been presented in Fig. 1. It must be 

noted that the bubble is considered here as a gas bubble surrounded by a thin layer of liquid. 

Such approach requires consideration of contribution of the added mass effect. The added 

mass effect is considered here both in the translative lateral motion of the bubble as well as 

the bubble’s rotating motion [17]. 

 

In order to consider the bubble lateral motion in the work considered is a fully developed 

bubbly flow under steady-state conditions. In this case vertical forces are neglected in 

derivation of the lateral motion. It is assumed that the lift force FL is balanced by the lateral 

drag force FD and the inertia force. The bubble inertia force in the lateral translative motion 

has been included here and the force balance on the bubble therefore takes the form: 
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DL

b

b
FF

td

d
m −=


 (10) 

where mb is a bubble virtual mass, which is modelled as a half of the mass of displaced 

liquid, see Fig. 1. Mass of displaced liquid has been calculated [11] as a thin layer of liquid 

surrounding the bubble of thickness . Sought added mass is then equal to 12/3

bl d . 

Additionally, in (10)  b is a lateral bubble velocity. In the one-dimensional steady state 

flow the lift force can be expressed in the form: 

 


RblLL udCF 3

6
=  (11) 

The relative bubble velocity, uR, is approximated by the bubble terminal rise velocity in the 

quiescent container, uR=ub-ulu. Such relation is applicable in the case of small void 

fractions. The angular velocity of considered bubble resulting from the velocity field is 

y

u

d

u l

b

l




 2

2



= . The lift coefficient was assumed a constant value of CL=0.1. 

There is however another influence on the bubble rotation, which has yet to be considered in 

the literature. It is caused by the fact that the bubble in vertical upward motion releases some 

space behind it, which is subsequently filled by the liquid pushed away by the bubble from its 

front [12], Fig. 3. If we consider n bubbles in a given control volume travelling upwards, then 

we can assume that each bubble occupies an imaginary channel of the area of 1/n, Madejski 

[18]. These channels have different cross-sectional areas due to the fact that there is a lateral 

distribution of dispersed phase in the channel. A continuity equation can be written for a 

selected plane perpendicular to the flow in the form: 

 ( ) 0
4

1
2

=+− dy
d

Atdu b
kR


  (12) 

If we define the void fraction in the imagined channel as a ratio of bubble projection area to 

the area of the subchannel, i.e. in the form 
k

b

A

d

4

2
 =  then from equation (12) we can derive 

the liquid velocity, s, in the direction opposite to the liquid motion dtdys /=  

 Rus




−
−=

1
 (13) 
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On such basis velocity, opposite in direction to the liquid velocity, can be derived, which 

creates an additional rotation of the bubble defined as [10,11]: 

 
( ) 









−
−=




=

yd

ddu

y

s bR 




22
1

2
2  (14) 

Additional angular velocity acting on a bubble, which subsequently can be algebraically added 

to the angular velocity resulting from the velocity profile, depending on the concentration 

profile, i.e. wall peaking or core peaking, acts in the same or opposite direction as rotation 

stemming from the primary velocity profile. In the case of two rotations with opposite signs 

we can observe the motion in one or another way. Such motion is identified by the bubble 

diameter contained in uR, i.e. for a certain range of bubble diameters the motion is towards the 

wall, whereas in others, towards the core of the flow. This has an experimental confirmation, 

Žun [19], where it has been concluded that in the range from 0.8 mm to 5 mm there is wall 

peaking in the upward flow, whereas for other diameters the maximum takes place in the 

location of the core of the flow. The presence of a second rotation should contribute to 

explanation of such behaviour. 

 

In connection to this fact the resultant circulation in (11) ought to be changed, as now it 

consists of two components, i.e. =1
0+2

0. The total circulation can be cast as follows 

 
( ) 
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0
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1

2
2  (15) 

 

5. MODELLING OF ADDED MASS IN ROTATING MOTION 

 

 Up to now we have been considering the bubble in inviscid liquid flow. This is not true 

as in all liquid there are shear stresses acting on the bubble reducing its angular velocity. In 

this light, the angular velocity needs to be changed. The balance of forces acting on the bubble 

in its rotating motion can be written as: 

 ( ) 00 =+ J
td

d
M  (16) 

where M0 is a rotation resistance moment, J – moment of gas-liquid system inertia with 

respect to the centroid,  - angular velocity of centroid. However, there are other forces acting 
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on the bubble, but they do not produce a force couple with respect to the centroid. The 

rotation resistance moment with respect to the centroid has been given by Lamb [20] 

  lbdM 3
0 =  (17) 

where the angular velocity is a resultant velocity acting on the bubble, i.e. in our case it acts 

on the sum of angular velocities. Referring to Lamb [20] we can conclude that the bubble 

inertia is increased by the half of the mass of displaced liquid, which subsequently can be 

expressed as a thin layer of liquid of thickness  surrounding the bubble, and hence the sought 

mass is 12/3

bl d . If we compare the relations  2

bd = 12/3

bl d  then we obtain the 

thickness of modelled liquid layer as 12/bd=  [18]. It can be seen that the considered liquid 

film is very thin. Total moment of inertia of bubble is 

 
1202
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60

55
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l

glb
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dd
JJJ

















+=+=  (18) 

Lets cast the balance of forces on a bubble in a slightly different form 

 0M
td

yd

yd

d
J −=


 (19) 

The derivative dy/dt expresses the bubble lateral velocity, b. As a result of integration of (19) 

we can obtain variation of angular velocity with respect to the distance from the wall. This is 

described by the relation 
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y
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y
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3
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  (20) 

With the view to see the major trends in the influence of added mass on bubble angular 

velocity lets assume that the lateral velocity is constant. This assumption is correct for the vast 

area of the flow. We obtain then the following relation 
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6. THE MODEL OF VOID FRACTION DISTRIBUTION 

 

Lateral drag force can be written in the form: 

 
82

222
blb

D
bl

DD

d
CACF


==  (22) 

The drag force will be fully defined when the friction factor will be adequately prescribed in 

order to determine the lateral force. One needs to remember the fact that the bubble 

Reynolds number in the lateral motion is based on a lateral velocity rather than the relative 

velocity (as found in considerations of the axial flow). We will use, however, same 

empirical formulas to obtain the friction factor CD. For the bubble Reynolds number from 

the range 0.5800 normally the relation ( )687.0Re15.01Re/24 +b  is used. In the present 

study we used the above relation for the friction factor with own correction included to 

account for the change of friction factor in the vicinity of the wall. In some paper such 

correction is regarded as a wall force. The friction factor takes the form: 

 
( )









+

+
=

y

d
C b

b

D

02.0
1

Re

Re15.0124 687.0

 (23) 

In some experimental evidence it has been found that there can be observed the change of 

sign of the lift force, Moraga et al. [9]. There exist various theories explaining this fact, but 

in author’s opinion, so far none is capable of correctly explaining such behaviour. Bubble 

deformation is regarded as a most plausible explanation for this fact. Postulated model, 

which contains two angular velocities is capable of explaining such phenomenon. Change of 

the sign of lift force is a result of a change of the sign of angular velocity (consisting of two 

components) which is consistent with the physics of the phenomenon. This can even be 

done without manual change to the lift coefficient, CL, which is a very popular explanation 

to this fact. From (10) we can determine the differential equation describing the distribution 

of lateral velocity: 
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1
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1

Re15.0136
 (24) 

Expression (24) contains two unknowns, namely b and the void fraction . In order to 

solve (24) we require additional equation combining these variables, which can be for 

example the diffusion of bubbles in liquid:  
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yd

d
D

bb


 −=  (25) 

where Db is a local bubble diffusivity. Bankoff [21] extended the Reynolds analogy of 

turbulent flow onto the case of bubble diffusion stating, that the eddy diffusivity of 

momentum corresponds to the bubble diffusivity. Subsequently he used the Prandtl mixing 

length model in order to determine eddy diffusivity 

 
yd

ud
yD l

b
22 ==  (26) 

In order to include the effect of added mass in a rotational bubble motion we incorporate a 

correction for added mass effect derived in [17] to amend the circulation on a bubble : 
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exp  (27) 

The final differential equation describing the distribution of lateral translational velocity 

with added mass in translative and rotational motion yields 
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1

Re15.0136
(28) 

In pure air-water system, the relative velocity of bubbles greater than 1.3 mm can be 

evaluated, Tomiyama et al. [22]: 

 
( )

l
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d
uu









2

2 −
+=   (29) 

In the case of air bubbles migrating in water this relation gives a velocity equal to 0.23 m/s. 

 

7. EFFECT OF BUOYANCY FORCE 

 

In most studies it is assumed, that in the boundary layer the shear stress is constant =w=const 

which is a natural assumption in the boundary layer, where the buoyancy forces are neglected. 

However, if we want to consider the direction of vertical motion then we have to consider the 

influence of buoyancy forces on the velocity profile. Performing a force balance on imaginary 

element of liquid containing bubbles, (Fig. 4), we obtain the following force balance between 

the weight of the control volume G=e g dx dy and the buoyancy force B=l g dx dy: 
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 0=−+− dxdygdxdygdxd ele   (30) 

where ( )  gle +−= 1 . From (30) we can derive the distribution of stress across the 

boundary: 

 



l

l

ge g
yd

d










−−= 1  (31) 

As we see the solution for void fraction distribution requires solving of three differential 

equations (6), (18) and (31). Such an approach has not been found by the author in the open 

literature. 

 

As can be seen suggested model consists of four differential equations in total. Equations 

describe the velocity profile (8), lateral velocity (25), void migration (28) and the shear stress 

distribution (31). Equation (6) is not explicit and presents numerical difficulties. 

 

8. HEAT TRANSFER IN THE TWO-PHASE TURBULENT BOUNDARY LAYER 

 

In the case of fully developed heat transfer in a two-dimensional boundary layer we obtain 

the energy balance equation, assuming constant physical properties cp=const and =const, in 

the form: 

 ( ) 0=











+





y

T
aa

y
t  (32) 

From considerations that in the laminar sublayer there are only viscous effects and the 

turbulent ones are negligible we can determine the temperature drop across the layer, which 

in the non-dimensional form yields as follows: 
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 (33) 

In the buffer layer both influences of molecular and turbulent viscosity should be considered 

as well as molecular and turbulent thermal diffusivity. This gives us the following temperature 

drop across the buffer layer: 
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Solution of the energy equation (32) is obtained after substitution of relevant velocity profile 

into the momentum equation, hence enabling determination of the turbulent viscosity and 

then solution of the temperature field. 

 In the present considerations we assume, that in the laminar and buffer sublayers there 

is merely a liquid flow, and hence the temperature drop is described by (33) and (34). Some 

changes will be applied only in the core of the flow, where the own model of two-phase 

flow will be used, where velocity profile is described by (8). Following the procedure used 

in determination of the temperature drop across the turbulent core in the case of the single 

phase flow, we can determine the corresponding temperature drop across the two-phase core 

region using the own model. It has the following non-dimensional form [23]: 
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  (35) 

Assuming a constant heat flux and a constant shear stress boundary conditions we can 

obtain in this way the approximate temperature field in two-phase bubbly flow. Considered 

below are two cases. 

 

8.1 Solution at constant void fraction across the boundary layer 

 

Assuming a constant void fraction in the boundary layer on a plate equation (35) has an 

analytical solution in the form: 
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The constant C is determined from the boundary condition at the border of a laminar 

sublayer  

 
++++ == ll TTy   (37) 

Combining (36) and (37) we obtain the following solution 
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In our first approach to determine temperature at the border of laminar sublayer let’s assume 

that there are in the flow two zones, which intersect at the point of y+=11.6, see Fig. 4. In the 

case of greater values of y+ we are dealing with the turbulent flow, and for lower ones we 

have a laminar flow. Substitution of Tl determined from (33) into (38) gives: 
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In order to determine the wall temperature Tw we may use another boundary condition, 

namely: 

 +



++ == TTy   (40) 

The wall temperature takes then a form 
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The resulting Nusselt number after small re-arrangements yields: 
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In the case of division of the boundary layer into three zones and implementing the 

procedure described above we can obtain the Nusselt number in the form: 
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Both forms of solutions (42) and (43) are relatively simple for the description of this kind of 

phenomena and seem to be applicable for engineering calculations. From the analysis of the 

form of the Nusselt number it results that it is generally a function of the following 

independent parameters: 

 







=

+



Pr,,,
Re

 M
w

NuNu  (44) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 17 

Analysis of the above parameters on the Nusselt number will be presented later in the text. 

 

8.2 Solution at variable void fraction 

 

In the case of a variable void fraction presented above procedure unfortunately does not 

hold. The velocity profile (8) must be solved with equations describing the void fraction 

distribution (25) and (28). From the presented above procedure it results that in order to 

determine the temperature field in a two-phase flow with a variable void fraction we must 

solve simultaneously three ordinary differential equations with three unknowns. 

Calculations start at the border of the turbulent layer, with the boundary conditions: 

 01 ===== +


+


++


++
bbTuuy   (45) 

 

9. COMPARISON AGAINST EXPERIMENTAL DATA 

 

Calculations performed using the postulated model have been compared against the 

experimental data of Marié et al. [9] for the case of upward bubbly flow on a flat plate. 

Calculations have been performed using the Mathcad7 software with adaptive stepsize. 

 

In present calculations it has been assumed that in the equation (28), consisting of two 

contributions to bubble rotation, a contribution coming from the non-uniform lateral 

distribution of the bubbles, i.e. the rotation described by (14), has a much stronger influence 

and for that reason circulation coming from the velocity profile distribution was found to have 

little effect and has been neglected in present calculations. It has been done so due to the fact 

that the velocity profile in the boundary layer is flat for almost the entire region and has a 

strong variation only very close to the wall, where bubbles are not present and so the 

postulated theory. This term included in calculations causes significant numerical problems. 

 

Calculations have been performed for one case corresponding to the experimental conditions. 

In the calculation of the equivalent velocity profile using the proposed model, the distribution 

of the void fraction from experiment corresponding to the external boundary layer void 

fraction value of 1.3% has been used (Fig. 5). Velocity distribution has been calculated using 

two methods, namely using the equation (9) (=const) and alternatively by simultaneous 
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solution of (8), (25) and (28) (=var). In calculations using equation (9) a constant value of 

=1.3% has been assumed and external liquid velocity was 1 m/s. The parameter M has been 

estimated to be M=0.729, which has been obtained for the spherical bubbles with the diameter 

of about db=3.5 mm. Obviously, in general, this parameter is variable with the distance from 

the wall, but a more detailed study of that influence has not been the merit of the present 

work. Velocity distribution obtained using the present model in comparison against the 

experimental data is presented in Fig. 7. In the figure presented are also the curves showing 

the single phase velocity profile. In Fig. 8 presented are calculations performed using various 

turbulence models for the case of single phase flow past the plate, along with the data for the 

external void fraction equal to 1.3%. As can be noticed a small influence of void fraction 

changes the picture of the flow. Predictions for the single phase flow differ significantly from 

the experimental data. In this light the predictions using the model show significantly 

improved consistency. 

 

As can be seen from Fig. 7 and 8, a new simple model leads to surprisingly good results. 

There is, however, a quantitative discrepancy between the experiment and results of 

calculations, which is strongly influenced by the choice of the boundary condition on the 

velocity profile. The boundary condition assumed in Fig. 4 for the velocity profile was that for 

w+=y+=8. One of the objectives of the work would be to determine the error incurred from the 

asymptotic solution, which in the presented case does not exceed 10% in the core region.  

From the analysis of Fig. 9 it results that in the location where the void fraction has its peak 

there is a change of sign of lateral velocity (Fig. 10), which supports entirely the theory 

described above.  

 

In the case of core peaking the mechanism described above is also revealed (see Fig. 11 and 

12). This means that in order the have a continuously increasing void fraction we need a 

negative value of bubble lateral velocity. This means that in such case bubbles travel towards 

the wall. Experimental data confirming such phenomenon are still unavailable yet in the 

literature. 

 

Calculations of heat transfer were conducted for the following parameters: 

• Heat flux density at the wall, qw – 100 kW/m2, 

• External fluid temperature T – 300 K 
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• Film temperature for calculation of water physical properties – 300 K  

(cp=4190 J/kgK, =0.6 W/mK, =1000 kg/m3, =10-6 m2/s) 

• von Karman constant – 0.4 

• Friction velocity corresponding to the experimental conditions [8] – u=0.052 m/s 

• Turbulent Prandtl number – t=1.0 

In calculations the following parameters were varied: the total boundary layer thickness +, 

i.e. the change of the Reynolds number of the flow, which can be defined as vu /Re


 += , 

bubble diameter db, i.e. the parameter M, and the void fraction . Results are presented in 

the form of graphs in Fig. 13, 14 and 15, as well as in Tables 1, 2 and 3. 

 

We can see from Fig. 13 that the increase of void fraction renders increase of temperature 

gradient in the boundary layer and hence the heat transfer coefficient. This is intuitively 

correct, as the presence of the bubbles intensifies heat transfer, but this finding tells us also, 

that the model gives a good qualitative agreement with practice. Values of the heat transfer 

coefficient for different void fractions are given in Table 1. It can be seen that both 

formulations, in the case of a two-zone model and a three-zone model, observe an increase 

of about 10% with the change of void fraction from 0 to 0.1. There is however, a significant 

quantitative discrepancy between the results given by the two- and three-zone models. In the 

case of the presence of bubbles in the flow we can see that the suggested model predicts 

almost zero temperature gradient for y+>400, i.e. we can talk about the decrease of the 

thickness of the boundary layer due to the presence of bubbles. Single-phase flow predicts 

some temperature gradient at the border of the boundary layer. 

In Fig. 14 presented is the influence of bubble diameter on the temperature distribution in 

the case where =0.015 and +=1200. A very important finding from Fig. 14 is that the 

smaller bubbles intensify more the heat transfer. This means that smaller bubbles turbulise 

more the boundary layer which is obvious. In the presented example the effect of the bubble 

diameter influence is of the order of 10%, in the considered range of bubble diameters. 

In Fig. 15 and Table 3 presented is the influence of non-dimensional boundary layer 

thickness on heat transfer in the boundary layer. In this case the influence is not very 

significant, however it can be said that the thinner the boundary layer is the more intensified 

heat transfer becomes. The thinner boundary layer corresponds to larger external liquid 

velocities, which is consistent with the findings from single-phase flows. 
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In Fig. 16 presented are comparisons of calculations of temperature profiles obtained from 

the model based on a constant and variable void fractions for the case of experimental void 

fraction presented in Fig. 7 and 8. As can be seen the qualitative agreement is very good 

indeed. Void fraction, calculated using own model, has been substituted into the 

temperature field profile and in this way the temperature field had been determined. 

Calculated in such way temperature distribution has been compared against the temperature 

distribution calculated using equation (36) at constant void fraction equal =1.3%. 

Calculations of heat transfer coefficient using a variable formulation predict higher values 

than the constant void fraction formulation. This is logical, as when we look at the void 

fraction distribution in Fig. 9 we can see the peak in its distribution, which takes a value of 

about 6.5%, and hence the heat transfer must be more intensified in this location. 

Summarising, it can be said that the proposed model has a good qualitative and quantitative 

agreement as far as hydrodynamics is concerned, which allows to judge that the similar 

should hold in the case of heat transfer in two-phase flow on a plate. 

 

10. CONCLUSIONS 

 

In the paper author’s own model of bubbly flow in the boundary layer has been presented. The 

model is based on two hypothesis, namely the first one based of summation of dissipation 

resulting from liquid flow and presence of bubbles. The second hypothesis presented in the 

paper is identification of additional circulation around bubble, which in author’s opinion is 

responsible for different gathering of bubbles in the flow, i.e. wall peaking and core peaking. 

The results obtained using such model have been confronted against experimental data, where 

satisfactory agreement has been achieved. That confirmed the appropriateness of assumed 

hypothesis. Formulated and presented model of bubbly flow without bubble generation in its 

general form consists of four differential equations of the first order, namely: equation of 

lateral bubble velocity, lateral distribution of void fraction, shear stress distribution and 

equivalent velocity of two-phase flow. It is worth stressing that in the case of a constant void 

fraction distribution its is possible to obtain analytical form of velocity profile, which can be 

regarded as some kind of the law of the wall. In author’s opinion such model can be 

disseminated for a wider use amongst engineers. Due to two contributions of circulation 

around the bubble the model is capable of predicting the phenomena of wall peaking and core 

peaking. In the case of wall peaking, there must be a change of the sign of void fraction 
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gradient in the peak, which renders that at this location there must be a change of a sign of 

lateral velocity. Presented model can restore this phenomenon. In the case of core peaking we 

deal with a negative value of lateral velocity, which means that it is directed towards the wall. 

 

In the paper presented also is author’s own solution to heat transfer in bubbly flow. Again, 

two solutions have been presented. The first one, analytical, has been obtained for the case 

of bubbly flow with the constant distribution of void fraction. Obtained analytical 

temperature distribution in the boundary layer may quite useful to engineering practice due 

to a reasonable accuracy, if compared against the solution incorporating variable distribution 

of void fraction. The second solution, more accurate, is based on solution of a set of five 

differential equations, namely: lateral distribution of void fraction, lateral velocity, shear 

stress distribution, equivalent flow velocity and temperature. However it is a more accurate 

solution it requires more complex numerical calculations. 

 

Summarising it can be concluded, that despite intensively conducted experimental, 

theoretical and numerical works in the area of two-phase flows more research is still 

requires into understanding of bubbly flows. Presented in the paper model shows, in 

author’s own opinion, directions for further research on understanding of a complex nature 

of two-phase flows. 
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Table 1 Comparison of the values of heat transfer coefficient with respect to void fraction 

using a two-zone and three-zone models (M=0.73, +=1200). Indices denote: m2l – 

proposed two-zone model, m3l – proposed three-zone model; 2l –theoretical two-zone 

single phase model, 3l – theoretical three-zone single phase model. 

 

THREE-ZONE MODEL 

Void 

fraction 
Tw

+
m3l Tw

+
3l m3l m3l/3l Num3l 

[%] [-] [-] W/m2K [-] [-] 

0 1,047 1.047 3512 1.000 135.06 

1.5 1,044 1.047 3770 1.073 144.99 

3.0 1,043 1.047 3853 1.097 148.183 

5.0 1,043 1.047 3912 1.114 150.477 

7.5 1,042 1.047 3956 1.126 152.156 

10.0 1,042 1.047 3984 1.134 153.234 

 

 

Table 2 Influence of bubble diameter on heat transfer in the boundary layer (three-zone 

model),  = 0.015, q=100000 W/m2. 

 

Parameter 

M 
db Tw

+
m3l m3l Num3l 

[-] [mm] [-] W/m2K [-] 

11.2 0.50 1.08231 4050 155.760 

6.22 0.75 1.08317 4008 154.142 

4.132 1.0 1.08395 3970 152.709 

1.569 2.0 1.08630 3863 148.563 

0.73 3.5 1.08842 3770 144.993 

0.45 5.0 1.08974 3714 142.855 

0.26 7.5 1.09112 3658 140.703 
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Table 3 Influence of non-dimensional boundary layer thickness (Reynolds number) on heat 

transfer in the boundary layer (three-zone model). 

 

+ Tw
+

m3l Tw
+

3l m3l 3l Num3l Nu3l 

[-] [-] [-] W/m2K W/m2K [-] [-] 

250 1,08660 1,09552 3849 3749 30,842 27,961 

500 1,08765 1,09552 3803 3640 60,948 55,921 

1000 1,08830 1,09410 3775 3538 120,993 111,843 

1200 1,08842 1,09500 3770 3512 144,993 134,211 

2000 1,08867 1,09700 3759 3441 240,965 223,685 

2500 1,08875 1,09800 3756 3411 300,937 279,607 
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Figure captions: 

 

Fig. 1. Forces acting on the bubble in vertical flow 

Fig. 2. Model of two-phase flow 

Fig. 3 The model of bubble moving through liquid. 

Fig. 4 Force balance on the two-phase element of fluid. 

Fig. 5. Two-zone boundary layer 

Fig. 6 Three-zone boundary layer. 

Fig. 7 Velocity distribution at void fraction =1.3%  

Fig. 8 Velocity distribution calculated using various turbulence models at void fraction 

=1.3% 

Fig. 9 Void fraction distribution in upward flow – wall peaking. 

Fig. 10 Lateral velocity distribution in upward flow – wall peaking case. 

Fig. 11 Void fraction distribution in upward flow – core peaking. 

Fig. 12 Lateral velocity distribution in upward flow – core peaking case. 

Fig. 13. Influence of void fraction on temperature distribution in the boundary layer (three 

zone model). M=0.73, +=1200, qw=100000W/m2. 

Fig. 14 Influence of bubble diameter on temperature distribution in the boundary layer. 

=0.015, M=0.73, +=1200, qw=100000 W/m2. 

Fig. 15 Influence of non-dimensional boundary layer thickness on heat transfer in the 

boundary layer. =0.015, M=0.73 (db=3.5 mm). 

Fig. 16 Comparison of theoretical temperature distribution using the model at constant void 

fraction and the variable void fraction formulation. 
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Fig. 1. Forces acting on the bubble in vertical flow 
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Fig. 2. Model of two-phase flow 
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Fig. 3 The model of bubble moving through liquid. 
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Fig. 4 Force balance on the two-phase element of fluid. 
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Fig. 5. Two-zone boundary layer 
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Fig. 6 Three-zone boundary layer. 
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Fig. 7 Velocity distribution at void fraction =1.3%  
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Fig. 8 Velocity distribution calculated using various turbulence models at void fraction =1.3%  
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Fig. 9 Void fraction distribution in upward flow – wall peaking. 

0 400 800

y+

-0.80

-0.40

0.00

0.40

0.80

+

MODEL

 

 

Fig. 10 Lateral velocity distribution in upward flow – wall peaking case. 
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Fig. 11 Void fraction distribution in upward flow – core peaking. 
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Fig. 12 Lateral velocity distribution in upward flow – core peaking case. 
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Fig. 13. Influence of void fraction on temperature distribution in the boundary layer (three zone 

model). M=0.73, +=1200, qw=100000W/m2. 

 

1 1 0 1 0 0 1 0 0 0 
y + 

1 . 0 0 

1 . 0 1 

1 . 0 2 

1 . 0 3 

T + 

d b 
  =   0 . 5 0   m m 

d b 
  =   0 . 7 5   m m 

d b 
  =   1 . 0   m m 

d b 
  =   2 . 0   m m 

d b 
  =   3 . 5   m m 

d b 
  =   5 . 0   m m 

d b 
  =   7 . 5   m m 

 

Fig. 14 Influence of bubble diameter on temperature distribution in the boundary layer. =0.015, 

M=0.73, +=1200, qw=100000 W/m2. 
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Fig. 15 Influence of non-dimensional boundary layer thickness on heat transfer in the boundary 

layer. =0.015, M=0.73 (db=3.5 mm). 
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Fig. 16 Comparison of theoretical temperature distribution using the model at constant void fraction and the 

variable void fraction formulation.  
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